
Solady
Tokens & Utils Selection

by Ackee Blockchain

30.05.2023

https://ackeeblockchain.com

Contents
1. Document Revisions. 4

2. Overview . 5

2.1. Ackee Blockchain . 5

2.2. Audit Methodology . 5

2.3. Finding classification. 7

2.4. Review team. 9

2.5. Disclaimer . 9

3. Executive Summary . 10

Revision 1.0 . 10

Revision 1.1. 11

4. Summary of Findings. 12

5. Report revision 1.0 . 14

5.1. System Overview . 14

5.2. Trust Model. 15

H1: ERC-1155 _setApprovalForAll emits incorrect owner 17

M1: ERC-1155 safe transfer re-entrancy . 20

W1: ERC-1155 safe transfer hooks order inconsistency. 23

W2: EIP-712 parameters cannot be set. 25

W3: ERC-20 mint to zero address. 27

W4: Execution order of Yul arguments relied on . 28

I1: MerkleProofLib duplicated code . 31

I2: Token revert checks order inconsistency . 33

I3: Token approvals to self allowed. 35

I4: Misleading comments referring to delegatecall . 37

I5: Increase balance comment in burn function . 39

6. Report revision 1.1 . 40

2 of 47

https://ackeeblockchain.com

6.1. System Overview. 40

Appendix A: How to cite . 41

Appendix B: Glossary of terms . 42

Appendix C: Woke outputs . 43

C.1. H1 proof of concept . 43

C.2. M1 proof of concept . 43

3 of 47

https://ackeeblockchain.com

1. Document Revisions
0.1 Draft report 30.05.2023

1.0 Final report 30.05.2023

1.1 Fix review 02.06.2023

4 of 47

https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specializing in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run free

certification courses School of Solana, Summer School of Solidity and teach

at the Czech Technical University in Prague. Ackee Blockchain is backed by

the largest VC fund focused on blockchain and DeFi in Europe, RockawayX.

RockawayX

RockawayX is a digital asset venture capital firm supporting founders of

web3 companies since early stages. In addition to investing, RockawayX

provides liquidity to Defi protocols, runs blockchain infrastructure of nodes

and RPCs, develops dashboards (observatory.zone) and tools for foundations

to better decentralize their blockchains (stakebar.io, smartdelegation.app),

funds smart contract audits (ackeeblockchain.com) and research in

accelerating generation of zero knowledge proofs (maya-zk.com), and

organizes hackathons and conferences (gateway.events).

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Woke is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

5 of 47

https://github.com/ackee-blockchain
https://ackeeblockchain.com/school-of-solana
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rockawayx.com/
https://observatory.zone
https://stakebar.io
https://smartdelegation.app
https://ackeeblockchain.com
https://maya-zk.com
https://gateway.events
https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzz testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzz tests.

6 of 47

https://ackeeblockchain.com

2.3. Finding classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low -

Impact

High Critical High Medium -

Medium High Medium Medium -

Low Medium Medium Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

7 of 47

https://ackeeblockchain.com

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration (such as deployment scripts, compiler configuration, use of

multi-signature wallets for owners, etc.), but could be a security

vulnerability if these were to change slightly. If we haven’t found a way to

exploit the issue given the time constraints, it might be marked as a

"Warning" or higher, based on our best estimate of whether it is currently

exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

8 of 47

https://ackeeblockchain.com

2.4. Review team

Member’s Name Position

Michal Převrátil Lead Auditor

Lukáš Böhm Auditor

Jan Kalivoda Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

9 of 47

https://ackeeblockchain.com

3. Executive Summary
Solady is a library of gas-optimized Solidity code snippets. It is a collection of

contracts that can be used as building blocks for other contracts. The library

is intended to be used by developers who want to build their own contracts

and want to save gas by using already optimized code.

Revision 1.0
RockawayX engaged Ackee Blockchain to perform a security review of the

Solady protocol with a total time donation of 15 engineering days in a period

between May 15 and May 29, 2023 and the lead auditor was Michal Převrátil.

The audit has been performed on the commit e158762 and the scope was the

following:

• tokens/ERC20.sol

• tokens/ERC721.sol

• tokens/ERC1155.sol

• utils/SafeTransferLib.sol

• utils/ERC1967Factory.sol

• utils/SignatureCheckerLib.sol

• utils/MerkleProofLib.sol

• utils/EIP712.sol

We began our review by interacting with contracts using Woke testing

framework. We then prepared differential fuzzing tests in Python and started

fuzzing the contracts. In parallel, we performed a manual review of the

codebase. During the review, we paid special attention to:

10 of 47

https://github.com/Vectorized/solady/commit/e158762ba98db40a06411db7f80a54b93e951818
https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

• ensuring upper bits of variables shorter than 256 bits are cleared when

necessary,

• looking for any memory constraint violations, especially interactions with

the free memory pointer,

• ensuring tokens and utility libraries are implemented with respect to

corresponding EIPs,

• looking for common issues specific to inline assembly.

