CAMNTINM

Solady

Security Review

Cantina Public Goods review by:
Saw-Mon and Natalie, Lead Secur

Philogy, Security Researcher
Plotchy, Security Researcher

September 14, 2023

1 Acknowledgements

This public goods security review was made possible by the following:

1.0.1 Key contributors

* Nascent

* OpenSea led by z0age
+ Sound.xyz

* OxSplits

* Vectorized

* Spearbit

1.0.2 Individual Supporters
* noah.eth
* hickuphh3.eth
+ gogotheauditor.eth
* bytes032.eth
+ clabby.eth
* indreams.eth
* jimbobbins.eth
* aviggiano.eth
+ 0xA9D1e08C7793af67e9d92fe308d5697FB81d3E43
+ 0x75319dCF2F347b4F7C6F9040a50b4253F7E46681
+ 0x3B36Cb2c6826349eEC1F717417f47C06cB70b7Ea
+ 0x6A897b32996D342535791a74B8a40E75DDf2486e

For more information regarding the raise please refer to the official blog post announcement. Thank you
all for making this space a safer place for all.

* The Cantina.xyz team.

0000

https://cantina.xyz/crowdfund/solady
https://www.nascent.xyz
https://opensea.io
https://twitter.com/z0age
https://www.sound.xyz
https://www.0xsplits.xyz
https://github.com/vectorized
https://spearbit.com
https://twitter.com/NoahMarconi
https://twitter.com/HickupH
https://twitter.com/gogotheauditor
https://twitter.com/bytes032
https://twitter.com/vex_0x
https://twitter.com/strollinghome
https://twitter.com/jimbob_87
https://twitter.com/agfviggiano
https://cantina.mirror.xyz/pxPceYp8-XrK59WzHx0wXyIeZiQGsQ1-ysATTw80PpE
https://cantina.xyz

Contents

1 Acknowledgements 1
1.0.1 Keycontributors e 1
1.0.2 Individual Supporters e 1

2 Introduction 4

2.1 AboutCantina e 4
2.2 Disclaimer e 4
2.3 Riskassessment. e 4
2.3.1 Severity Classification e 4
3 Security Review Summary 5
4 Findings 6
41 HighRisk . . . o o 6
4.1.1 LibClone: Length overflow allows corruption of created proxy 6
4.2 MediumRisK e 7
4.2.1 ERC1967Factory: Unsafe memory pointer allocation 7
4.2.2 ERC20: Memory unsafe assembly is not futureproof 8
4.2.3 ECDSA: Empty signature can result in valid recovered address 9
4.3 LowRISK . . o o 11
4.3.1 ERC20: Underflow check can prevent allowance decrease 11
4.3.2 Execution ordering of and() may lead to unexpected behavior in future compiler
VEISIONS. . . o e o e e e 12
4.3.3 predicted addresses in predictDeterministicAddress are notcleanedup. 13
4.3.4 MerkleProofLib: Multi-proof does not validate that boolean flagsareclean 13
4.4 Gas Optimization e e e e e e e e e e 14
4.4.1 ERC1967Factory: Can Simplify Less-Than-Or-Equal to expression 14
4.4.2 Placing clean-up after check can save gasupon failure. 15
4.4.3 SignatureCheckerLib: Sub-optimal signercheck 15
4.4.4 Can save on MSTORE by combining some together 16
445 mstore(m, 0) canberemoved 16
44,6 ERC721.getApproved(...) canbeoptimised 16
447 mstore(0x00, id) canberemoved o oo 17
448 n := sub(add(o, n), m) couldbeoptimised, 17
4.49 Second assignment of n based on amounts.length can beremoved.. 17
4.410 lterate loops backwardstosavegas e 18
4.4.11 ERC1967Factory deploys contracts with extra STOPopcodes 19
4.4.12 Storage layout for ERC1967Factory can beoptimised 20
4,413 calldataload(offset) can be cached in verifyCalldata 22
4.4.14 The requirement that all the proof elements are used in verifyMultiProof can be
simplified . . . L 22
4.4.15 Calculation of proofEnd in verifyMultiProof can be simplified 23
4.4.16 Memory copying via loop instead of leveraging the identity precompile 24
45 Informational e 24
451 Soft Memory Safety Violations 24
4.5.2 sub(sload(slot), 1) could potentially underflow in a child contract 25
4.5.3 ERC721.getApproved(...) might return aresultwith dirty bits 25
4.5.4 Document the derivation of the slot and seed storage constants 26
4.5.5 Leave a note for users/devs to check the precompile requirements for the chains
they are planningtodeploy L 26
4.5.6 TypOinERCI1B5COMMENT o ottt e e e e e e e e e e e e e 27
4.5.7 Potential storage collision for child contracts of ERC1155 27
4.5.8 Free memory pointer is partially overwritten and then cleared in predictDetermin-
IStACAAATESS & v v v v e e e e e e e e e e e e e e 28
4.5.9 ERC1967Factory COMMeNnt COrrections v v v v vt 28
4.5.10 The clone implementations in LibClone are slightly different than the original clones-
With-immutable-args v v v e e e e e e e e e e e e e e e e 29
4.5.11 Document the invariants and requirements for verifyMultiProof... 29

4.5.12 add(leavesLength, proofLength) used in verifyMultiProof can potentially overflow 30

4.5.13 Stricter requirement for ERC1271's return data size

4.5.14 Assembly block marked as memory-safe could in some cases cause MSIZE to change . 31
4.5.15 SHR(A, SHL(A, X)) can be replaced by masking X

..................... 32
4.5.16 Inconsistent use of literals vs. constants for revert signatures 33
5 Appendix 34
5.0.1 PoC: Empty signature can resultin valid recoveredaddress 34

5.0.2 PoC Execution ordering of and() may lead to unexpected behavior in future compiler
VEISIONS o o o e e e e e e e e e e e e e e e e e e e 35

2 Introduction

2.1 About Cantina

Cantinais a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

2.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

2.3 Risk assessment

Severity Description
Critical Directly exploitable security vulnerabilities that need to be fixed.
High Security vulnerabilities that may not be directly exploitable or may require cer-

tain conditions in order to be exploited. All high issues should be addressed.

Medium Objective in nature but are not security vulnerabilities. Should be addressed
unless there is a clear reason not to.

Low Subjective in nature. They are typically suggestions around best practices or
readability. Code maintainers should use their own judgment as to whether to
address such issues.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.

2.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
When determining the severity one first needs to determine whether the finding is subjective or objective.
All subjective findings are considered of Low severity.

Next it is determined whether the finding can be regarded as a security vulnerability. Some findings
might be objective improvements that need to be fixed, but do not impact the project's security overall
(Medium).

Finally, objective findings of security vulnerabilities are classified as either critical or major. Critical findings
should be directly vulnerable and have a high likelihood of being exploited. High findings on the other
hand may require specific conditions that need to be met before the vulnerability becomes exploitable.

https://cantina.xyz

3 Security Review Summary

Solady is a project for gas optimized Solidity snippets.

From August 7th to August 25th the Cantina team conducted a review of solady on commit hash
89101d53 with the main scope targeting the following contracts: ERC1967Factory.sol, ERC20.sol,
ERC721.s0l, ERC1155.s0l, LibClone.sol, MerkleProofLib.sol, SignatureCheckerLib.sol and ECDSA.sol

During the abovementioned period of time the team identified a total of 40 issues in the following risk
categories:

* Critical Risk: 0

* High Risk: 1

* Medium Risk: 3

* Low Risk: 4

* Gas Optimizations: 16

* Informational: 16

https://github.com/Vectorized/solady
https://github.com/Vectorized/solady/tree/89101d53b7c8784cca935c1f2f6403639cee48b2

4 Findings
4.1 High Risk

4.1.1 LibClone: Length overflow allows corruption of created proxy
Severity: High Risk
Context: LibClone.sol#L409-L4012,L466-L469,

Description: When creating an immutable proxy with args with either the clone (address, bytes memory)
or cloneDeterministic(address, bytes memory, bytes32) functions it's assumed that the length of the
bytes input +100 (0x62 + 2) will fit in 2-bytes.

Excerpt from clone(address, bytes) (both the non-create2 & create2 variants of this clone function have
the same logic & flaw):

let extralength := add(datalength, 2)

mstore (

sub(data, Ox5a),

or(sh1(0x78, add(extralength, 0x62)), 0x6100003d81600a3d39f336602c57343d527f)
)

The assumption that "The inserted data length will fit in 2-bytes" is not explicitly checked anywhere. A
final length that is larger than 2-bytes is not truncated either, being first bit shifted to the left by 15-bytes
(0x78 bits) and then bitwise OR-ed with the data for insertion. This means that a final length requiring
3 or more non-zero bytes (> 65536) to be represented would actually change the meaning of the final
bytecode:

0x6101233d81 => “PUSH2 0x0123 RETURNDATASIZE DUP2 ...~
0x6300233d81 => “PUSH4 0x00233d81 ...~

- OR(0x6100003d81, 0x0001230000)
+ OR(0x6100003d81, 0x0200230000)

This allows you to modify the PUSH2 byte (0x61) into a different opcode while still resulting in runnable code.
Specifically the first PUSH2 can be changed into any even PUSH<n> opcode (PUSH4, PUSH6, PUSHS, PUSH10, ...)
depending on the length in the resulting inserted length. Extending the length of the initial push opcode
means that subsequent opcodes will be turned from logical operations into part of the word that'll get
pushed onto the stack as part of execution. If sufficiently extended it'll consume the op-byte of other
subsequent push opcodes, turning their "value bytes" into logical opcodes, e.g.:

- 6101023d8160ff => PUSH2 0x01 0x02 RETURNDATASIZE DUP2 PUSH1 Oxff
+ 6401023d8160ff => PUSH5 0x01 0x02 0x3d 0x81 0x60 SELFDESTRUCT

In the clone{Deterministic} functions this can be used to achieve 1 of 2 things:

1. Cause a proxy deployment to fail that would otherwise be considered valid
(predictDeterministicAddress would still compute an address for the undeployable
contract).

2. Cause a valid, empty contract (no bytecode) to deployed

Action 2. might be especially harmful as a library consumer may assume that if the cloning does not
revert it must've been successful. Any funds sent to such a contract would be permanently forever lost &
inaccessible.

Proof of Concept:

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L409-L412
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L466-L469

// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import {Test} from "forge-std/Test.sol";
import {LibClone} from "solady/utils/LibClone.sol";

contract LibCloneLengthOverflowPoC is Test {
function test_length_overflow_PoC() public {

bytes memory d = new bytes(0xe0000) ;
address proxy = LibClone.clone(makeAddr("implementation"), d);
// Successfully created contract
assertTrue(proxy != address(0));
// Prowy tis however corrupted, having mo runtime code.
assertEq(proxy.code, new bytes(0));

// Corrupted prozy also silently accepts ETH which is then permanently stuck.
hoax (makeAddr ("sender"), 1 ether);

(bool success,) = proxy.call{value: 1 ether, gas: 2100}("");
assertTrue(success) ;

assertEq(proxy.balance, 1 ether);

}

While the length of the data (0xe0000 bytes = 0.91 Mb) required to deploy a corrupted proxy may seem
atypical itis feasible to create a bytes memory value of that size in a contract under mainnet gas constraints
costing min. ~1.7M gas in memory expansion and EIP-3860 initcode costs.

Recommendation: It is recommended the length of data is checked in both clone(address
implementation, bytes memory data) and cloneDeterministic(address implementation, bytes
memory data, bytes32 salt) not to exceed 65,435 such that the final max runtime size (65,435 + 2 +
0x62 = 65535) never exceeds 2 bytes.

Cantina: Fixed in PR 548 using the recommendation.

