

Formal Verification Report

GnosisSafe Contract

Delivered: February 7th, 2019

Updated: February 27th, 2019

Prepared for Gnosis Ltd. by

Table of Contents
Goal & Scope

Disclaimer

List of Findings

Reentrancy vulnerability in ​execTransaction

ISignatureValidator​ gas and refund abuse

Transaction reordering vulnerability in ​addOwnerWithThreshold​, ​removeOwner​, and
changeThreshold

execTransaction​ allows a user transaction to the zero address

execTransaction​ is missing the contract existence check for the user transaction
target

changeMasterCopy​ is missing contract existence check

Potential overflow if contract invariant is not met

Potential list index out of bounds in ​signatureSplit

Missing well-formedness check for signature encoding in ​checkSignatures

Informative Findings & Recommendations

Lazy enum type check

Address range

Scanning isValidSignature when adding an owner

Local validity check of checkSignatures

No explicit check for the case 2 <= v <= 26 in checkSignatures

handlePayment allows to send Ether to the precompiled contract addresses

Insufficient external call result check and gas efficiency of transferToken

addOwnerWithThreshold in case of contract invariant being unsatisfied

1

signatures byte-size limit

Common Antipattern Analysis

Formal Specification & Verification Overview

Formal Verification Methodology

Resources

Mechanized Specification and Proof

Formal Specification Details

Assumptions

GnosisSafe contract

Function signatureSplit

Function encodeTransactionData

Function handlePayment

Function checkSignatures

Function execTransaction

OwnerManager contract

Function addOwnerWithThreshold

Function removeOwner

Function swapOwner

ModuleManager contract

Function enableModule

Function disableModule

Function execTransactionFromModule

MasterCopy contract

Function changeMasterCopy

2

Executive Summary
GnosisSafe is a smart contract that implements a multisignature wallet, supporting
various types of signature validation schemes, including ECDSA, ​EIP-1271​, and a
contract-builtin approval scheme.

Runtime Verification, Inc. (RV), audited the code and formally verified security-critical
properties of the GnosisSafe contract. The set of properties were carefully identified by
the Gnosis team, and we faithfully formalized and verified these properties ​at the EVM
bytecode level​. The formal specification is mechanized within and automatically verified
by our EVM verifier, a correct-by-construction deductive program verifier derived from
KEVM​ and ​K-framework​'s ​reachability logic theorem prover​.

The formal verification process guided us to systematically reason about all corner
cases of the contract, which led us to find several issues, including reentrancy and
transaction reordering vulnerabilities, and usability issues that any client of this contract
should be aware of. Please note, however, that the vulnerabilities identified are
exploitable in rather limited circumstances, where part of the contract owners are
required to be malicious and/or compromised.

Update (as of February 27th, 2019): The Gnosis team has ​updated​ their contract
following our recommendations for the most critical issues.

3

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1271.md
https://github.com/kframework/evm-semantics
http://www.kframework.org/
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
https://github.com/gnosis/safe-contracts/pull/90

Goal & Scope
The goal of the engagement was to audit the code and formally verify security-critical
properties of the GnosisSafe contract. RV formally specified the security properties and
verified them against the GnosisSafe contract bytecode using the KEVM verifier. The
code is from commit ID ​427d6f7e779431333c54bcb4d4cde31e4d57ce96​ of the
gnosis/safe-contracts​ Github repository.

The scope of the formal verification is the GnosisSafe contract without enabling any
add-on modules. Specifically, this includes the following functions:

● executeTransaction​ of ​GnosisSafe.sol​:
○ only for the case of​ ​operation == CALL​.
○ including​ ​encodeTransactionData​,​ checkSignatures​, and​ ​handlePayment

functions​.
● changeMasterCopy​ of​ MasterCopy.sol

● addOwner​,​ ​removeOwner​, and​ swapOwner​ of​ OwnerManager.sol

● enableModule​, and​ disableModule​ of​ ​ModuleManager.sol

● execTransactionFromModule​ of​ ModuleManager.sol

○ only for the case that​ modules​ is empty.

The formal verification is limited in scope within the boundary of the Solidity contract
only. Off-chain and client-side portions of the codebase are ​not​ in the scope of this
engagement. See our ​Disclaimer​ next.

4

https://github.com/gnosis/safe-contracts/releases/tag/v0.1.0

Disclaimer
This report does not constitute legal or investment advice. The preparers of this report
present it as an informational exercise documenting the due diligence involved in the
secure development of the target contract only, and make no material claims or
guarantees concerning the contract's operation post-deployment. The preparers of this
report assume no liability for any and all potential consequences of the deployment or
use of this contract.