Our review resulted in 11 findings, ranging from Info to High severity. The most

severe one results in incorrect ownership data emitted in an event which can

lead to off-chain applications malfunction (see H1).

Ackee Blockchain recommends Solady:

• pay special attention when copying existing code blocks from one file to

another to avoid introducing bugs,

• reconsider if internal transfer and approval functions are necessary in

ERC721 and ERC1155 contracts as they may lead to misleading or incorrect

data being emitted as in H1,

• fix the M1 re-entrancy issue,

• deeply look into reported warnings and informational findings.

See Revision 1.0 for the system overview of the codebase.

Revision 1.1
RockawayX engaged Ackee Blockchain to perform a fix review on the commit

37a79ce.

The status of all reported issues was updated and can be found in the

findings table. Issues include client responses.

11 of 47

https://github.com/Vectorized/solady/commit/37a79cebb0f12472cc339a726d6f385ec534d056
https://ackeeblockchain.com

4. Summary of Findings
The following table summarizes the findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• a Description,

• an Exploit scenario,

• a Recommendation and if applicable

• a Fix.

There might often be multiple ways to solve or alleviate the issue, with

varying requirements regarding the necessary changes to the codebase. In

that case, we will try to enumerate them all, clarifying which solves the

underlying issue better (albeit possibly only with architectural changes) than

others.

Severity Reported Status

H1: ERC-1155

_setApprovalForAll emits

incorrect owner

High 1.0 Fixed

M1: ERC-1155 safe transfer

re-entrancy

Medium 1.0 Fixed

W1: ERC-1155 safe transfer

hooks order inconsistency

Warning 1.0 Fixed

W2: EIP-712 parameters

cannot be set

Warning 1.0 Acknowledged

W3: ERC-20 mint to zero

address

Warning 1.0 Acknowledged

12 of 47

https://ackeeblockchain.com

Severity Reported Status

W4: Execution order of Yul

arguments relied on

Warning 1.0 Acknowledged

I1: MerkleProofLib duplicated

code

Info 1.0 Acknowledged

I2: Token revert checks

order inconsistency

Info 1.0 Fixed

I3: Token approvals to self

allowed

Info 1.0 Acknowledged

I4: Misleading comments

referring to delegatecall

Info 1.0 Fixed

I5: Increase balance

comment in burn function

Info 1.0 Fixed

Table 2. Table of Findings

13 of 47

https://ackeeblockchain.com

5. Report revision 1.0

5.1. System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

Contracts

Contracts we find important for better understanding are described in the

following section.

ERC20

The ERC20 abstract contract is a base contract for ERC-20 token contracts

implementing ERC-2612 permit approvals.

ERC721

The ERC721 abstract contract is a base implementation of ERC-721 token

contracts.

ERC1155

The ERC1155 abstract contract is a base implementation of ERC-1155 token

contracts.

SafeTransferLib

The SafeTransferLib is a library for safe ETH and ERC-20 token transfers

gracefully handling missing function return values.

ERC1967Factory

The ERC1967Factory contract serves as a factory for deploying and managing

14 of 47

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-20
https://ackeeblockchain.com

ERC-1967 proxy contracts.

SignatureCheckerLib

The SafeTransferLib library performs ECDSA and ERC-1271 signature

correctness checks.

MerkleProofLib

The MerkleProofLib library implements functions for verifying if a given leaf or

a set of leaves belongs to a Merkle tree, given its root hash and a Merkle

proof.

EIP712

The EIP712 abstract contract provides helper functions for building the EIP-

712 domain separator and preparing the data for signing and verifying

signatures.

Actors

This part describes actors of the system, their roles, and permissions.

Owner

Depending on the final implementation of token contracts (ERC20, ERC721,

ERC1155) inheriting from abstract contracts provided in Solady, the token

contract owner can modify balances, including transferring tokens, minting,

and burning tokens. The token contract owner can also modify approvals and

allowances.

5.2. Trust Model
Users of tokens (ERC20, ERC721, ERC1155) have to trust the token contract

and its final implementation as the provided contracts are abstract, and the

logic may be changed due to inheritance. Token users must trust the

15 of 47

https://eips.ethereum.org/EIPS/eip-1967
https://eips.ethereum.org/EIPS/eip-1271
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://ackeeblockchain.com

addresses they give approvals to and set allowances for.