4.2 Medium Risk
4.2.1 ERC1967Factory: Unsafe memory pointer allocation

Severity: Medium Risk
Context: ERC1967Factory#.287-425

Description: In the ERC1967Factory contract the _initCode function is responsible for allocating memory
and for writing the deployment bytecode for proxies to memory. In an effort to save gas the function does
not adjust the memory pointer to indicate that the section of memory storing the bytecode is now in use.
Not only is this not memory safe, creating a pointer to memory that may be reallocated/used by other
parts of the code can lead to bugs if a developer attempts to inherit from and use the ERC1967Factory
contract and subsequently implicitly allocates some memory.

Standalone the ERC1967Factory contract seems to be correct, however, this issue is still relevant because
there’s no indication to potential users of the Solady library that the ERC1967Factory.sol:ERC1967Factory
contract is not intended for 3rd party use. The file sits under the library's src/utils/ folder along with
other libraries intended for use by library consumers & does not have any comments directly indicating
that it's not for consumption by library users.

Beyond being unsafe the _initCode function also violates Solidity's conventions. Typically bytes memory
pointers in Solidity are expected to point to a word of memory storing the length of the data directly
followed by the data itself. The memory pointer created by the _initCode directly points to a static piece
of data, offset by 19 bytes and not having any length.

Recommendation: If the ERC1967Factory contract is intendend solely for standalone use & deployment
as an on-chain component. Add comments reflecting this fact and move the file to its own folder with a
name such as standalone Or component denoting that it's different from the libraries intended for direct
use and integration with the contracts of 3rd parties.

Furthermore, use a more "neutral" datatype such as uint256/bytes32 or even a custom type for the return
value from the _initCode function to indicate that it's not a normal memory pointer.

https://eips.ethereum.org/EIPS/eip-3860
https://github.com/Vectorized/solady/pull/548
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L287-L425

If intended for 3rd party use ensure the _initCode function updates the free memory pointer to reflect
its reserved memory area. Furthermore ensure that the return bytes memory value follows Solidity's con-
ventions, pointing to a word with the data’s length followed by the data itself.

Cantina: Fixed by changing the return type to bytes32 and also cautionary comments have been added
in PR 547.

4.2.2 ERC20: Memory unsafe assembly is not future proof

Severity: Medium Risk
Context: ERC20.sol#1.397-L417

Description: The DOMAIN_SEPARATOR () method in the ERC20 mixin has 2 direct inline-assembly blocks both
of which are marked "memory safe" despite violating memory safety guarantees. Specifically, it stores a
reference to and writes to memory which may not be free.

1. The method locally caches the free memory pointer in result:

/// @solidity memory-safe-assembly
assembly {

result := mload(0x40) // Grab the free memory pointer.
}

2. Calls name (), a memory-using, view method

403: bytes32 nameHash = keccak256(bytes(name()));

3. Uses the previously cached free memory pointer to directly write to memory:

/// @solidity memory-safe-assembly
assembly {
let m := result
// “keccak256("EIP712Domain(string name,string version,uint256 chainld,address vertifyingContract)”) .
// forgefmt: disable-nezt-item
mstore(m, 0x8b73c3c69bb8fe3d512ecc4cf759¢cc79239f7b179b0ffacaada75d522b394001)
mstore(add(m, 0x20), nameHash)
// “keccak256("1")".
// forgefmt: disable-nezt-item
mstore(add(m, 0x40), 0xc89efdaab54c0f20c7adf612882df0950£5a951637e0307cdcb4c672£298b8bc6)
mstore(add(m, 0x60), chainid())
mstore(add(m, 0x80), address())
result := keccak256(m, 0xa0)
}

This may not be memory-safe because name () may also read and use the free memory pointer which is
then overwritten. Standalone this seems to work as the result string of name () does not need to persist,
being immediately consumed by the keccak256 function.

Nevertheless, future improvements to Solidity’s optimizer may allow for reasonable uses of this library to
result in incorrect code.

Potential Scenario:

A developer uses the Solady library, writing a function where name () (overridden as a pure function) and
DOMAIN_SEPARATOR() are both used within a new method:

function getMetadata() public view returns (bytes32, string memory) {
return (DOMAIN_SEPARATOR(), name());
}

A more sophisticated Solidity compiler + optimizer compiles the code, considering its structure:

* The name () method is pure, meaning it has no side effects or mutable dependencies outside of its
(0) paramters

* The DOMAIN_SEPARATOR() method relies on the value of name ()
+ All assembly blocks within DOMAIN_SEPARATOR() are marked "memory safe"

based on the facts above the optimizer decides to inline DOMAIN_SEPARATOR() into the getMetadata () func-
tion (hypothetical inlined version):

https://github.com/Vectorized/solady/pull/547
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L397-L417

function inlined__getMetadata() public view returns (bytes32, string memory) {
bytes32 result__DOMAIN_SEPARATOR;
/// @solidity memory-safe-assembly
assembly {
result__DOMAIN_SEPARATOR := mload(0x40) // Grab the free memory pointer.
}
// We simply calculate it on-the-fly to allow for cases where the “name’ may change.
string memory name__inlined = name();
bytes32 nameHash = keccak256(bytes(name__inlined));
/// @solidity memory-safe-assembly
assembly {
let m := result__DOMAIN_SEPARATOR
// “keccak256 ("EIP712Domain(string name,string version,uint256 chainld,address verifyingContract)") .
// forgefmt: disable-nexzt-item
mstore(m, 0x8b73c3c69bb8fe3d512eccdcf759¢cc79239f7b179b0ffacaal9a75d522b39400fF)
mstore(add(m, 0x20), nameHash)
// “keccak256("1")".
// forgefmt: disable-next-item
mstore(add(m, 0x40), Oxc89efdaab4c0f20c7adf612882df0950f5a951637e0307cdcb4c672£298b8bc6)
mstore(add(m, 0x60), chainid())
mstore(add(m, 0x80), address())
result__DOMAIN_SEPARATOR := keccak256(m, 0xa0)
}
return (result__DOMAIN_SEPARATOR, name__inlined);

This would then produce incorrect results because the memory unsafe code from DOMAIN_SEPARATOR ()
would cause the data within name () to be overwritten.

Recommendation: In DOMAIN_SEPARATOR() retrieve the free memory pointer after calling name ().

Cantina: Recommendation applied in PR 538.

4.2.3 ECDSA: Empty signature can result in valid recovered address

Severity: Medium Risk
Context: ECDSA.sol#L37-58, ECDSA.sol#L192-210

Description: The ECDSA.recover (bytes32, bytes memory) and ECDSA.tryRecover (bytes32, bytes mem-
ory) functions each take a hash and bytes signature argument carrying the components of an ECDSA
signature r || s || v and attempt to recover the signer's Ethereum address via the EVM's ecrecover
precompile. The only difference between the two is that recover will revert if no valid signer could be
recovered and tryRecover fails silently, returning the zero-address.

The ecrecover precompile takes 4 words (128 bytes) as input: hash || bytes31(0) || v || r || s. To
save gas on memory expansion costs, Solady's ECDSA library temporarily overwrites the memory region
0x00-0x80 (including the free memory pointer at [0x40:0x60) and the default null pointer at [0x60:0x80))
for the precompile’s input. To save gas the functions first optimistically copies the 65 bytes of the signature
from memory and then validate its length. This means that if the signature is <65 bytes long it may copy
out-of-bound data, the length check is meant to still invalidate such signatures.

There is however an edge case that is unaccounted for: uninitialized bytes memory objects. These point
to 0x60 giving them a length of zero thanks to the default null pointer. If such a signature is validated
the recover functions will copy the data at [0x80:0xc1] which may have other variables allocated. The
optimistic copy will overwrite the null pointer at 0x60 temporarily changing the implicit length to the word
at 0xa0. This can allow a non-zero address to be recovered from an empty signature.

Proof of Concept:

https://github.com/Vectorized/solady/pull/538
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L37-L58
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L192-L210

// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import {Test} from "forge-std/Test.sol";
import {ECDSA} from "solady/utils/ECDSA.sol";

contract ECDSAPoC is Test {
struct NotASig {
bytes32 r;
bytes32 s;
bytesl v;
}

function testRecoverInvalid() public {
bytes32 hash = 0x73139abbd176cf7£94893453632c00afefb2776£9805a21d03d176c885cd0d63;

// Create an unrelated struct that sits in memory and happens to contain the components of a valid
— signature.

NotASig memory noSig = NotASig({
r: 0x88385877e6c712ef33fbd9c82ed5£3a348bed805e701d1d9b9£f£479£f£65b7020,
s: bytes32(uint256(65)),
v: bytes1(uint8(28))

B

// Uninitialized bytes objects (pointer to 0z60).

bytes memory emptySig;

// Try to recover from empty signature
address recovered = ECDSA.recover(hash, emptySig);

// No revert, non-zero signer recovered.
assertEq(recovered, 0x5776b19B163da161b8f6£D304dc1a09FA96b16AT) ;

Note that both tryRecover and recover have the same issue, the PoC demonstrates the issue for the
recover function.

For this edge-case to be exploited in practice certain conditions must be met:

* The signature parameter but be an empty, uninitialized bytes memory variable. If created with the
syntax bytes memory signature = new bytes(0); Solidity may actually allocate memory, if the
pointer is not 0x60 the functions will correctly recognize the signatures as invalid.

* The data already in memory at [0x80:0xc1] must represent an ECDSA signature that leads to a
recovered address.

* The word at 0xa0 must be 65 so that when 0x60 is overwritten the "length" of the signature will be
that of a valid signature, this also means that the s component of the signature must be 65.

The recovered address may be a controllable EOA account (ecrecover can "recover" addresses for which
thereis novalid private key for a subset of randominputs (hash, r, s, v)), ifthehashcanbe aspecifically
chosen value. This is due to how the s value is computed when generating a signature (k = secure random
integer, z = message hash, da = private key, n = order of the point G on the curve):

s=k z+r-ds) modn

Assuming we know the private key da We can rearrange the above formula to find a z such that s is 65:

65=k "(z+r-ds) modn
65-k=z+r-dy modn

65-k—r-dy=2z modn

We now have a valid signature pair (r,s) for our chosen message hash z and the private key da (v is an
added component not part of the base ECDSA algorithm chosen based on the original point coordinate
X1 andr).

10

Signature for real private key with s = 65 proof of concept:
"Find the full runnable PoC in the Appendix section of this report”.

Private key in your control (randomly generated and public, do not use to store funds).
private_key = 0xca6e0c197892239353a097£7db686d4a0313£4316bc726bb7d8fe692f4d827ad
public_key = private_key * G

address = as_address(public_key)

print(f'address: Ox{address.hex()}')

Random *secure integer

Note: “randint” ts not a secure number generator, only for demonstration purposes
k = randint(0, n-1)

print(f'\nk: {k}")

Compute r 8 v
big k = k * G
v =27 + big_ k.y % 2

print(f'v: {v}i")

r = big k.x % n

print(f'r: 0x{r:064x3}"')
s = 65

print(f's: 0x{s:064x3}"')

Compute the hash “z° such that the signature (v, 7, s) is walid for "z~
z = (s * k - r * private_key) /% n
print(f'hash: 0x{z:064x}')

Recommendation: Validate or at least cache the validity/length of the signature prior to optimistically
copying its contents. This will still allow the use of the memory region [0x00:0x80) while correctly handling
the empty signature edge case.

Vectorized: Fixed in PR 536.

4.3 Low Risk
4.3.1 ERC20: Underflow check can prevent allowance decrease

Severity: Low Risk
Context: ERC20.sol#L199-L208

Description: The decreaseAllowance method is intended to allow accounts to partially reduce an al-
lowance they've already made to other accounts will mitigating frontrunning issues arising from the de-
fault behaviour of approve (address, uint256) as specified by the ERC20 standard.