The formal verification results presented here only show that the target contract
behaviors meet the formal (functional) specifications, under appropriate assumptions.
Moreover, the correctness of the generated formal proofs assumes the correctness of
the specifications and their refinement, the correctness of ​KEVM​, the correctness of the
K-framework​'s ​reachability logic theorem prover​, and the correctness of the ​Z3​ SMT
solver. The presented results make no guarantee about properties not specified in the
formal specification. Importantly, the presented formal specifications consider only the
behaviors within the EVM, without considering the block/transaction level properties or
off-chain behaviors, meaning that the verification results do not completely rule out the
possibility of the contract being vulnerable to existing and/or unknown attacks. Finally,
Runtime Verification formally verifies the EVM bytecode and ​not​ the Solidity source
code. Consequently, verification results only apply to a specific EVM bytecode provided
by the customer, which we explicitly reference. In particular, modifying/upgrading the
Solidity compiler may require all the proofs to be re-executed and the formal
specifications modified.

Smart contracts are still a nascent software arena, and their deployment and public
offering carries substantial risk. This report makes no claims that its analysis is fully
comprehensive, and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components
critical to the correct operation of this system.

The possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large
quantity of funds.

5

https://github.com/kframework/evm-semantics
http://www.kframework.org/
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
https://github.com/Z3Prover/z3

List of Findings

Critical
1. Reentrancy vulnerability in ​execTransaction
2. ISignatureValidator​ gas and refund abuse
3. Transaction reordering vulnerability in​ addOwnerWithThreshold​, ​removeOwner​, and

changeThreshold
4. execTransaction​ allows a user transaction to address 0 (zero)
5. execTransaction​ missing the contract existence check for the user transaction

target
6. changeMasterCopy​ missing contract existence check
7. Potential overflow if contract invariant is not met
8. Potential list index out of bounds in​ signatureSplit

9. Missing well-formedness check for signature encoding in​ checkSignatures

Informative (non-critical):
10. Lazy enum type check
11. Address range
12. Scanning​ isValidSignature​ when adding an owner
13. Local validity check of​ checkSignatures

14. No explicit check for the case​ 2 <= v <= 26​ in ​checkSignatures

15. handlePayment​ allows to send Ether to the precompiled contract addresses
16. Insufficient external call result check and gas efficiency of transferToken
17. addOwnerWithThreshold​ in case of contract invariant being not satisfied
18. signatures​ size limit

6

Reentrancy vulnerability in ​execTransaction

To protect against reentrancy attacks, GnosisSafe employs storage field ​nonce​, which
is incremented during each transaction. However, there are 3 external calls performed
during a transaction, which all have to be guarded from reentrancy.

Below is the code for ​execTransaction​, the main function of GnosisSafe:

function​ execTransaction(

 address to,

 uint256 value,

 bytes calldata data,

 ...

 bytes calldata signatures

)

 ​external

 ​returns​ (bool success)

{

 uint256 startGas = ​gasleft​();

 bytes ​memory​ txHashData = encodeTransactionData(to, value, data, ..., nonce);

 ​require​(checkSignatures(keccak256(txHashData), txHashData, signatures, ​true​),

 ​"Invalid signatures provided"​);

 ​// Increase nonce and execute transaction.

 nonce++;

 ​require​(​gasleft​() >= safeTxGas, ​"Not enough gas to execute safe transaction"​);

 success = execute(to, value, data, ...);

 ​if​ (!success) {

 ​emit​ ExecutionFailed(keccak256(txHashData));

 }

 ​if​ (gasPrice > ​0​) {

 handlePayment(...);

 }

}

The main external call managed by this transaction (hereafter referred as "payload") is
performed in function ​execute​. After payload is executed, the original caller or another
account specified in transaction data is refunded for gas cost in ​handlePayment​. Both

7

https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L69-L104
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L95
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L102

these calls are performed after the nonce ​is incremented​. Consequently, it is impossible
to execute the same transaction multiple times from within these calls.