16 of 47

https://ackeeblockchain.com

H1: ERC-1155 _setApprovalForAll emits incorrect
owner

High severity issue

Impact: High Likelihood: Medium

Target: tokens/ERC1155.sol Type: Logic error

Listing 1. Excerpt from ERC1155._setApprovalForAll

728 function _setApprovalForAll(address by, address operator, bool
 isApproved) internal virtual {
729 /// @solidity memory-safe-assembly
730 assembly {
731 // Convert to 0 or 1.
732 isApproved := iszero(iszero(isApproved))
733 // Update the `isApproved` for (`by`, `operator`).
734 mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
735 mstore(0x14, by)
736 mstore(0x00, operator)
737 sstore(keccak256(0x0c, 0x34), isApproved)
738 // Emit the {ApprovalForAll} event.
739 mstore(0x00, isApproved)
740 // forgefmt: disable-next-line
741 log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE,
 caller(), shr(96, shl(96, operator)))
742 }
743 }

Signature of the ApprovalForAll event:

event ApprovalForAll(address indexed _owner, address indexed _operator,
bool _approved);

Description

The contract ERC1155 implements two variants of a setApprovalForAll

17 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L728-L743
https://ackeeblockchain.com

function. The first variant checks access controls and is public. The second

variant (_setApprovalForAll) does not check access controls and is internal.

The second variant accepts one additional argument, by, which is used to set

approval from any owner to any operator. The function emits the

ApprovalForAll event as required by EIP-1155 but uses caller (msg.sender in

Solidity) as an address of the account that gives an approval (the owner).

Typically, the second (internal) variant will be used when the owner is not

equal to the function’s caller. This will result in incorrect data emitted in the

ApprovalForAll event, which can lead to incorrect behavior of off-chain

services relying on this event.

Vulnerability scenario

The contract owner calls the _setApprovalForAll function for a pre-defined

set of owners and operators. The function emits the ApprovalForAll event

with the owner set to the contract owner instead of the actual token’s

owner.

There is a proof of concept script in Woke development and testing

framework in Appendix C.

Recommendation

Use shr(96, shl(96, by)) instead of caller() in the log3 instruction emitting

the ApprovalForAll event.

Solution (Revision 1.1)

Fixed by replacing the original code using caller() as an owner of the

approval:

Listing 2. Excerpt from ERC1155._setApprovalForAll

741 log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE,

18 of 47

https://eips.ethereum.org/EIPS/eip-1155
https://github.com/Ackee-Blockchain/woke
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L741-L741
https://ackeeblockchain.com

 caller(), shr(96, shl(96, operator)))

with the following code using the by argument as an owner of the approval:

Listing 3. Excerpt from ERC1155._setApprovalForAll

744 let m := shr(96, not(0))
745 log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, and(m,
 by), and(m, operator))

Go back to Findings Summary

19 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L744-L745
https://ackeeblockchain.com

M1: ERC-1155 safe transfer re-entrancy

Medium severity issue

Impact: High Likelihood: Low

Target: tokens/ERC1155.sol Type: Re-entrancy

Listing 4. Excerpt from ERC1155._safeTransfer

827 if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount,
 data);
828 if (_useAfterTokenTransfer()) {
829 _afterTokenTransfer(from, to, _single(id), _single(amount),
 data);
830 }

Listing 5. Excerpt from ERC1155._safeBatchTransfer

943 if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids,
 amounts, data);
944 if (_useAfterTokenTransfer()) {
945 _afterTokenTransfer(from, to, ids, amounts, data);
946 }

Description

The _safeTransfer and _safeBatchTransfer functions of the ERC1155 contract

call post-transfer hooks in the reverse order compared to other transfer

functions implemented in the same contract. In the reversed order, the

external hook, _checkOnERC1155Received and _checkOnERC1155BatchReceived, is

called before the internal hook, _afterTokenTransfer. This allows for a re-

entrancy attack with the following preconditions:

• the contract inheriting from the ERC1155 abstract contract uses one of the

_safeTransfer or _safeBatchTransfer functions with an untrusted to

20 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L827-L830
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L943-L946
https://ackeeblockchain.com

address,

• internal _afterTokenTransfer hook is used in the inheritor contract, and it

performs any state change,

• the inheritor contract does not implement its own re-entrancy protection.

Vulnerability scenario

Alice uses the ERC1155 abstract contract to implement her custom ERC-1155

token. The token has a mint function that limits the amount of tokens a single

address can hold. The verification logic is implemented in the mint function,

and the information about the amount of tokens held by an address

(together with other metadata) is stored in the _afterTokenTransfer hook.