The original issue arises from the fact that the approve (address spender, uint allowance) function sets
the allowance between msg. sender and spender rather than decreasing it e.g.:

1. Alice grants Bob an allowance of 100 (allowance: 100)
Bob uses the allowance, transferring 20 tokens (allowance: 80)

Alice wants to reduce Bob's allowance by 60 to 20, submitting an approve transaction

A W

Bob sees Alice's transaction in the mem-pool and quickly frontruns them, transferring 80 tokens
(allowance: 0)

5. Alice's transaction gets included, setting Bob's allowance to 20 again (allowance: 20)

The effect is that Alice has granted an added 20 tokens worth of allowance when their intention was to
actually reduce Bob's allowance. The decreaseAllowance method is meant to fix this by giving someone
like Alice a way to specify that they want to merely decrease an allowance by a certain number, not set it
to a new number.

However, due to the method’s underflow check in the method allowance changes can be frontrun to
partially block them.

Exploit Scenario:
1. Alice grants Bob an allowance of 100 (allowance: 100)

2. Alice wants to decrease allowance, submitting a decreaseAllowance transaction to decrease it by 80

11

https://github.com/Vectorized/solady/pull/536
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L199-L208
https://eips.ethereum.org/EIPS/eip-20

3. Bob sees Alice’s transaction in the mem-pool, frontrunning it with a transaction that transfers 20.1
tokens from Alice (new allowance: 79.9)

4, Alice’s decreaseAllowance transaction gets included, due the current allowance (79.9) being lower
than the specified decrease (80) the call reverts with the AllowanceUnderflow error

Bob’s concrete gain from such an attack is minimal but not zero: Bob retains longer optionality around his
allowance from Alice. Bob temporarily delayed the allowance decrease, only having to spend initial_-
allowance - decrease + 1 token_wei to prevent the decrease, depending on Alice’s liveness Bob may
have extended the time for which he holds the remainder of his allowance for a considerable amount of
time.

Recommendation: It is recommended to change the logic such that the new allowance is set to min (0,
previous_allowance - delta) such that if the decrease is higher than the remaining allowance the al-
lowance can still be decreased. Alternatively, add a separate allowance-decreasing method with the sug-
gested semantics. This would mitigate the above issue while still providing the core functionality of giving
users a safe way to atomically reduce allowances to a non-zero amount.

Cantina: The endpoint in this context has been removed in PR 538 and thus the issue is not relevant
anymore.

4.3.2 Execution ordering of and() may lead to unexpected behavior in future compiler versions.

Severity: Low Risk

Context:
* SignatureCheckerLib.sol#L69-L87
+ SignatureCheckerLib.sol#L134-L152
* SignatureCheckerLib.sol#L217-L235
+ SignatureCheckerLib.sol#L271-L289
+ SignatureCheckerLib.sol#L311-L329
+ SignatureCheckerLib.sol#L369-L387

Description: The arguments of and (argl, arg2) are expected to always execute in the order of arg2 and
then argl. Solady uses this behavior to ensure the staticcall is executed before the returndatasize
check in the and () operation.

isValid := and(
and(
// .. snip ..
eq(returndatasize(), 0x20)
),
// Whether the staticcall does not revert.
// This must be placed at the end of the “and’ clause,
// as the arguments are evaluated from right to left.
staticcall(
gas(), // Remaining gas.
signer, // The “signer address.
m, // Offset of calldata in memory.
add(signature.length, 0x64), // Length of calldata in memory.
0x00, // Offset of returndata.
0x20 // Length of returndata to write.

If returndatasize is executed before the staticcall, this leads to unexpected behavior.
A test was conducted for all of the following compiler configuration permutations:

compiler_versions = [
"0.8.0", "0.8.1", "0.8.2", "0.8.3", "0.8.4", "0.8.5", "0.8.6",
"0.8.7", "o0.8.8", "0.8.9", "0.8.10", "O0.8.11", "0.8.12", "0.8.13",
"0.8.14", "0.8.15", "0.8.16", "O0.8.17", "0.8.18", "0.8.19", "0.8.20", "0.8.21"
1
optimize_runs_values = [1, 200, 10000, 999999]
via_ir_options = [True, False]

12

https://github.com/Vectorized/solady/pull/538
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L69-L87
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L134-L152
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L217-L235
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L271-L289
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L311-L329
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L369-L387

No anomalies of execution reordering were found. However, this behavior is not guaranteed to be per-
manent across future compiler versions.

Full runnable PoC.

Recommendation: Assembly operations are in some form subject to reordering by compiler optimiza-
tions. It is not recommended to rely on this behavior to be permanent across future compiler version
optimizations. Explicitly performing this staticcall before the and() may prevent possible execution
reordering.

@@ -65,6 +65,14 @@ library SignatureCheckerLib {
if iszero(lt(i, signatureLength)) { break }
}
}
let success := staticcall(
gas(), // Remaining gas.
signer, // The “signer” address.
m, // Offset of calldata in memory.
add(signatureLength, 0x64), // Length of calldata in memory.
0x00, // Offset of returndata.
0x20 // Length of returndata to write.

+ o+ + + A+ o+

)
// forgefmt: disable-next-item
isValid := and(
and (
@@ -76,14 +84,7 @@ library SignatureCheckerLib {
// Whether the staticcall does not revert.
// This must be placed at the end of the “and™ clause,
// as the arguments are evaluated from right to left.
- staticcall(
- gas(), // Remaining gas.
- signer, // The “signer address.
- m, // Offset of calldata in memory.
- add(signaturelength, 0x64), // Length of calldata in memory.
- 0x00, // Offset of returndata.
- 0x20 // Length of returndata to write.
-)
+ success

)
break

In addition, it would be beneficial to notify Solidity Compiler developers of this issue to bring awareness
that this is a breaking change for libraries like Solmate and Solady.

Vectorized: Acknowledged.

4.3.3 predicted addresses in predictDeterministicAddress are not cleaned up

Severity: Low Risk
Context:
+ LibClone.sol#L573
* ERC1967Factory.sol#L270

Description: predicted is not truncated/masked in this context. Not that the return type of this variable
does not in all cases cleanup this parameter (enforced by compiler) if for example the return value is
again used in another assembly block. This issue is also present in OpenZeppelin implementations for
the similar endpoints.

Recommendation: It would be best to mask and clean up this returned parameter.

Vectorized: Acknowledged.

4.3.4 MerkleProofLib: Multi-proof does not validate that boolean flags are clean

Severity: Low Risk
Context: MerkleProofLib.sol#L79-L172,L176-266

13

https://gist.github.com/plotchy/3133e30996c66b98d9d1006ad6fe1bfd
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L573
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L270
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L79-L172
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L176-L266

Description: Neither the verifyMultiProof oOr verifyMultiProofCalldata functions verify that the
boolean values in the flags arrays are non-dirty (literal 0x0 or 0x1). Any non-zero value will get
interpreted as true.

There are 2-ways Solidity will handle dirty boolean values by default:
* From calldata / external source: revert if value is ¢ {0,1}

+ Value accessed by inline-assembly: clean value, interpreting 0 as false (=> 0) and any non-zero value
as true (=> 1)

Solady chooses the second interpretation which is not necessarily wrong. However, as a library, it should
take extra care to account for cases where consumers could expect a reasonable alternative and have
assumptions based on that behaviour.

The calldata variant (verifyMultiProofCalldata) could be especially precarious as Solidity will not validate
elements of calldata arrays by default. If the flags array is directly passed from calldata and never used
elsewhere the bool elements contained within could be dirty as they'd never be validated elsewhere. A
reasonable library consumer may assume otherwise due to the lack of documentation.

Recommendation: Document the fact that a multi-proof evaluating to isValid = true is not an indica-
tion that the bool elements contained within the £flags[] array are within the range [0, 1].

Cantina: Fixed in PR 550 by adding comments.

4.4 Gas Optimization

4.4.1 ERC1967Factory: Can Simplify Less-Than-Or-Equal to expression
Severity: Gas Optimization

Context: ERC1967Factory.sol#L364-368,L.410,L418

Description: Upgradeable proxies created via the ERC1967Factory have a "sub-routine” that allows the
factory address to set the implementation & delegate-call the new implementation via a payload that's
encoded as: (storage_key, word_padded_implementation, calldata).

When called by the factory, the proxy checks if the calldata is 64 or fewer bytes long. If so it'll skip the
delegate-call to the implementation, only setting the storage slot and ending execution.

To check the length it uses the opcode sequence:

| Operation | Stack |
R [—mmmm - |
PUSH1 0x40	0x40 ...
DUP1	0x40 0x40 ...
CALLDATASIZE	cdz 0x40 0x40 ...
GT	cdz > 0x40 0x40 ...
ISZERO	cdz <= 0x40 0x40 ...

Due to the 0x40 (64) being constant the less-than-or-equal check can be optimized to cost 3 gas less by
creating an equivalent expression that omits the ISZERO negating operation:

| Operation | Stack |
[—mmmmmmm - [mmmmmm o |
PUSH1 0x40	0x40 ...
PUSH1 0x41	0x41 0x40 ...
CALLDATASIZE	cdz 0x41 0x40 ...
LT	cdz < Ox41 0x40 ...

Due to PUSH1 costing the same as DUP1 the two expressions can switched at no cost, removing the ISZERQ.
The expressions x < 64 and x65 are equivalent for x € Ny.

Swapping DUP1 for PUSH1 0x41 requires 1 additional byte but omitting the ISZERO saves one byte meaning
two variations also have the same bytecode size.

Recommendation: Optimize the proxy bytecode as suggested, updating the referenced comment and
the actual bytecode.

Vectorized: Acknowledged.

14

https://github.com/Vectorized/solady/pull/550
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L364-L368
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L410
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L418

4.4.2 Placing clean-up after check can save gas upon failure.
Severity: Gas Optimization
Context: LibClone.sol#L108-L115,L131-L139,L.238-L.246,L.261-L269

Description: To construct the proxy deployment code in memory the clone functions temporarily over-
write a part of the free memory pointer slot (0x40). The code to restore the free memory pointer slot is
placed before the deploy success check (if iszero(instance) {). The consequence of thisis that failures
will consume unnecessary gas by performing clean-up that is not utilized anyway.

Recommendation: Place the free memory pointer clean up after the check.
Cantina: Fixed in PR 548.

4.4.3 SignatureCheckerLib: Sub-optimal signer check
Severity: Gas Optimization
Context: SignatureCheckerLib.sol#L49,L121,L.204

Description: In the first step of the isValidSignatureNow functions ecrecover is applied to see if the
signature is a simple ECDSA signature before checking whether it's a "contract signature" meaning it needs
to call the signer to validate the signature.

To save gas Solady checks both if the recovered signer matches together with if the ecrecover operation
was successful:

assembly {
if mul(eq(mload(m), signer), returndatasize()) {

}

An expression with the same effect but costing 2 less gas would be:
assembly {
ié.iszero(or(sub(mload(m), signer), iszero(returndatasize()))) {

}

We can prove the two expressions are equivalent by transforming them:

mul (eq(mload(m), signer), returndatasize()) [Inline Assembly]
=> (recovered_signer == signer) && (returndatasize > 0) [Logic]
=> ! (!(recovered_signer == signer) || !(returndatasize > 0)) [Logic]
=> !((recovered_signer != signer) || (returndatasize == 0)) [Logic]

Converting back into assembly:

- (returndatasize == 0) => “iszero(returndatasize())~ (output: 0 / 1)
- (recovered_signer != signer) => “sub(mload(m), signer)” (output: O / n)
- (x|l y) => “iszero(or(x, y))~

Note that it's not safe to use the EVM's bitwise-or operation as a logical-OR if inputs may be outside of the
range [0; 1] and the result of the OR is consumed by another computation that expects the values to be
in the range [0; 1]

The resulting expression is cheaper because:
1. Bitwise-OR (or) costs 2 gas less than a multiplication (mul) operation

2. The added iszero is optimized out of the final bytecode while the original expression would get
compiled to bytecode with an additional ISZERO operation

Recommendation: Substitute the pattern with the demonstrated improved expression.