However, there is one more external call possible inside ​checkSignatures​ phase, which
calls ​an external contract​ managed by an owner to validate the signature using
EIP-1271​ signature validation mechanism:

function​ checkSignatures(bytes32 dataHash, bytes ​memory​ data,

 bytes ​memory​ signatures, bool consumeHash)

 ​public

 ​returns​ (bool)

{

 ​for​ (i = ​0​; i < threshold; i++) {

 (v, r, s) = signatureSplit(signatures, i);

 ​// If v is 0 then it is a contract signature

 ​if​ (v == ​0​) {

 ​// When handling contract signatures the address of the contract

 ​// is encoded into r

 currentOwner = address(uint256(r));

 bytes ​memory​ contractSignature;

 ​assembly​ {

 ​// The signature data for contract signatures is appended to the

 ​// concatenated signatures and the offset is stored in s

 contractSignature := add(add(signatures, s), ​0x20​)

 }

 ​if​ (!ISignatureValidator(currentOwner)

 .isValidSignature(data, contractSignature)) {

 ​return​ ​false​;

 }

 } ​else ​{ … }

 ...

 }

 ​return​ ​true​;

}

This call is performed BEFORE nonce is incremented ​here​, thus remains unprotected
from reentrancy.

8

https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L92
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L90
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L161
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1271.md
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L92

An owner using EIP-1271 signature validation may use this vulnerability to run the same
payload multiple times, despite its approval by other owners to run only once. The limit
of how many times a transaction can run recursively is given by call gas and block gas
limit, thus the malicious owner will call this transaction with a great deal of gas allocated.
The most likely beneficiary of this attack is the owner who initiated the transaction. Yet if
a benign owner calls another malicious contract for the signature validation, the
malicious contract can exploit said contract even if he is not an owner.

Exploit Scenario

Suppose we have a Gnosis safe managed by several owners, which controls access to
an account that holds ERC20 tokens. At some point they agree to transfer X tokens
from the safe to the personal account of owner 1.

Conditions required for this attack are detailed below:

(a). Owner 1 is a contract that uses ​EIP-1271​ signature validation mechanism.

(b). All other owners use either EIP-1271 or ECSDA signatures. (See ​this page​ for the 3
types of signature validation.)

1. Owner 1 generates the transaction data for this transfer and ensures that
allocated gas is 10x required amount to complete the transaction.

2. Owner 1 requests signatures for this transaction from the other owners.
3. Owner 1 registers a malicious ​ISignatureValidator​ contract into his own account,

that once invoked, will call the Gnosis Safe with the same call data as long as
there is enough gas, then return true.

4. Owner 1 generates a signature for the transaction, of type ​EIP-1271​, e.g. it will
call the ​ISignatureValidator​.

5. Owner 1 calls the Gnosis Safe with the transaction data and all the signatures.
6. During signature verification phase, Gnosis Safe invokes the malicious

ISignatureValidator​, that successfully calls the safe again with the same data,
recursively, 9 more times.

7. Owner 1 receives into his account 10X the amount of tokens approved by the
other owners.

Recommendation

Increment ​nonce​ before calling ​checkSignatures​.

9

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1271.md
https://gnosis-safe.readthedocs.io/en/latest/contracts/signatures.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1271.md

ISignatureValidator​ gas and refund abuse

The account that initiated the transaction can consume large amounts of gas for free,
unnoticed by other owners, and possibly receive a refund larger than the amount of gas
consumed.

The attack is possible due to a combination of factors.

First, GnosisSafe emits a refund at the end of transaction, for the amount of gas
consumed. The target of the refund is either transaction initiator ​tx.origin​ (by default) or
some other account given by transaction parameter ​refundReceiver​. This currency of the
refund may either be Ether by default, or an ERC20 token with a specified price per unit.
Refund token is given by transaction parameters​ gasPrice​, ​gasToken​. All the transaction
parameters must be signed by the required amount of owners, just like the payload.

The second factor is that gas allocated for the whole​ execTransaction​ is not part of
transaction data. (Yet gas for payload is, as we show below.)

This refund mechanism may in principle be abused because the transaction initiator
may spend a large amount of gas without the knowledge of other owners and as a
result be refunded. The original owner may receive a benefit from such abuse in the
case where (1) the refund is emitted in token, and (2) the gas price in token is greater
than the market price of Ether of that token. The latter is plausible, for example
because: (1) the gas price is outdated, (2) the market price of token changed following
its initial valuation, and (3) owners did not care to adjust the gas price because gas
consumption was always small and thus irrelevant.