Bob calls the mint function through his malicious contract that re-enters the

mint function from the _checkOnERC1155Received hook. Because the

_afterTokenTransfer hook is called after the _checkOnERC1155Received external

hook, Bob can bypass the verification logic and mint more tokens than

allowed.

There is a proof of concept script in Woke development and testing

framework in Appendix C.

Recommendation

Call the _afterTokenTransfer hook before _checkOnERC1155Received and

_checkOnERC1155BatchReceived, respectively.

Solution (Revision 1.1)

Fixed by calling the _afterTokenTransfer hook before _checkOnERC1155Received

and _checkOnERC1155BatchReceived in the _safeTransfer and _safeBatchTransfer

functions, respectively.

21 of 47

https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

Listing 6. Excerpt from ERC1155._safeTransfer

831 if (_useAfterTokenTransfer()) {
832 _afterTokenTransfer(from, to, _single(id), _single(amount),
 data);
833 }
834 if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount,
 data);

Listing 7. Excerpt from ERC1155._safeBatchTransfer

947 if (_useAfterTokenTransfer()) {
948 _afterTokenTransfer(from, to, ids, amounts, data);
949 }
950 if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids,
 amounts, data);

Go back to Findings Summary

22 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L831-L834
https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L947-L950
https://ackeeblockchain.com

W1: ERC-1155 safe transfer hooks order
inconsistency

Impact: Warning Likelihood: N/A

Target: tokens/ERC1155.sol Type: Code quality

Listing 8. Excerpt from ERC1155._safeTransfer

827 if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount,
 data);
828 if (_useAfterTokenTransfer()) {
829 _afterTokenTransfer(from, to, _single(id), _single(amount),
 data);
830 }

Listing 9. Excerpt from ERC1155._safeBatchTransfer

943 if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids,
 amounts, data);
944 if (_useAfterTokenTransfer()) {
945 _afterTokenTransfer(from, to, ids, amounts, data);
946 }

Description

The internal _afterTokenTransfer and external _checkOnERC1155Received (or

_checkOnERC1155BatchReceived, respectively) hooks are called in a different

order across all safe transfer functions in the ERC1155 contract. This

inconsistency can lead to unexpected behavior in an off-chain application in

a scenario where both the internal and external hooks emit an event, and the

off-chain application relies on the order of the events to be consistent.

Recommendation

Call the hook functions in the same order in all safe transfer functions in the

23 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L827-L830
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L943-L946
https://ackeeblockchain.com

ERC1155 contract. It is strongly recommended to call the internal hook before

the external hook to fix the M1 issue.

Solution (Revision 1.1)

Fixed together with M1 by calling the _afterTokenTransfer hook before

_checkOnERC1155Received and _checkOnERC1155BatchReceived in all safe transfer

functions.

Listing 10. Excerpt from ERC1155._safeTransfer

831 if (_useAfterTokenTransfer()) {
832 _afterTokenTransfer(from, to, _single(id), _single(amount),
 data);
833 }
834 if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount,
 data);

Listing 11. Excerpt from ERC1155._safeBatchTransfer

947 if (_useAfterTokenTransfer()) {
948 _afterTokenTransfer(from, to, ids, amounts, data);
949 }
950 if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids,
 amounts, data);

24 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L831-L834
https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L947-L950
https://ackeeblockchain.com

W2: EIP-712 parameters cannot be set

Impact: Warning Likelihood: N/A

Target: utils/EIP712.sol Type: Standards

deviation

Listing 12. Excerpt from EIP712._buildDomainSeparator

151 function _buildDomainSeparator() private view returns (bytes32
 separator) {
152 bytes32 nameHash = _cachedNameHash;
153 bytes32 versionHash = _cachedVersionHash;
154 /// @solidity memory-safe-assembly
155 assembly {
156 let m := mload(0x40) // Load the free memory pointer.
157 mstore(m, _DOMAIN_TYPEHASH)
158 mstore(add(m, 0x20), nameHash)
159 mstore(add(m, 0x40), versionHash)
160 mstore(add(m, 0x60), chainid())
161 mstore(add(m, 0x80), address())
162 separator := keccak256(m, 0xa0)
163 }
164 }

Description

The EIP712 abstract contract implements data preparations for EIP-712

signing. However, the implementation has some limitations in contrast to the

EIP:

• the address of the verifying contract cannot be set, i.e., the current

implementation assumes the verifying contract will be the same as the

contract producing the hash to be signed,

• salt, which is an optional parameter serving as a domain separator of last

resort, cannot be set.