Cantina: Recommendation applied in PR 554,

15

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L110
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L131-L139
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L238-L246
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L261-L269
https://github.com/Vectorized/solady/pull/548
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L49
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L121
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L204
https://github.com/Vectorized/solady/pull/554

4.4.4 Can save on MSTORE by combining some together
Severity: Gas Optimization
Context: ERC20.s0l#L367-L369

Description: In order to derive the ERC712 message hash in the permit method the code needs to insert
the ERC712 message leading bytes 0x1901 into memory. This is done with its own MSTORE. This MSTORE can
be omitted by reusing another MSTORE to write both its contents and the leading bytes together.

Current code:

owner := shr(96, shl(96, owner))

mstore(0xOc, _NONCES_SLOT_SEED)
mstore (0x00, owner)

r;l.;,:core(o, 0x1901)
The _NONCES_SLOT_SEED writing MSTORE can already set the bytes 30 and 31 in memory to 0x19 and 0x01
and memory if the _NONCE_SLOT_SEED contains the bytes such that they're put at the right location.

Recommendation: Change the _NONCES_SLOT_SEED constant to contain the bytes 0x1901 so that only 1
MSTORE is required to write both it (the slot constant) and the ERC712 leading bytes to memory.

Cantina: Recommendation applied in PR 538.

4.45 mnstore(m, 0) can be removed
Severity: Gas Optimization
Context:

+ ERC721.s0l#L880

* ERC1155.s0l#L264

+ ERC1155.s01#L409

* ERC1155.501#L1053

+ ERC1155.s01#L1104

Description/Recommendation: Resetting the memory slotatmto 0 is not necessary in this context. Since
in case of a failed call to to with no return data, we would have atm, on. . .ReceivedSelector and this value
would not be equal to sh1(224, on...ReceivedSelector).

- mstore(m, 0)

This can probably be applied to other places where this pattern has been used.
Cantina: Fixed in PR 549 and PR 551.

4.4.6 ERC721.getApproved(...) can be optimised
Severity: Gas Optimization
Context:

+ ERC721.s0l#L183

Description/Recommendation: ERC721.getApproved(...) can be optimised by removing the right shift
when checking the existence of a token owner:

- if iszero(shr(96, shl(96, sload(ownershipSlot)))) {
+ if iszero(shl(96, sload(ownershipSlot))) {

Cantina: Fixed PR 549,

16

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L367-L369
https://eips.ethereum.org/EIPS/eip-712
https://github.com/Vectorized/solady/pull/538
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L880
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L264
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L409
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1053
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1104
https://github.com/Vectorized/solady/pull/549
https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L183
https://github.com/Vectorized/solady/pull/549

4.4.7 mstore(0x00, id) can be removed
Severity: Gas Optimization
Context:

* ERC1155.50l#L633

Description/Recommendation: id is already stored in the memory slot at 0x00 when one reaches the
line in this context. Gas diff needs to be analysed:

- mstore(0x00, id)

Cantina: Applied in PR 551.

4.4.8 n := sub(add(o, n), m) could be optimised
Severity: Gas Optimization
Context:

* ERC1155.501#L366

Description/Recommendation: n := sub(add(o, n), m) should be 2n + 64, so there is a potential to
calculate it in a different fashion to save gas. It is possible that one of the following forms could require
less gas:

n :
n :
n :

add(shl(1, n), 0x40) // or its permutations or
shl(1, add(n, 0x20)) // or its permutations or
add(add(n, n), 0x40) // or its permutations

One would need to try all the different combinations and run a gas diff.
Cantina: Applied in PR 551.

4.4.9 Second assignment of n based on amounts.length can be removed.
Severity: Gas Optimization
Context:

* ERC1155.50l#L364

* ERC1155.501#L394

Description/Recommendation: ids and amounts have the same length. This lines in this context can be
removed.

- n := add(0x20, shl(5, amounts.length))

17

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L633
https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L366
https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L364
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L394
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L299-L302

testMintToRevertingERC155RecipientReverts (uint2566) (gas: 1 (0.000%))
testSafeBatchTransfer() (gas: -135 (-0.002%))
testSafeBatchTransferFromToERC1155Recipient (uint256) (gas: -27 (-0.003%))
testSafeBatchTransferFromToNonERC1155RecipientReverts (uint256) (gas: -27 (-0.010%))
testSafeBatchTransferInsufficientBalanceReverts(uint256) (gas: -27 (-0.016%))
testBatchMintToWrongReturnDataERC1155RecipientReverts (uint256) (gas: -54 (-0.017%))
testMintToNonERC155RecipientReverts(uint266) (gas: -22 (-0.021%))

test__codesize() (gas: -10 (-0.023%))

testMintToZeroReverts(uint256) (gas: -8 (-0.024%))
testMintToERC1155Recipient (uint256) (gas: -183 (-0.028%))
testSafeBatchTransferFromToEOA (uint256) (gas: 57 (0.030%))

testSafeTransferFromSelf (uint256) (gas: 44 (0.042%))
testSafeTransferFromToRevertingERC1155RecipientReverts(uint256) (gas: 161 (0.051%))
testBatchMintToRevertingERC1155RecipientReverts (uint256) (gas: 175 (0.055%))
testERC1155Hooks () (gas: -2864 (-0.065%))
testSafeTransferFromToWrongReturnDataERC1156RecipientReverts (uint256) (gas: -180 (-0.066%))
testBatchBurnWithArrayLengthMismatchReverts(uint256) (gas: -29 (-0.068%))
testBurn(uint256) (gas: 57 (0.069%))
testSafeTransferFromInsufficientBalanceReverts(uint2566) (gas: -79 (-0.079%))
test__codesize() (gas: -10 (-0.082%))

testMintToEOA(uint256) (gas: 60 (0.084%))
testSafeBatchTransferFromWithArrayLengthMismatchReverts(uint256) (gas: 66 (0.099%))
testBalanceOfBatchWithArrayMismatchReverts(uint256) (gas: -36 (-0.108%))
testSafeTransferFromToERC1155Recipient (uint266) (gas: 977 (0.125%))
testBatchMintToNonERC1155RecipientReverts(uint256) (gas: 236 (0.127%))
testBatchMintToERC1155Recipient (uint266) (gas: -1090 (-0.139%))
testBatchMintToZeroReverts(uint256) (gas: -96 (-0.147%))

testBatchMintToEOA (uint256) (gas: -158 (-0.1587%))
testSafeBatchTransferFromToRevertingERC1155RecipientReverts (uint266) (gas: -722 (-0.162%))
testBurnInsufficientBalanceReverts(uint256) (gas: -241 (-0.247%))
testSafeTransferFromSelfInsufficientBalanceReverts(uint256) (gas: 196 (0.272%))
testBatchBalanceOf (uint256) (gas: -268 (-0.286%))
testSafeTransferFromToEOA (uint256) (gas: -735 (-0.654%))

testBatchBurn(uint256) (gas: 2816 (1.766%))

Overall gas change: -2155 (-0.000%)

Cantina: Applied in PR 551.

4.4.10 Iterate loops backwards to save gas
Severity: Gas Optimization
Context:
« ERC1155.501#L324-L325
* ERC1155.501#1439-L442
* ERC1155.s0l#L545-1L547
* ERC1155.501#L686-L688
« ERC1155.501#L901-L903
* MerkleProofLib.sol#L122-L123
Description: In the context above we have the following loop pattern used which is a forward iteration:

let end := shl(5, ids.length)
for { let i := 0 } iszero(eq(i, end)) { i := add(i, 0x20) } {

}

There is a potential to save gas if we iterate backwards:

let i := shl(5, ids.length)
for {} i {} {

i := sub(i, 0x20)
}

can be applied to other similar loops.

18

https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L324-L325
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L439-L442
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L545-L547
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L686-L688
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L901-L903
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L122-L123

testBatchMintToWrongReturnDataERC1155RecipientReverts (uint256) (gas: 2 (0.001%))
testSafeBatchTransfer() (gas: 56 (0.001%))
testMintToRevertingERC155RecipientReverts(uint256) (gas: -3 (-0.001%))
testMintToWrongReturnDataERC155RecipientReverts(uint256) (gas: 3 (0.001%))
testSafeBatchTransferFromToNonERC1155RecipientReverts (uint256) (gas: 8 (0.003%))
testBatchMintToRevertingERC1156RecipientReverts(uint256) (gas: -13 (-0.0047%))
testMintToERC1155Recipient (uint256) (gas: -30 (-0.005%))
testSafeTransferFromToRevertingERC1155RecipientReverts (uint256) (gas: -18 (-0.006%))
testSafeBatchTransferFromWithArrayLengthMismatchReverts(uint266) (gas: -5 (-0.008%))
testSafeBatchTransferInsufficientBalanceReverts(uint256) (gas: -19 (-0.011%))
testSafeTransferFromToWrongReturnDataERC1155RecipientReverts (uint256) (gas: 30 (0.011%))
testBurn(uint256) (gas: 15 (0.018%))
testBatchBurnWithArrayLengthMismatchReverts (uint256) (gas: -9 (-0.021%))
testMintToZeroReverts(uint256) (gas: -8 (-0.024%))
testMintToNonERC155RecipientReverts(uint256) (gas: -26 (-0.025%))
testSafeBatchTransferFromToRevertingERC1155RecipientReverts(uint256) (gas: -267 (-0.060%))
testBatchBalanceOf (uint256) (gas: -56 (-0.060%))
testBatchMintToERC1165Recipient (uint266) (gas: 583 (0.075%))

testMintToEOA(uint256) (gas: 60 (0.084%))
testBalanceOfBatchWithArrayMismatchReverts(uint256) (gas: -36 (-0.1087%))
testSafeTransferFromInsufficientBalanceReverts(uint256) (gas: 109 (0.109%))
testBatchMintToNonERC1155RecipientReverts (uint256) (gas: 214 (0.115%))
testSafeBatchTransferFromToERC1156Recipient (uint256) (gas: -1158 (-0.130%))
testSafeBatchTransferFromToZeroReverts(uint256) (gas: 171 (0.137%))
testSafeBatchTransferFromToEOA (uint256) (gas: 287 (0.152%))
testSafeTransferFromToERC1155Recipient (uint266) (gas: 1199 (0.153%))
testBurnInsufficientBalanceReverts(uint256) (gas: -160 (-0.1647%))
testSafeTransferFromSelfInsufficientBalanceReverts(uint256) (gas: 124 (0.172%))
testBatchMintToEOA (uint256) (gas: -235 (-0.2347%))
testSafeTransferFromToZeroReverts (uint256) (gas: 182 (0.259%))
testSafeTransferFromToEOA (uint256) (gas: -809 (-0.720%))

testBatchBurn(uint256) (gas: 2565 (1.609%))

Overall gas change: 2756 (0.000%)

Recommendation: Apply the above recommendation to this context and compare gas diff to potentially
reduce gas cost across different loop patterns.

Cantina: Recommendations applied in PR 551.