We again need to analyze the situation on all 3 external call sites. For the payload
external call, gas is limited by transaction parameter ​safeTxGas​. This parameter must be
set and validated by other owners when token refund is used. As a result, abuse is
impossible. For the external call that sends the refund in token, gas is limited to
remaining gas for transaction minus 10000 ​source​:

let​ success := call(sub(gas, ​10000​), token, ​0​, add(data, ​0x20​), mload(data), ​0​, ​0​)

This appears to resemble a poor limit, but in order to be abused, the transaction initiator
must have control over the token account, which looks like an unlikely scenario.

The biggest concern is again the call to ​ISingatureValidator​. This call is under the control
of transaction initiator, and the gas for it is not limited (see code for ​checkSignatures​).

10

https://github.com/gnosis/safe-contracts/blob/14495428954366dcf812acfa11e54c81b186332d/contracts/common/SecuredTokenTransfer.sol#L23
https://github.com/gnosis/safe-contracts/blob/bfb8abac580d76dd44f68307a5356a919c6cfb9b/contracts/GnosisSafe.sol#L161

Thus, the attacking owner may use a malicious ​ISignatureValidator​ that consumes almost
all allocated gas, in order to receive a large refund. The amount of benefit received by
the attacker is limited by (1) block gas limit and (2) ratio between​ gasPrice​ and market
cost of the token. However, we should allow for the possibility that block gas limit will
increase in the future. Consequently, this remains a valid vulnerability.

Note that careful gas limits on external contract calls are a common security practice.
For example when Ether is sent in Solidity through​ msg.sender.send(ethAmt)​, gas is
automatically limited to ​2300​.

Recommendation

Limit the gas when calling ​ISignatureValidator​ to a small predetermined value, carefully
chosen by considering the specific functionality of ​ISignatureValidator​.

11

https://solidity.readthedocs.io/en/v0.5.0/security-considerations.html#sending-and-receiving-ether

Transaction reordering vulnerability in ​addOwnerWithThreshold​,
removeOwner​, and ​changeThreshold

The ​addOwnerWithThreshold​ function allows an update to ​threshold​, for which a race
condition exists similarly to the ​ERC20 approve race condition​.

A common usage scenario of​ ​addOwnerWithThreshold​ is to add a new owner while
increasing​ the threshold value (or at least keeping the value as is). The case of
decreasing the threshold value while adding a new owner, is unlikely. If there still exists
such a use case, one can split the task into two transactions: add new owner, and
decrease​ ​threshold​. There is little reason to perform two updates atomically.

The​ removeOwner​ function has a similar issue.

Exploit Scenario

Suppose there are five owners with​ threshold = 3​. Suppose Alice proposes (in off-chain)
two consecutive transactions,​ addOwnerWithThreshold(o1,4)​ and
addOwnerWithThreshold(o2,5)​. Suppose, however, the off-chain operator receives two
transactions in reverse order, due to network congestion. If the two transactions are
approved in the wrong order by the owners, the final​ threshold ​value will be 4, even
though it should be 5.

Discussion

The exploit scenario requires that the owners approve the off-chain transactions in the
wrong order by mistake or deliberately. Note that once the off-chain transactions are
approved in the correct order, it is ​not​ possible for them to be executed (on-chain) in the
wrong order even if miners are malicious. This is because the nonce increases linearly
and the signature (collected off-chain for approving a transaction) depends on the
nonce, which induces the total order of transactions that GnosisSafe ensures to follow.

However, if the linearly increasing nonce scheme is not adhered in a future version of
GnosisSafe (e.g., by employing a different nonce scheme), the presented vulnerability is
exploitable even if all the owners are benign and perfect (making no mistake).

Recommendation

● Modify​ addOwnerWithThreshold​ to prevent from decreasing​ threshold​.
● Modify​ removeOwner ​to prevent from increasing​ threshold​.

12

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM

● Make​ changeThreshold​ private, and add the safer alternatives, i.e.,
increaseThreshold​ and​ decreaseThreshold​.

13

 execTransaction​ allows a user transaction to the zero address

execTransaction ​does not reject the case of​ to ​being the zero address ​0x0​, which leads to
an ​internal​ transaction to the zero address, via the following function call sequence:

● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L95
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/Executor.sol#L17
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/Executor.sol#L33

Unlike a regular transaction to the zero address, which creates a new account, an
internal transaction to the zero address behaves the same as other transactions to
non-zero addresses, i.e., sending Ether to the zero address account (which indeed
exists: ​https://etherscan.io/address/0x00​) and
executing the code associated to it (which is empty in this case).