25 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/utils/EIP712.sol#L151-L164
https://eips.ethereum.org/EIPS/eip-712
https://ackeeblockchain.com

The current implementation does not allow inheriting the EIP712 contract and

overriding necessary functions to make both parameters (verifyingContract

and salt) configurable.

Recommendation

Reconsider making both parameters configurable directly in the abstract

contract.

Solution (Revision 1.1)

The Solady lead developer acknowledged the issue with the following

comment:

For aesthetics, simplicity and gas-savings, incorporating use of

salt into this implementation will be hard.

This is because the _DOMAIN_TYPEHASH constant depends on

whether salt is being used — due to the limitations of the

Solidity compiler, we cannot find a simple way that allows the

_DOMAIN_TYPEHASH to be conditionally evaluated on compile time

depending on the return value of a virtual _salt function.

As such, we will leave a comment on the limitations of this

implementation.

26 of 47

https://ackeeblockchain.com

W3: ERC-20 mint to zero address

Impact: Warning Likelihood: N/A

Target: tokens/ERC20.sol Type: Data validation

Description

The ERC20 contract allows minting tokens to the zero address. This contrasts

with the OpenZeppelin implementation, where such behavior is not allowed.

Recommendation

Consider checking that the recipient of tokens is not the zero address in the

ERC20 _mint function.

Solution (Revision 1.1)

The Solady lead developer acknowledged the issue and added a note to the

code:

Listing 13. Excerpt from ERC20.sol

8 /// Note:
9 /// The ERC20 standard allows minting and transferring to and from the
 zero address,
10 /// minting and transferring zero tokens, as well as self-approvals.
11 /// For performance, this implementation WILL NOT revert for such
 actions.
12 /// Please add any checks with overrides if desired.
13 abstract contract ERC20 {

27 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC20.sol#L8-L13
https://ackeeblockchain.com

W4: Execution order of Yul arguments relied on

Impact: Warning Likelihood: N/A

Target: utils/SignatureCheckerLib.sol,

utils/SafeTransferLib.sol

Type: Undocumented

features

utilization

Listing 14. Excerpt from SignatureCheckerLib.isValidSignatureNow

88 isValid := and(
89 and(
90 // Whether the returndata is the magic value
 `0x1626ba7e` (left-aligned).
91 eq(mload(0x00), f),
92 // Whether the returndata is exactly 0x20 bytes
 (1 word) long.
93 eq(returndatasize(), 0x20)
94),
95 // Whether the staticcall does not revert.
96 // This must be placed at the end of the `and`
 clause,
97 // as the arguments are evaluated from right to
 left.
98 staticcall(
99 gas(), // Remaining gas.
100 signer, // The `signer` address.
101 m, // Offset of calldata in memory.
102 add(signatureLength, 0x64), // Length of
 calldata in memory.
103 0x00, // Offset of returndata.
104 0x20 // Length of returndata to write.
105)
106)

Listing 15. Excerpt from SafeTransferLib.safeTransferFrom

164 if iszero(
165 and(// The arguments of `and` are evaluated from right
 to left.

28 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/utils/SignatureCheckerLib.sol#L88-L106
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/utils/SafeTransferLib.sol#L164-L171
https://ackeeblockchain.com

166 // Set success to whether the call reverted, if not
 we check it either
167 // returned exactly 1 (can't just be non-zero
 data), or had no return data.
168 or(eq(mload(0x00), 1), iszero(returndatasize())),
169 call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
170)
171) {

Description

Solady relies on an undocumented behavior of the solc compiler that

arguments of Yul internal functions are evaluated from the last to the first.

In particular, this was observed in the case of Yul and, where the second

argument performs an external call and the first argument works with the

external call return data.

Recommendation

Consider rewriting the code to avoid relying on the execution order of Yul

arguments, as this behavior is not documented and may change in future

versions of the compiler.

Solution (Revision 1.1)

The Solady lead developer acknowledged the issue with the following

comment:

For efficiency, we avoid using temporary variables, as the

compiler is sometimes unable to optimize them away.

We expect any changes in how the arguments to be evaluated

to be a breaking change in solc.

29 of 47

https://ackeeblockchain.com

We also test on every supported version of solc in our CI (from

v0.8.4 to the latest v0.8.x).