4.411 ERC1967Factory deploys contracts with extra STOP opcodes
Severity: Gas Optimization
Context:

* ERC1967Factory.sol#1282

* ERC1967Factory.sol#L226

Description: When ERC1967Factory produces proxy contracts the length of initcode is incorrect. The
length value is hardcoded as the 0x89 literal, but the actual length of the initcode is dependent on the
address of the ERC1967Factory deployment and whether or not it begins with six leading zero bytes.

Factory Address Proxy Initcode Length

6 or more leading zero bytes 0x82
5 or less leading zero bytes 0x88

In both cases, 0x89 is larger than necessary.

19

https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L282
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L226-L227

function _deploy(
address implementation,
address admin,
bytes32 salt,
bool useSalt,
bytes calldata data
) internal returns (address proxy) {

bytes memory m = _initCode();
/// @solidity memory-safe-assembly
assembly {

// Create the prozy.

switch useSalt

case 0 { proxy := create(0, add(m, 0x13), 0x89) }

default { proxy := create2(0, add(m, 0x13), 0x89, salt) }
// .. snip ..

This inaccuracy is also reflected in the initCodeHash function, which is used to calculate the address of
the to-be-deployed proxy contract.

function initCodeHash() public view returns (bytes32 result) {

bytes memory m = _initCode();
/// @solidity memory-safe-assembly
assembly {

result := keccak256(add(m, 0x13), 0x89)
}

The extra opcodes deployed are not a security issue as the extra memory read will be zero bytes, which
are STOP opcodes. However, the extra opcodes will increase the gas cost of deployment by 200gas for
each extra STOP.

Recommendation: The length of the proxy initcode in both the _deploy and initCodeHash functions
should be corrected to the exact length of the initcode by checking the address of the Factory.

Alternatively, since the proxy initcode used is dependent on the Factory address, this check can be done
once at Factory construction time. By checking the deployment address in the Factory constructor, the
unused proxy initcode can be pruned from the Factory runtime code. This saves both Factory deployment
costs and proxy deployment costs. Note: Apparently the construction-time trick comes at the cost of
Etherscan Verification on the Factory.

Cantina: No changes. Marking as acknowledged.

4.4.12 Storage layout for ERC1967Factory can be optimised
Severity: Gas Optimization
Context:

+ ERC1967Factory.sol

Description: Currently the only storage parameter for ERC1967Factory is the admins of the deployed
proxies. The storage slot for this parameter is calculated using:

mstore (0x0c, address())
mstore(0x00, proxy)

let adminSlot := keccak256(0xOc, 0x20) // the storage slot for the ‘admin” of “prozy’

We can avoid storing values in memory and hashing that portion by redesign the storage slot such that:

let adminSlot := proxy // collision-resistant

diff --git a/src/utils/ERC1967Factory.sol b/src/utils/ERC1967Factory.sol
index bbe8754..£88a09c 100644
--- a/src/utils/ERC1967Factory.sol
+++ b/src/utils/ERC1967Factory.sol
@@ -82,9 +82,7 @@ contract ERC1967Factory {
function adminOf (address proxy) public view returns (address admin) {
/// @solidity memory-safe-assembly
assembly {
- mstore (0x0Oc, address())

20

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol

- mstore(0x00, proxy)
- admin := sload(keccak256(0x0c, 0x20))
+ admin := sload(proxy)

}

@@ -94,15 +92,12 @@ contract ERC1967Factory {
/// @solidity memory-safe-assembly
assembly {
// Check if the caller is the admin of the proxy.
- mstore(0x0Oc, address())
- mstore (0x00, proxy)
- let adminSlot := keccak256(0x0c, 0x20)
- if iszero(eq(sload(adminSlot), caller())) {
+ if iszero(eq(sload(proxy), caller())) {
mstore (0x00, _UNAUTHORIZED_ERROR_SELECTOR)
revert (Oxlc, 0x04)
}
// Store the admin for the proxy.
- sstore(adminSlot, admin)
+ sstore(proxy, admin)
// Emit the {AdminChanged} event.
log3(0, O, _ADMIN_CHANGED_EVENT_SIGNATURE, proxy, admin)
}
@@ -128,9 +123,7 @@ contract ERC1967Factory {
/// @solidity memory-safe-assembly
assembly {
// Check if the caller is the admin of the proxy.
- mstore (0x0c, address())
- mstore (0x00, proxy)
- if iszero(eq(sload(keccak256(0x0c, 0x20)), caller())) {
+ if iszero(eq(sload(proxy), caller())) {
mstore (0x00, _UNAUTHORIZED_ERROR_SELECTOR)
revert (Oxlc, 0x04)
}
@@ -248,9 +241,7 @@ contract ERC1967Factory {
}

// Store the admin for the proxy.
- mstore(0x0c, address())
- mstore (0x00, proxy)
- sstore(keccak256(0x0c, 0x20), admin)
+ sstore(proxy, admin)

// Emit the {Deployed} event.
log4(0, 0, _DEPLOYED_EVENT_SIGNATURE, proxy, implementation, admin)

testCdCompressDecompress (bytes) (gas: -151 (-0.0247%))
testCdFallbackDecompressor (bytes) (gas: -49 (-0.042%))
testUpgradeAndCallWithRevert() (gas: -139 (-0.052%))
testDeployDeterministicAndCall(uint266) (gas: -185 (-0.053%))
testProxySucceeds() (gas: 165 (0.0647%))
testUpgradeAndCall() (gas: -325 (-0.0927%))
testChangeAdmin() (gas: -270 (-0.101%))

testUpgrade() (gas: -304 (-0.114%))
testUpgradeWithCorruptedProxy() (gas: -304 (-0.115%))
testFlzCompressDecompress() (gas: -2607 (-0.121%))
testDeployAndCallWithRevert() (gas: -272 (-0.129%))
testDecompressWontRevert (bytes) (gas: -796 (-0.129%))
testDeploy () (gas: -343 (-0.133%))

testDeployAndCall (uint256) (gas: -457 (-0.1347%))
testProxyFails() (gas: -357 (-0.138%))

test__codesize() (gas: -53 (-0.156%))
testChangeAdminUnauthorized() (gas: -476 (-0.185%))
testCdFallback() (gas: -10666 (-0.187%))
testDeployBrutalized(uint256) (gas: -84 (-0.190%))
test__codesize() (gas: -53 (-0.247%))
testFlzCompressDecompress2() (gas: -2743 (-0.274%))
testUpgradeUnauthorized() (gas: -894 (-0.330%))
testCdCompressDecompress (uint256) (gas: -2745 (-0.3947%))
testFlzCompressDecompress(bytes) (gas: -2673 (-0.398%))
testCdFallback(bytes,uint256) (gas: -6089 (-0.589%))
Overall gas change: -32870 (-0.004%)

Recommendation: Note that if the above recommendation is taken into account, we should live a warn-

21

ing/note for the devs that if this contract gets inherited there are potentials of storage collisions due to
the use of customised storage layout for this contract.

Cantina: Fixed in PR 547 which uses the sh1(96, proxy) as the adminSlot.

4413 calldataload(offset) can be cached in verifyCalldata
Severity: Gas Optimization
Context:

* MerkleProofLib.sol#L62-L66

Description: The effect of caching calldataload(offset) is that the other endpoints get optimised ac-
cording to the current test cases and forge s --diff .gas-audit --asc:

testVerifyMultiProof (bool,bool,bool,bool,bytes32) (gas: -20 (-0.003%))

testVerifyMultiProofForSingleLeaf (bytes32[],uint256) (gas: -1844 (-0.232%))
Overall gas change: -1864 (-0.000%)

Recommendation: Perhaps this caching can be tested in isolation not using foundry and analysed
whether it would actually affect the gas cost.

Cantina: Marking as acknowledged.

4.414 Therequirement that all the proof elements are used in verifyMultiProof can be simplified
Severity: Gas Optimization
Context:

* MerkleProofLib.sol#L167

* MerkleProofLib.sol#L261

Description: In the context aboveproofEnd cannot be 0 since due to "Calculation of proofEnd in verify-
MultiProof... can be simplified".

let proofEnd := add(proof, shl(5, proofLength))

and for proofEnd to be 0 we would either need to have:

* both proof and proofLength to be 0 which is impossible since proof at the point proofEnd was cal-
culated is at least 0x20 unless an overflow happens

* the add or shl in proofEnd expression overflows
Warning : overflow instances need to be checked
and thus line 167 can be simplified to:

eq(proofEnd, proof) // make sure all “proof’ elements are consumed

forge s --diff .gas-audit --asc:

test__codesize() (gas: -3 (-0.025%))

testVerifyMultiProofIsInvalid() (gas: -266 (-0.0427%))

testVerifyMultiProofIsValid() (gas: -275 (-0.044%))

testVerifyProof (bytes32[],uint256) (gas: 360 (0.047%))

testVerifyMultiProof (bool,bool,bool,bool,bytes32) (gas: -311 (-0.049%))
testVerifyMultiProofMalicious() (gas: -9 (-0.112%))

testVerifyMultiProofForHeightTwoTree (bool,bool,bool,bool,bool,bytes32) (gas: -9 (-0.133%))
testVerifyMultiProofForSingleLeaf (bytes32[],uint256) (gas: -7182 (-0.904%))

Overall gas change: -7695 (-0.001%)

The same recommendation can be applied to the line 261:

eq(proofEnd, proof.offset)

The argument that proofEnd cannot be zero is slightly different. For example

22

https://github.com/Vectorized/solady/pull/547
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L62-L66
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L167
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L261
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L167
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L261

*+ proof.offset cannot be zero unless the protocol's exposed function signature is not used and also
proof.length is 0. and so the call data would need to start with bytes32(0) and the proof.offset
would need to point to the very beginning of call data.

* add(proof.offset, shl(5, proof.length)) overflows when adding or shifting.

Recommendation: If the above recommendations are implemented it would be great to add comment
to these endpoints so that the devs would be aware of the above edge cases and try to avoid them. The
default endpoints and abi-decoding by solc should avoid those issues, unless the protocol developer
define some custom decoding and exchange of call data.

Cantina: Recommendation applied in PR 550.

4.4.15 Calculation of proofEnd in verifyMultiProof can be simplified
Severity: Gas Optimization
Context:

* MerkleProofLib.sol#L108-L115

* MerkleProofLib.sol#L195-L209

Description: If we end up on line 115 in verifyMultiProof (...) we know that iszero(flagsLength) ==
0 since otherwise we would have breaked out of the loop earlier. And so the expression on this line can
be simplified to:

let proofEnd := add(proof, shl(5, proofLength))

Also if we put all the lines after the initial if block into an inner block, for some reason one would have
quite a few gas saved (without the scoping the testVerifyMultiProofForSingleLeaf would have an in-
crease in gas, but the other tests would consume less gas):

// For the case where “proof.length + leaves.length == 1.
if iszero(flagsLength) {
// “isValid = (proof.length == 1 2 proof[0] : leaves[0]) == root’.

isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root)
break

}

// mew scope

{
// The required final proof offset if “flagslLength™ is not zero, otherwise zero.
let proofEnd := add(proof, shl(5, proofLength))
break

}

forge s --diff .gas-audit --asc

test__codesize() (gas: -4 (-0.033%))

testVerifyProof (bytes32[],uint256) (gas: -270 (-0.035%))

testVerifyMultiProofIsInvalid() (gas: -333 (-0.053%))

testVerifyMultiProofIsValid() (gas: -413 (-0.066%))

testVerifyMultiProof (bool,bool,bool,bool,bytes32) (gas: -481 (-0.076%))
testVerifyMultiProofMalicious() (gas: -14 (-0.174%))

testVerifyMultiProofForHeightTwoTree (bool,bool,bool,bool,bool,bytes32) (gas: -14 (-0.207%))
testVerifyMultiProofForSingleLeaf (bytes32[],uint256) (gas: -7465 (-0.939%))

Overall gas change: -8994 (-0.001%)

The same recommendation can be applied to verifyMultiProofCalldata(...), lines 208-209 can be sim-
plified to:

let proofEnd := add(proof.offset, shl(5, proof.length))

Recommendation: Apply the above recommendations to verifyMultiProof... when calculating
proofEnd

Cantina: Recommendation applied in PR 550.