We have also added a warning to the README #447

30 of 47

https://github.com/Vectorized/solady/pull/447
https://ackeeblockchain.com

I1: MerkleProofLib duplicated code

Impact: Info Likelihood: N/A

Target: utils/MerkleProofLib.sol Type: Code quality

Listing 16. Excerpt from MerkleProofLib.emptyProof

262 function emptyProof() internal pure returns (bytes32[] calldata
 proof) {
263 /// @solidity memory-safe-assembly
264 assembly {
265 proof.length := 0
266 }
267 }

Listing 17. Excerpt from MerkleProofLib.emptyLeafs

270 function emptyLeafs() internal pure returns (bytes32[] calldata
 leafs) {
271 /// @solidity memory-safe-assembly
272 assembly {
273 leafs.length := 0
274 }
275 }

Description

The MerkleProofLib library implements emptyProof and emptyLeafs helper

functions, both returning an empty calldata array of bytes32. The

functionality of both functions is the same, with names of functions and

variables being the only difference.

Recommendation

Consider merging the two functions into one with a more generic name, e.g.

emptyBytes32Array.

31 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/utils/MerkleProofLib.sol#L262-L267
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/utils/MerkleProofLib.sol#L270-L275
https://ackeeblockchain.com

Solution (Revision 1.1)

The Solady lead developer acknowledged the issue with the following

comment:

The helper functions to return empty calldata arrays are

duplicated for semantic aesthetics.

They are provided to help avoid compiler warnings regarding

empty calldata arrays.

32 of 47

https://ackeeblockchain.com

I2: Token revert checks order inconsistency

Impact: Info Likelihood: N/A

Target: tokens/ERC721.sol,

tokens/ERC1155.sol

Type: Code quality

Listing 18. Excerpt from ERC1155.safeTransferFrom

196 if iszero(eq(caller(), from)) {
197 mstore(0x00, caller())
198 if iszero(sload(keccak256(0x0c, 0x34))) {
199 mstore(0x00, 0x4b6e7f18) //
 `NotOwnerNorApproved()`.
200 revert(0x1c, 0x04)
201 }
202 }
203 // Revert if `to` is the zero address.
204 if iszero(to) {
205 mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
206 revert(0x1c, 0x04)
207 }

Listing 19. Excerpt from ERC1155.safeBatchTransferFrom

305 if iszero(to) {
306 mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
307 revert(0x1c, 0x04)
308 }
309 // If the caller is not `from`, do the authorization check.
310 if iszero(eq(caller(), from)) {
311 mstore(0x00, caller())
312 if iszero(sload(keccak256(0x0c, 0x34))) {
313 mstore(0x00, 0x4b6e7f18) //
 `NotOwnerNorApproved()`.
314 revert(0x1c, 0x04)
315 }
316 }

33 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L196-L207
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L305-L316
https://ackeeblockchain.com

Description

Revert checks are performed in a different order across ERC1155 and ERC721

functions. This is an inconsistency.

Recommendation

Perform revert checks of the same type in the same order in the whole

project unless this can save a significant amount of gas.

Solution (Revision 1.1)

The revert checks order was made consistent across ERC1155 and ERC721

functions.

34 of 47

https://ackeeblockchain.com

I3: Token approvals to self allowed

Impact: Info Likelihood: N/A

Target: tokens/ERC721.sol,

tokens/ERC1155.sol

Type: Data validation

Description

The ERC721 and ERC1155 contracts allow calling approve and setApprovalForAll

with by and account pointing to the same address, effectively giving approval

to self. This behavior is prohibited in the OpenZeppelin implementation.

Recommendation

Consider adding an extra check that the by address is different from the

account address in ERC721 and ERC1155 approval functions.

Solution (Revision 1.1)

The Solady lead developer acknowledged the issue and added notes to the

code:

Listing 20. Excerpt from ERC20.sol

8 /// Note:
9 /// The ERC20 standard allows minting and transferring to and from the
 zero address,
10 /// minting and transferring zero tokens, as well as self-approvals.
11 /// For performance, this implementation WILL NOT revert for such
 actions.
12 /// Please add any checks with overrides if desired.
13 abstract contract ERC20 {

Listing 21. Excerpt from ERC721.sol

8 /// Note:

35 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC20.sol#L8-L13
https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC721.sol#L8-L12
https://ackeeblockchain.com

9 /// The ERC721 standard allows for self-approvals.
10 /// For performance, this implementation WILL NOT revert for such
 actions.
11 /// Please add any checks with overrides if desired.
12 abstract contract ERC721 {

Listing 22. Excerpt from ERC1155.sol

8 /// Note:
9 /// The ERC1155 standard allows for self-approvals.
10 /// For performance, this implementation WILL NOT revert for such
 actions.
11 /// Please add any checks with overrides if desired.
12 abstract contract ERC1155 {

36 of 47

https://github.com/Vectorized/solady/tree/37a79cebb0f12472cc339a726d6f385ec534d056/src/tokens/ERC1155.sol#L8-L12
https://ackeeblockchain.com

I4: Misleading comments referring to
delegatecall

Impact: Info Likelihood: N/A

Target: tokens/ERC721.sol,

tokens/ERC1155.sol

Type: Code quality

Listing 23. Excerpt from ERC721._checkOnERC721Received

856 // Revert if the call reverts.
857 if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m,
 0x20)) {
858 if returndatasize() {
859 // Bubble up the revert if the delegatecall
 reverts.
860 returndatacopy(0x00, 0x00, returndatasize())
861 revert(0x00, returndatasize())
862 }
863 mstore(m, 0)
864 }

Listing 24. Excerpt from ERC1155.safeTransferFrom

252 // Revert if the call reverts.
253 if iszero(call(gas(), to, 0, add(m, 0x1c), add(0xc4,
 data.length), m, 0x20)) {
254 if returndatasize() {
255 // Bubble up the revert if the delegatecall
 reverts.
256 returndatacopy(0x00, 0x00, returndatasize())
257 revert(0x00, returndatasize())
258 }
259 mstore(m, 0)
260 }

Description

In the ERC721 and ERC1155 contracts, multiple comments refer to

37 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC721.sol#L856-L864
https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L252-L260
https://ackeeblockchain.com

delegatecall, but there is no delegatecall instruction and the call instruction

is used instead.

Recommendation

Correct the comments to refer to the call instruction to avoid confusion.

Solution (Revision 1.1)

The comments were corrected to refer to the call instruction.

38 of 47

https://ackeeblockchain.com

I5: Increase balance comment in burn function

Impact: Info Likelihood: N/A

Target: tokens/ERC1155.sol Type: Code quality

Listing 25. Excerpt from ERC1155._batchBurn

684 // Increase and store the updated balance of `to`.
685 {
686 mstore(0x00, mload(add(ids, i)))
687 let fromBalanceSlot := keccak256(0x00, 0x40)
688 let fromBalance := sload(fromBalanceSlot)
689 if gt(amount, fromBalance) {
690 mstore(0x00, 0xf4d678b8) //
 `InsufficientBalance()`.
691 revert(0x1c, 0x04)
692 }
693 sstore(fromBalanceSlot, sub(fromBalance,
 amount))
694 }

Description

In the _batchBurn function of the ERC1155 contract, there is a comment

describing an increase in balance, but the function decreases the balance.

Recommendation

To avoid confusion, replace Increase with Decrease in the comment.

Solution (Revision 1.1)

The comment was corrected.

39 of 47

https://github.com/Vectorized/solady/tree/e158762ba98db40a06411db7f80a54b93e951818/src/tokens/ERC1155.sol#L684-L694
https://ackeeblockchain.com

6. Report revision 1.1

6.1. System Overview
The most severe issues H1 and M1 were fixed by emitting correct data in the

_setApprovalForAll function and by calling ERC1155 hooks in the correct order

making the contract safe against reentrancy.

For info and warning findings that were acknowledged (not fixed), comments

were added to the codebase informing users about the potential issues and

limitations of the library.

40 of 47

https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, Solady: Tokens & Utils Selection, 30.05.2023.

41 of 47

https://github.com/ackee-blockchain
https://ackeeblockchain.com

Appendix B: Glossary of terms
The following terms might be used throughout the document:

Superclass/Ancestor of C

A contract that C inherits/derives from.

Subclass/Child of C

A contract that inherits/derives from C.

Syntactic contract

A Solidity contract. May have an inheritance chain, and may be deployed.

Deployed contract

An EVM account with non-zero code. If its source was written in Solidity, it

was created through at least one syntactic contract. If that contract had

superclasses (parents), it would be composed of multiple syntactic

contracts.

Init/initialization function

A non-constructor function that serves as an initializer. Often used in

upgradeable contracts.

External entrypoint

A public or external function.

Public/Publicly-accessible function/entrypoint

An external or public function that can be successfully executed by any

network account.

Mutating function

A non-view and non-pure function.

42 of 47

https://ackeeblockchain.com

Appendix C: Woke outputs
A part of the audit delivery is a test suite with unit and fuzz tests in Woke

development and testing framework. The following section shows proof of

concept code for the most severe issues H1 and M1.