23

https://github.com/Vectorized/solady/pull/550
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L108-L115
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L195-L209
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L115
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L208-L209
https://github.com/Vectorized/solady/pull/550

4.4.16 Memory copying via loop instead of leveraging the identity precompile
Severity: Gas Optimization
Context:

+ SignatureCheckerLib.sol#L59-L66,L.261-L.268

* MerkleProofLib.sol#L123-L125

Description: Both the SignatureCheckerLib and MerkleProofLib libraries need to copy memory sections
from one location to another.

Currently, they both do this via an iterative loop that copies one word at a time from the source to the
destination. A cheaper alternative would be to leverage the identity precompile to effectively copy entire
memory segments using a constant amount of gas. Note that for smaller memory segments the iterative
approach is cheaper due to the fixed cost of the required STATICCALL however most use-cases will require
larger signatures which is why this trade-off is likely to be beneficial in practice.

Recommendation: Use a STATICCALL to the identity precompile (0x4) to copy memory. And make sure
to leave a warning/note for the devs to check whether the address (0x4) is the identity precompile

Vectorized:SignatureCheckerLib fixed PR 537.

4.5 Informational
4.5.1 Soft Memory Safety Violations

Severity: Informational
Context: ECDSA.sol#L40,L78,L112,L147,L196,L.230,L.264,L.295, ERC1967Factory.sol#L150-L151,L246-L.247

Description: Outside of the other more severe violations of memory safety or general unsafe memory
access already mentioned in other issues, there are other less severe violations of memory safety. These
are separately grouped together and enumerated here due to these violations having no known conse-
guences in current Solidity versions and being deemed unlikely to have negative consequences in the
near future.

Nevertheless, these have to be mentioned as the Solidity compiler is still being actively developed, and
these violations while seeming benign now, are mentioned in the official Solidity documentation meaning
that future compiler versions may rely on these properties being upheld.

The first, violated repeatedly in ECDSA.sol is the expectation that 0x60 will consistently be left at 0:
In particular, a memory-safe assembly block may only access the following memory ranges:

+ Memory allocated by yourself using a mechanism like the allocate function described
above.

« Memory allocated by Solidity, e.g. memory within the bounds of a memory array you
reference.

* The scratch space between memory offset 0 and 64 mentioned above.

« Temporary memory that is located after the value of the free memory pointer at the be-
ginning of the assembly block, i.e. memory that is “allocated” at the free memory pointer
without updating the free memory pointer. '

Note that the default null pointer location (0x60) is not mentioned in the list of permitted memory accesses
and is explicitly noted to be expected to be zero constantly:

The 32 bytes after the free memory pointer (i.e., starting at 0x60) are meant to be zero perma-
nently [...] 2

This invariant is violated when functions in the ECDSA temporarily overwrite the 0x60 slot for the sake of
storing the s component of signatures e.g.:

Tdocs.soliditylang.org/en/v0.8.21/assembly.html
2docs.soliditylang.org/en/v0.8.21/assembly.html

24

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L59-L66
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L261-L268
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L123-L125
https://github.com/Vectorized/solady/pull/537
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L40
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L78
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L112
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L147
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L196
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L230
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L264
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L295
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L150-L151
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L246-L247
https://docs.soliditylang.org/en/v0.8.21/assembly.html
https://docs.soliditylang.org/en/v0.8.21/assembly.html

/// @solidity memory-safe-assembly
assembly {

mstore(0x60, mload(add(signature, 0x40)))
}

Another violation that is explicitly mentioned by the docs is copying to the 0 offset and onwards for the
sake of reverting:

Since this is mainly about the optimizer, these restrictions still need to be followed, even if the
assembly block reverts or terminates. As an example, the following assembly snippet is not
memory safe, because the value of returndatasize() may exceed the 64 byte scratch space:3
assembly {

returndatacopy(0, 0, returndatasize())

revert (0, returndatasize())

}

Which is also done in ERC1967Factory on two separate instances.

Recommendation: Due to their current non-impact and the concrete gas savings arising from these
abuses of memory safety it is not recommended to currently fix these instances.

However, it is strongly recommended to keep a close watch to changes made to the Solidity compiler and
explicitly cap the compatible solidity version via the pragma version statement in these files to the last
tested version. This will ensure that the library is not accidentally used with newer unsafe Solidity versions
as they come out before they're explicitly evaluated.

Vectorized: Acknowledged. | think we will just add a Solidity badge that shows what versions has Solady
been tested on to the README.

4.5.2 sub(sload(slot), 1) could potentially underflow in a child contract

Severity: Informational
Context:
* ERC721.s0l#L297
+ ERC721.s0l#L568
+ ERC721.s0l#L763

Description: There is an assumption in this context that when a token is owned by from, the balance of
from is at least 1. If not true, the balance will become type (uint256) .max.

Recommendation: It would be best to add a comment regarding this in case some of the virtual end-
points are overridden which can break the assumed invariant.

Cantina: Comments have been added in PR 549.

4.5.3 ERC721.getApproved(...) might return a result with dirty bits

Severity: Informational
Context:
+ ERC721.s0l#L187
Description: The result in this context could potentially include dirty bits or extra data.

It is true that currently when the approved address is written in this slot it gets cleaned, but a potential
child can override that method (_approve(...)).

Recommendation: It would be best to leave a comment regarding this for the users/devs.

Cantina: Contract level comments have been added in PR 549.

3docs.soliditylang.org/en/v0.8.21/assembly.html

25

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L297
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L568
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L763
https://github.com/Vectorized/solady/pull/549
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L187
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L644
https://github.com/Vectorized/solady/pull/549
https://docs.soliditylang.org/en/v0.8.21/assembly.html

4.5.4 Document the derivation of the slot and seed storage constants

Severity: Informational
Context:
* ERC20.s0I#L58-L88
* ERC721.s0l#L118
Description: In the context above the slot or seed storage constants are calculated as follows:

// C = keccak256 ("NAME") >> (8 * (32 - N))
uint256 private constant NAME = C;

It would be best to maybe add a prefix (path-like prefix, we can include for example the project and
contract name) to the NAME to avoid collision in a child contract that inherits from two different contracts
using the same scheme.

Example:
The string to hash:

solady.tokens.ERC20._TOTAL_SUPPLY_SLOT

Recommendation: Document the derivation of the slot and seed storage constants.

Vectorized: Acknowledged.

4.5.5 Leave a note for users/devs to check the precompile requirements for the chains they are
planning to deploy

Severity: Informational
Context: ecrecover precompile:
* ERC20.s0l#L375
+ ECDSA.sol#L43-L50
+ ECDSA.sol#L81-L88
+ ECDSA.sol#L115-L122
« ECDSA.sol#L150-L157
+ ECDSA.sol#L198-L205
« ECDSA.sol#L232-L239
« ECDSA.sol#L266-L273
+ ECDSA.sol#L297-L304
* SignatureCheckerLib.sol#L39-L46
+ SignatureCheckerLib.sol#L111-L118
+ SignatureCheckerLib.sol#L194-L201
identity precompile:
* ERC721.s0l#L872
* ERC1155.50l#L570
+ ERC1155.501#L575
* ERC1155.501#L710
* ERC1155.50l#L715
« ERC1155.501#L938
* ERC1155.501#1L943

26

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L58-L88
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L118
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L375
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L43-L50
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L81-L88
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L115-L122
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L150-L157
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L198-L205
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L232-L239
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L266-L273
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L297-L304
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L39-L46
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L111-L118
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L194-L201
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L872
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L570
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L575
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L710
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L715
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L938
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L943

* ERC1155.501#L1045
+ ERC1155.50l#L1084
* ERC1155.501#L1090
* ERC1155.501#L1095

Description: The codes in this context rely on the fact that the static calling the addresses 1 and 4 should
perform ecrecover and identity precompile operations.

Recommendation: The above fact needs to be commented for the devs so that they would check those
requirements on the chain they are planning to deploy their contracts.

Cantina: Fixed in:
*« PR573.
* PR 554,
* PR551.
* PR 549,
+ PR 538.

4.5.6 Typo in ERC1155 comment

Severity: Informational
Context:
* ERC1155.501#L690

Description/Recommendation: In the comment in this context the word to needs to be changed to
from:

// Decrease and store the updated balance of “to™.
+ // Decrease and store the updated balance of “from™.

Cantina: Fixed in PR 551.

4.5.7 Potential storage collision for child contracts of ERC1155

Severity: Informational
Context:
* ERC1155.501#L83-L104

Description: Since the ERC1155 abstract contract can be inherited, if the child contract introduces a high-
level mapping storage parameter there is potential that there would be storage collision with the bal-
anceSlot. The high-level storage parameter would need to have a big position for this collision to happen
due to the usage of _ERC1155_MASTER_SLOT_SEED.

The balanceSlot for an owner and id is calculated as

keccak256(id . (owner << 12 * 8 || _ERC1155_MASTER_SLOT_SEED))

So if there was a storage parameter with position owner << 12 * 8 || _ERC1155_MASTER_SLOT_SEED and
one would wanted to write to the key id it would land on the same storage slot.
The above could be rare to happen as one would need a really high storage parameter position.
Recommendation: It would be best to document above to prevent devs to run into this type of issues.

Vectorized: Acknowledged.

27

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1045
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1084
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1090
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1095
https://github.com/Vectorized/solady/pull/573
https://github.com/Vectorized/solady/pull/554
https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/pull/549
https://github.com/Vectorized/solady/pull/538
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L690
https://github.com/Vectorized/solady/pull/551
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L83-L104

4.5.8 Free memory pointer is partially overwritten and then cleared in predictDeterministicAd-
dress

Severity: Informational
Context:
* ERC1967Factory.sol#L272
* LibClone.sol#L575
Description: In this context part of the free memory pointer that was written to is cleared:

// Restore the part of the free memory pointer that has been overwritten.
mstore(0x35, 0)

For some custom memory managements by devs and on a chain with a super cheap gas costs, this can
potentially cause an issue as it is assumed that the free memory pointer is always contained in the first
11 bytes.

Recommendation: It would be great to document this and leave comment in the NatSpec for the devel-
opers.

Vectorized: Acknowledged. Currently, geth only supports up to 0x1FFFFFFFEO, ethereum/go-ethereum.

4.5.9 ERC1967Factory comment corrections

Severity: Informational
Context:
+ ERC1967Factory.sol#L304
* ERC1967Factory.sol#L315
+ ERC1967Factory.sol#L330-L331
+ ERC1967Factory.sol#L341)
* ERC1967Factory.sol#L350-L353
* ERC1967Factory.sol#L369
* ERC1967Factory.sol#1394
+ ERC1967Factory.sol#1383-L384
Description/Recommendation:
In below the other case refers to factories addresses with at least 6 leading 0s.

+ ERC1967Factory.sol#L304, true for the default case, runtime size for default is 0x7£. For the other
case is 0x79.

« ERC1967Factory.sol#L315, for the other case is push14 factory.
+ ERC1967Factory.sol#L330-L331, 0 missing on the stack:

- *x 54 | SLOAD | 1 cds 00 | [0..calldatasize): calldata

- x ba | GAS | gicds 00 | [0..calldatasize): calldata |
+ % 54 | SLOAD | i 0cds 00 | [0..calldatasize): calldata |
+ % ba | GAS | g1 0cds 00 | [0..calldatasize): calldata |

+ ERC1967Factory.sol#L341),ERC1967Factory.sol#L369, ERC1967Factory.sol#L394, 0x52 offset is for
the default case.