C.1. H1 proof of concept

contract ERC1155Mock is ERC1155 {
 function setApprovalForAllUnchecked(address by, address operator, bool
approved) external {
 _setApprovalForAll(by, operator, approved);
 }
}

@default_chain.connect()
def test_erc1155_events():
 a = default_chain.accounts[0]
 b = default_chain.accounts[1]
 c = default_chain.accounts[2]
 erc1155 = ERC1155Mock.deploy(True, from_=a)

 tx = erc1155.setApprovalForAllUnchecked(a, b, True, from_=c)
 assert tx.events == [ERC1155Mock.ApprovalForAll(a.address, b.address,
True)]
 tx = erc1155.setApprovalForAllUnchecked(a, b, False, from_=c)
 assert tx.events == [ERC1155Mock.ApprovalForAll(a.address, b.address,
False)]

C.2. M1 proof of concept
The victim contract:

contract ERC1155Mock is ERC1155 {
 event BeforeTokenTransfer(address from, address to, uint256[] ids,
uint256[] amounts, bytes data);

43 of 47

https://github.com/Ackee-Blockchain/woke
https://ackeeblockchain.com

 event AfterTokenTransfer(address from, address to, uint256[] ids,
uint256[] amounts, bytes data);

 bool immutable private _enableHooks;

 constructor(bool enableHooks_) {
 enableHooks = enableHooks;
 }

 function _useBeforeTokenTransfer() internal view override returns (
bool) {
 return _enableHooks;
 }

 function _useAfterTokenTransfer() internal view override returns (bool)
{
 return _enableHooks;
 }

 function _afterTokenTransfer(
 address from,
 address to,
 uint256[] memory ids,
 uint256[] memory amounts,
 bytes memory data
) internal override {
 emit AfterTokenTransfer(from, to, ids, amounts, data);
 }

 ...
}

The attacker contract:

contract ERC1155ReentrancyAttacker {
 function onERC1155Received(
 address,
 address,
 uint256,
 uint256,
 bytes calldata data

44 of 47

https://ackeeblockchain.com

) external returns(bytes4) {
 if (data.length == 0)
 ERC1155Mock(msg.sender).mint(address(this), 1024, 1,
hex"00112233");
 return this.onERC1155Received.selector;
 }

 function onERC1155BatchReceived(
 address,
 address,
 uint256[] calldata,
 uint256[] calldata,
 bytes calldata data
) external returns(bytes4) {
 if (data.length == 0)
 ERC1155Mock(msg.sender).mint(address(this), 1024, 1,
hex"00112233");
 return this.onERC1155BatchReceived.selector;
 }
}

@default_chain.connect()
def test_erc1155_reentrancy():
 a = default_chain.accounts[0]

 erc1155 = ERC1155Mock.deploy(True, from_=a)
 attacker = ERC1155ReentrancyAttacker.deploy(from_=a)

 erc1155.mint(a, 0, 1, b"", from_=a)

 tx = erc1155.safeTransferUnchecked(Address.ZERO, a, attacker, 0, 1,
b"", from_=a)
 assert tx.events == [
 ERC1155Mock.BeforeTokenTransfer(a.address, attacker.address, [0],
[1], bytearray(b"")),
 ERC1155Mock.TransferSingle(a.address, a.address, attacker.address,
0, 1),

 # re-entrant call to mint
 ERC1155Mock.BeforeTokenTransfer(Address.ZERO, attacker.address,
[1024], [1], bytearray(b"\x00\x11\x22\x33")),

45 of 47

https://ackeeblockchain.com

 ERC1155Mock.TransferSingle(attacker.address, Address.ZERO,
attacker.address, 1024, 1),
 ERC1155Mock.AfterTokenTransfer(Address.ZERO, attacker.address,
[1024], [1], bytearray(b"\x00\x11\x22\x33")),

 ERC1155Mock.AfterTokenTransfer(a.address, attacker.address, [0], [
1], bytearray(b"")),
]

46 of 47

https://ackeeblockchain.com

 Thank You
 Ackee Blockchain a.s.

 Prague, Czech Republic

 hello@ackeeblockchain.com

 h�ps://twi�er.com/AckeeBlockchain

	Solady: Tokens & Utils Selection
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Finding classification
	2.4. Review team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1

	4. Summary of Findings
	5. Report revision 1.0
	5.1. System Overview
	5.2. Trust Model
	H1: ERC-1155 _setApprovalForAll emits incorrect owner
	M1: ERC-1155 safe transfer re-entrancy
	W1: ERC-1155 safe transfer hooks order inconsistency
	W2: EIP-712 parameters cannot be set
	W3: ERC-20 mint to zero address
	W4: Execution order of Yul arguments relied on
	I1: MerkleProofLib duplicated code
	I2: Token revert checks order inconsistency
	I3: Token approvals to self allowed
	I4: Misleading comments referring to delegatecall
	I5: Increase balance comment in burn function

	6. Report revision 1.1
	6.1. System Overview

	Appendix A: How to cite
	Appendix B: Glossary of terms
	Appendix C: Woke outputs
	C.1. H1 proof of concept
	C.2. M1 proof of concept