+ ERCT1967Factory.sol#L350-L353, there might be other unused stack items present. Perhaps might
be good to indicate that with

+ ERC1967Factory.sol#L383-L384, 0 missing on the stack:

28

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L272
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L575
https://github.com/ethereum/go-ethereum/blob/b8adb4cb0c4989d138506531ef1966793b658c54/core/vm/gas_table.go#L38C18-L38C30
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L304
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L315
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L330-L331
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L341
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L350-L353
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L369
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L394
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L383-L384
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L304
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L315
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L330-L331
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L341
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L369
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L394
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L350-L353
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L383-L384

- % 35 | CALLDATALOAD | it 00 | [0..t): extra calldata
- x ba | GAS | gito0o0 | [0..t): extra calldata
+ % 35 | CALLDATALOAD | i 0t 00 | [0..t): extra calldata |
+ * ba | GAS | gi0t0O0 | [0..t): extra calldata

Cantina: 2/6 of the recommendations have been applied in PR 547. Marking as acknowledged.

4.5.10 The clone implementations in LibClone are slightly different than the original clones-with-
immutable-args

Severity: Informational
Context:
+ LibClone.sol#L396-L413
* LibClone.sol#L453-L470
+ wighawag/clones-with-immutable-args

Description: The clone implementations in LibClone are slightly different than the original clones-with-
immutable-args.

If calldatais empty, it will not delegate the call to the implementation contract and instead accepts native
tokens if any and logs it:

CALLDATASIZE ; cds, if no calldata it will not delegate
PUSH1 0x2c ; O0z2c cds

JUMPI H

CALLVALUE H

RETURNDATASIZE ; 0, v

MSTORE s | m[0..32) :w

PUSH32 0x9e4ac34f21c619cefc926c8bd93b54bf5a39c7ab2127a895af1cc0691d7e3dff
MSIZE

RETURNDATASIZE ; 0, 32, h

L0G1

STOP

Recommendation: This is a diverging behaviour compared to original clone with the immutable args
implementation and can cause in some cases funds to be locked up. There is already a comment section
in the disassembly comments, but it should also be added to the NatSpec comments as a note or warning.

Cantina: Comments were added in PR 548.

4.5.11 Document the invariants and requirements for verifyMultiProof. ..

Severity: Informational
Context:
* MerkleProofLib.sol#L167
* MerkleProofLib.sol#L261
Description: If we end up on the lines in this context for example:
or (iszero(proofEnd), eq(proofEnd, proof))
and if or (iszero(proofEnd), eq(proofEnd, proof)) (or its simplified version "The requirement that all the

proof elements are used in verifyMultiProof... can be simplified") holds, one can deduce that we should
have at least one leaf. This is due to the below invariant:

F=(L—1)+P

and the fact that we would need to consume all proof elements. If we had L = 0 then F = P — 1 and we
would only do P — 1 hash computation and at each around we can consume at most one proof element
so at most we would consume P — 1 proof element. Thus at least one proof element would remain not
used which would break eq(proofEnd, proof).

29

https://github.com/Vectorized/solady/pull/547
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L396-L413
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/LibClone.sol#L453-L470
https://github.com/wighawag/clones-with-immutable-args
https://github.com/wighawag/clones-with-immutable-args
https://github.com/wighawag/clones-with-immutable-args
https://github.com/Vectorized/solady/pull/548
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L167
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L261
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L106

paramater description

F flag count
L leaf count
P proof count

so in general it is important that at least one leaf is provided when F # 0. And thus writing the above
invariant in that form by using L — 1 makes sense.

Recommendation: Document the invariants and requirements for verifyMultiProof. ...

Cantina: Recommendation applied in PR 550.

4.5.12 add(leavesLength, proofLength) used in verifyMultiProof can potentially overflow

Severity: Informational
Context:
* MerkleProofLib.sol#L106
* MerkleProofLib.sol#L193

Description: add(leavesLength, proofLength) in this context can potentially overflow. The conditions
for the overflow are exact and require the protocol dev to either perform custom memory manipulation
or allow external actors to perform custom memory manipulation through their exposed endpoints. This
would not happen in normal expected usage of the library.

In a worst case scenario, this overflow can be used to verify a proof for any number of any arbitrary leaves.
To show the impact concretely in an example, a protocol developer using this function for a merkle tree
token airdrop could have an attacker claim the airdrop for any number of their own addresses, even if
they were not included in the airdrop.

The worst case scenario PoC requires providing an empty flags array and memory manipulation of the
leaves and proof arrays:

function testOverflowMultiVerify() public {
bytes32[] memory proof = new bytes32[](0);
bytes32 root = bytes32(0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef) ;
bool[] memory flags = new bool[](0);

// initialize a first leaf of leaf==root, while the rest are arbitrary
bytes32[] memory leaves = new bytes32[](5);
leaves[0] = root;

leaves[1] = bytes32(uint(root) + 1);
leaves[2] = bytes32(uint(root) + 2);
leaves[3] = bytes32(uint(root) + 3);
leaves[4] = bytes32(uint(root) + 4);

// change len of proof and leaves to overflow the addition of:

// add(leavesLength, proofLength)

assembly {
mstore (proof, 0x8000)
mstore(leaves, 0x8001)

}

bool isValid = MerkleProofLib.verifyMultiProof (proof, root, leaves, flags);

// All leaves appear validated

assertTrue(isValid);

All of the leaves are validated, even though all but the first leaf is an arbitrary value.

It is worth noting that this issue does not pertain to the similar function verifyMultiProofCalldata, as
the length of dynamic arrays in calldata are compared against 2764 - 1 and will revertif larger (verified in
solcversions >=0.8). This means the addition of two dynamic array lengths in calldata will never overflow.

Recommendation: It would be best to document and leave a NatSpec comment about this issue for devs.
Custom memory operations before calling verifyMultiProof should be heavily scrutinized or avoided.

Cantina: Comments where added in PR 550.

30

https://github.com/Vectorized/solady/pull/550
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L106
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/MerkleProofLib.sol#L193
https://github.com/Vectorized/solady/pull/550

4.5.13 Stricter requirement for ERC1271’s return data size

Severity: Informational

Context:
* SignatureCheckerLib.sol#L74
+ SignatureCheckerLib.sol#L139
+ SignatureCheckerLib.sol#L222
* SignatureCheckerLib.sol#L276
* SignatureCheckerLib.sol#L316
+ SignatureCheckerLib.sol#L374

Description: eq(returndatasize(), 0x20) requirement for the ERC1271 return data size in this context
is stricter than OpenZeppelin's:

result.length >= 32
This change in OpenZeppelin has been discussed in this issue: OpenZeppelin/openzeppelin-
contracts/issues/4035

The argument being that the solc compiler itself is not so strict on the returned size when being decoded
to bytes32 and it would just make sure that it would meet the minimum size required for the decoded
tuple:
function <functionName>(headStart, dataEnd) <arrow> <valueReturnParams> {

if slt(sub(dataEnd, headStart), <minimumSize>) { <revertString>() }

<decodeElements>

}

Recommendation: No action is needed, but it would be great to be aware of this issue and maybe doc-
ument that the requirements are more strict. Also since the ERC1271's interface is written in ‘Solidity’ (it is
not language/compiler agnostic) the requirements for the return value are not so precisely defined.

One should also be aware that in some edge cases due to this difference between implementation for an
ERC1271 contract Solady and OpenZeppelin might return different values.

Cantina: The requirement check is removed all together which can also allow return data size of less than
32 in PR 554,

This would not be an issue since we have mstore(d, 0x40) and for the memory slot at d to be equal to £
one would need to remove the previous value of 0x40 through the staticcall.

4.5.14 Assembly block marked as memory-safe could in some cases cause MSIZE to change

Severity: Informational
Context: ECDSA.sol#L38-L40 ECDSA.sol#L194-L196

Description: In the context above when working with the signature, mload(add(signature, A)) can po-
tentially change msize if it causes the memory to expand.

* libyul/SideEffects.h#L76-L78

This can potentailly have an effect on different ir optimisations (1ibyul/optimiser/*) and needs to be
investigated.

Recommendation: It might be best to check the signature length before reading from the memory slots
after signature unless this is proven to be safe when using the solc compiler.

Cantina: Marking as acknowledged.

31

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L74
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L139
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L222
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L276
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L316
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L374
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol#L45C29-L45C29
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/4035
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/4035
https://github.com/ethereum/solidity/blob/d2f86ffb16fbdc95a4cab0fae8273701ac777785/libsolidity/codegen/ABIFunctions.cpp#L206-L209
https://eips.ethereum.org/EIPS/eip-1271
https://github.com/Vectorized/solady/pull/554
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L38-L40
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L194-L196
https://github.com/ethereum/solidity/blob/e357b8bc42c61a50519149731a5fe70e2b89e594/libyul/SideEffects.h#L76-L78

4.5.15 SHR(A, SHL(A, X)) can be replaced by masking x

Severity: Informational

Context:
* Ownable.sol#L90
* Ownable.sol#L104
* ERC20.501#L348-L349
+ ERC20.501#L480
* ERC721.s0l#L183
+ ERC721.s0l#L235
* ERC721.s0l#L376
+ ERC721.s0l#L456
* ERC721.s0l#L535
* ERC721.s0l#L542
* ERC721.s0l#L594
* ERC721.s0l#L599
+ ERC721.s0l#L680-L681
* ERC721.s0l#L867
* ERC1155.50l#L167
* ERC1155.501#L1039
* ERC1155.501#L1079
* ERC2981.s50l#L103
* ERC2981.s0l#L137
+ ECDSA.sol#L112
+ ECDSA.sol#L264
+ SignatureCheckerLib.sol#L30
+ SignatureCheckerLib.sol#L104
+ SignatureCheckerLib.sol#L170
* SignatureCheckerLib.sol#L187
+ SignatureCheckerLib.sol#L344

Description: Depending on the number of optimisation runs SHR(A, SHL(A, X)) gets replaced by AND (X,
mask):

Ref:
* libevmasm/RulelList.h#L525

Recommendation: In the opening call, the client mentioned that they prefer using shifts over masks. It
might make sense to inline this optimisation rule to have a more consistent runtime code across different
optimisation steps/settings:

and (X, mask)

Vectorized: Acknowledged.

32

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/auth/Ownable.sol#L90
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/auth/Ownable.sol#L104
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L348-L349
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC20.sol#L480
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L183
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L235
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L376
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L456
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L535
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L542
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L594
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L599
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L680-L681
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC721.sol#L867
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L167
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1039
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC1155.sol#L1079
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC2981.sol#L103
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/tokens/ERC2981.sol#L137
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L112
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L264
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L30
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L104
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L170
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L187
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/SignatureCheckerLib.sol#L344
https://github.com/ethereum/solidity/blob/e357b8bc42c61a50519149731a5fe70e2b89e594/libevmasm/RuleList.h#L525

4.5.16 Inconsistent use of literals vs. constants for revert signatures
Severity: Informational

Context: ECDSA.sol#1.54,92,126,161

Description: Some files in Solady library such as the ECDSA & LibClone libraries, use literals directly for
customer error selectors vs. other files such as ERC1967Factory which uniquely define constants for se-
lectors, which are then referenced throughout the file:

Example (from ECDSA#L53-L56):

if iszero(returndatasize()) {

mstore(0x00, 0x8baab79f) // “InvalidSignature() .
revert (0xlc, 0x04)
}

Example (from ERC1967Factory#L24-125,L100-L103):

/// @dev “bytes)(keccak256(bytes("Unauthorized()"))) " .
uint256 internal constant _UNAUTHORIZED_ERROR_SELECTOR = 0x82b42900;

if iszero(eq(sload(adminSlot), caller())) {
mstore (0x00, _UNAUTHORIZED_ERROR_SELECTOR)
revert (Oxic, 0x04)

}

While having no concrete security impact it does hinder readability. Especially the literal variant may be
inconvenient for readers as it may be hard to remember literals requiring each instance to be indepen-
dently verified. Defining a constant allows verifying the validity of the signature once and having a more

readable reference to it. Furthermore, the comment explaining what selector the literal represents would
not have to be maintained.

Recommendation: Move to a consistent style across files, ideally the constant-variant.
Cantina: Marked as acknowledged.

33

https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L54
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L92
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L126
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L161
https://github.com/Vectorized/solady/blob/v0.0.112/src/utils/ECDSA.sol
https://github.com/Vectorized/solady/blob/v0.0.112/src/utils/LibClone.sol
https://github.com/Vectorized/solady/blob/v0.0.112/src/utils/ERC1967Factory.sol
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ECDSA.sol#L53-L56
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L24-L25
https://github.com/Vectorized/solady/blob/89101d53b7c8784cca935c1f2f6403639cee48b2/src/utils/ERC1967Factory.sol#L100-L103

5 Appendix

5.0.1 PoC: Empty signature can result in valid recovered address

from typing import NamedTuple, Self
from Crypto.Hash import keccak
from random import randint

class Int(NamedTuple('Int', [('inner', int)])):
def __add__(self, other: Self) -> Self:
return Int((self.inner + other.inner)), F_p)

def mul__(self, other: Self) -> Self:

return Int((self.inner * other.inner) 7 F_p)

def __truediv__(self, other: Self) -> Self:
return self * (other ** -1)

def __pow__(self, e: int) -> Self:
Python's “pow” built-in supports modular arithmetic
return Int(pow(self.inner, e, F_p))

def __neg__(self) -> Self:
return Int((-self.inner) % F_p)

def __sub__(self, other: Self) -> Self:
return self + -other

class Point(NamedTuple('Point', [('x', int), ('y', int)1)):
def coords(self) -> tuple[Int, Int]:
return (*map(Int, self),)

def __neg__(self) -> Self:
return Point(self.x, (-self.y) % F_p)._validate()

def __sub__(self, other: Self) -> Self:
return self + -other

def __add__(self, other: Self) -> Self:
if self.identity():
return other
if other.identity():
return self

x1, y1 = self.coords()
x2, y2 = other.coords()

if x1 == x2:
Negation, return identity early
if y1 != y2:

return Point (0, 0)
1= (Int(3) * (x1*x1) + a) / (Int(2) * y1)
else:
1= (y2 -y / (x2 - x1)

x3 = 1*%2 - x1 - x2
y3 =1 % (x1 - x3) - y1

return Point(x3.inner, y3.inner)._validate()

def __mul__(self, x: int) -> Self:
X=X /n
y: Self = Point(0, 0) # 0
acc: Self = self
for _ in range(x.bit_length()):
if x & 1:
y += acc
x >>= 1
acc += acc
return y

def __rmul__(self, x: int) -> Self:
return self * x

def _validate(self) -> Self:
x, y = self.coords()
assert self.identity() or y * y == x**3 + a * x + b
return self

def identity(self):
return self.x == 0 and self.y ==

def as_address(p: Point) -> str:
hash = keccak.new(digest_bits=256)
hash.update(p.x.to_bytes(32, 'big'))
hash.update(p.y.to_bytes(32, 'big'))
return f'Ox{hash.digest()[12:32] .hex()}'

34

s

def

if

ecp256kl parameters

= OxFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_FFFFFC2F
OxFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFE_BAAEDCE6_AF48A03B_BFD25E8C_D0364141
Point(

0x79BE667E_FODCBBAC_55A06295_CE870B07 _029BFCDB_2DCE28D9_59F2815B_16F81798,
0x483ADA77_26A3C465_5DA4FBFC_OE1108A8_FD17B448_A6855419_9C47DO8F_FB10D4B8

= Int(0)
= Int(7)

main():

Private key in your control

private_key = 0xca6e0c197892239353a097f7db686d4a0313£4316bc726bb7d8fe692f4d827ad
public_key = private_key * G

print(f'address: {as_address(public_key)l}')

Random "secure" integer.

Note: “randint” is not a secure number generator, only for demonstration purposes
k = randint (0, n-1)

print (f '\nk: {k}")

Compute T & v
big k = k * G

v = 27 + big_ k.y % 2
r = big_k.x /4 n

Compute the hash 'z’ such that the signature (v, 7, s) is walid for "z~
s = 65

z = (s * k - r * private_key) 7 n

print (f'\nhash: 0x{z:064x}")

print(f'v: {vi")
print(f'r: 0x{r:064x}")
print(f's: 0x{s:064x3}")
__name__ == '__main__":
main()

5.0.2 PoC Execution ordering of and() may lead to unexpected behavior in future compiler ver-

imp
imp:

nin

sions

ort subprocess
ort csv

Compiler Optimization Flags:

Sel

By default the optimizer applies its predefined sequence of optimization steps to the generated assembly.

—

sol

ecting Optimizations
this sequence and supply your own using the --yul-optimizations option:

c --optimize --ir-optimized --yul-optimizations 'dhfoD[zarrscLMcCTUJuljmul:fDnT0c’

You can override

The order of steps is significant and affects the quality of the output. Moreover, applying a step may uncover new
optimization opportunities for others that were already applied, so repeating steps is often beneficial.

—

f""/.sum/{compiler_version}/solc-{compiler_version} --bin-runtime {file_path} --no-cbor-metadata {optimization_flags}"

--optimize:

ALWAYS ON

--optimize-runs:

--v

nin

def

ALWAYS ON, CHANGE NUM. Use 1, 200, 10000, 999999
ia-17r:
toggle its inclusion or ezclusion as a flag

check_opcodes (bytecode) :
print(len(bytecode))
print (bytecode)
call_found = False
rds_after_call = False

i=0
while i < len(bytecode) - 1:
print (i)

opcode = bytecode[i:i+2]
convert opcode to hez uint8
opcode = int(opcode, 16)
check for push. Anything in range 5F-7F will be a push
if opcode >= 0x5F and opcode <= O0xT7F:
get the length of the push
push_length = opcode - Ox5F
advance past the push bytes
i += push_length*2
elif opcode == OxFA:

35

call_found = True

elif opcode == 0x3D and not call_found:
rds_after_call = False
return rds_after_call

elif opcode == 0x3D and call_found:
rds_after_call = True
pass

i+=2

return rds_after_call

def compile_solidity(file_path, compiler_version, optimize_runs=None, via_ir=None):
optimize_flags = f"--optimize --optimize-runs {optimize_runs} {('--experimental-via-ir' if via_ir else '')}" if
< optimize_runs is not None else "'
cmd = £"7/.svm/{compiler_version}/solc-{compiler_version} --bin-runtime {file_path} --metadata-hash none {optimize_flags}"

print (cmd)
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, _ = process.communicate()

binary_part = stdout.split(b"Binary of the runtime part:")[-1].strip()
return binary_part.decode()

compiler_versions = [
"0.8.0", "0.8.1", "0.8.2", "0.8.3", "0.8.4", "0.8.5", "0.8.6",
"0.8.7", "0.8.8", "0.8.9", "0.8.10", "0.8.11", "0.8.12", "0.8.13",
"0.8.14", "0.8.15", "0.8.16", "0.8.17", "O0.8.18", "0.8.19", "0.8.20", "0.8.21"
] # List of compiler versions
optimize_runs_values = [1, 200, 10000, 999999]
via_ir_options = [True, False]
file_path = "./src/OrderingTest.sol"

Open the CSV file for writing

with open('results.csv', 'w', newline='') as csvfile:
Create a CSV writer object
writer = csv.writer(csvfile)

Write the header row
writer.writerow(['Compiler Version', 'Optimize Runs', 'Via IR', 'Bytecode Len', 'RDS After Call'l)

Iterate through the compiler versions
for compiler_version in compiler_versions:
print (f"Running {compiler_version}")
Run without optimization
binary_part = compile_solidity(file_path, compiler_version)

binary_part = ''.join(filter(lambda x: x in '0123456789abcdefABCDEF', binary_part))
if len(binary_part) ==

pass
else:

result = check_opcodes(binary_part)

writer.writerow([compiler_version, "NA", "False", str(len(binary_part)), result])

Run with various optimization options
for optimize_runs in optimize_runs_values:
for via_ir in via_ir_optioms:
binary_part = compile_solidity(file_path, compiler_version, optimize_runs, via_ir)
print (binary_part)

binary_part = ''.join(filter(lambda x: x in '0123456789abcdefABCDEF', binary_part))
if len(binary_part) ==

pass
else:

result = check_opcodes(binary_part)
writer.writerow([compiler_version, optimize_runs, via_ir, str(len(binary_part)), result])

36

	Acknowledgements
	Key contributors
	Individual Supporters

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	High Risk
	LibClone: Length overflow allows corruption of created proxy

	Medium Risk
	ERC1967Factory: Unsafe memory pointer allocation
	ERC20: Memory unsafe assembly is not future proof
	ECDSA: Empty signature can result in valid recovered address

	Low Risk
	ERC20: Underflow check can prevent allowance decrease
	Execution ordering of and() may lead to unexpected behavior in future compiler versions.
	predicted addresses in predictDeterministicAddress are not cleaned up
	MerkleProofLib: Multi-proof does not validate that boolean flags are clean

	Gas Optimization
	ERC1967Factory: Can Simplify Less-Than-Or-Equal to expression
	Placing clean-up after check can save gas upon failure.
	SignatureCheckerLib: Sub-optimal signer check
	Can save on MSTORE by combining some together
	mstore(m, 0) can be removed
	ERC721.getApproved(...) can be optimised
	mstore(0x00, id) can be removed
	n := sub(add(o, n), m) could be optimised
	Second assignment of n based on amounts.length can be removed.
	Iterate loops backwards to save gas
	ERC1967Factory deploys contracts with extra STOP opcodes
	Storage layout for ERC1967Factory can be optimised
	calldataload(offset) can be cached in verifyCalldata
	The requirement that all the proof elements are used in verifyMultiProof can be simplified
	Calculation of proofEnd in verifyMultiProof can be simplified
	Memory copying via loop instead of leveraging the identity precompile

	Informational
	Soft Memory Safety Violations
	sub(sload(slot), 1) could potentially underflow in a child contract
	ERC721.getApproved(...) might return a result with dirty bits
	Document the derivation of the slot and seed storage constants
	Leave a note for users/devs to check the precompile requirements for the chains they are planning to deploy
	Typo in ERC1155 comment
	Potential storage collision for child contracts of ERC1155
	Free memory pointer is partially overwritten and then cleared in predictDeterministicAddress
	ERC1967Factory comment corrections
	The clone implementations in LibClone are slightly different than the original clones-with-immutable-args
	Document the invariants and requirements for verifyMultiProof...
	add(leavesLength, proofLength) used in verifyMultiProof can potentially overflow
	Stricter requirement for ERC1271's return data size
	Assembly block marked as memory-safe could in some cases cause MSIZE to change
	SHR(A, SHL(A, X)) can be replaced by masking X
	Inconsistent use of literals vs. constants for revert signatures

	Appendix
	PoC: Empty signature can result in valid recovered address
	PoC Execution ordering of and() may lead to unexpected behavior in future compiler versions