Although it is the users' responsibility to ensure correctness of the transaction data, it is
possible a certain user may not be aware of the difference between the regular and
internal transactions to the zero address. The can result in the user sending transaction
data to ​execTransaction​ with ​to == 0x0​, all the while expecting the creation of a new
account. Because an internal transaction to the zero address succeeds (note that it
spends a small amount of gas without the need to pay the ​G_newaccount ​(​25,000​) fee
because the zero-address account already exists), it may cause the Ether to remain
stuck at 0x0, which could become a serious concern when the user attaches a large
amount of Ether as a startup fund for the new account.

Recommendation

Modify ​execTransaction​ to revert when ​to == address(0)​.

14

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L95
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/Executor.sol#L17
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/Executor.sol#L33
https://etherscan.io/address/0x00
https://github.com/kframework/evm-semantics/blob/master/evm.md#default-schedule

execTransaction​ is missing the contract existence check for the
user transaction target

execTransaction​ is missing the contract existence check for the user transaction target,
which may result in the loss of Ether.

According to the ​Solidity document​:

The low-level functions ​call​, ​delegatecall​ and ​staticcall​ return ​true​ as their first
return value if the called account is non-existent, as part of the design of EVM.
Existence must be checked prior to calling if desired.

That is, if a client commits a mistake by providing a non-existing target address when
preparing a user transaction, the ​execute​ function will silently return true when
transferring the paid Ether to the non-existing account. The result is a loss of Ether.

However, it is not trivial to check the existence for a non-contract account.

Recommendation

In the short term, add a check for a contract account, e.g., requiring ​extcodesize(to) > 0
when ​data​ is not empty and ​operation = Call​.

In the long term, differentiate the two types of user transactions, i.e., the external
contract call transaction and the simple Ether transfer transaction. Implement the
contract existence check for the external contract call transaction. With respect to the
Ether transfer transaction, explicitly reference this limitation in the document of
execTransaction​, and/or implement a certain conservative existence check at the client
side to provide a warning message if the given address seems to refer to a non-existing
account.

15

https://solidity.readthedocs.io/en/v0.5.0/control-structures.html?highlight=non-existent#error-handling-assert-require-revert-and-exceptions

changeMasterCopy​ is missing contract existence check

changeMasterCopy​ is missing the contract account existence check for the new master
copy address. If the master copy is set to a non-contract account, the Proxy fall-back
function will silently return.

Recommendation

Implement the existence check, e.g., ​extcodesize(_masterCopy) > 0​.

16

Potential overflow if contract invariant is not met

There are several places where SafeMath is not employed for the arithmetic operations.

● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L92
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L139
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L62
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L79
● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L85

The following contract invariants are necessary to rule out the possibility of overflow:

● nonce​ is small enough to avoid overflow in ​nonce++​.
● threshold​ is small enough to avoid overflow in ​threshold * 65​.
● ownerCount >= 1​ is small enough to avoid overflow in ​ownerCount++​, ​ownerCount -

1​, and ​ownerCount--​.

In the current GnosisSafe contract, considering the resource limitation (such as gas), it
is reasonable to assume the above invariants. Nonetheless, this examination should be
repeated whenever the contract is updated.

Recommendation

Use SafeMath for all arithmetic operations.

17

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L92
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L139
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L62
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L79
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L85

Potential list index out of bounds in ​signatureSplit

The ​signatureSplit​ function does not check that the index is within the bounds of the
signatures​ list.

In the current GnosisSafe contract, although no out-of-bounds index is passed to the
function, it is still possible for a future implementation to make a mistake, thus passing
an out-of-bounds index.

Recommendation

Add the index bounds check or explicitly mention the requirement in the document of
signatureSplit​ to prevent violations in future implementations.

18

Missing well-formedness check for signature encoding in
checkSignatures

checkSignatures​ does not explicitly check if the signature encoding is valid.

The signature encoding should satisfy the following conditions to be valid:

● When​ ​v​ is 0 or 1, the owner​ ​r​ should be within the range of​ ​address​. Otherwise,
the higher bits are truncated.

● When​ ​v​ is 0:
○ The offset​ ​s​ should be within the bounds of the​ ​signatures​ buffer, i.e., ​s +

32 <= signatures.length​. Otherwise, it will read garbage value from the
memory.

○ The dynamic signature data pointed by ​s ​needs to be well-formed:
■ The first 4 bytes needs to denote the size of the dynamic data, i.e.,

dynamic-data-size := mload(signatures + s + 32)​. Otherwise, it may try
to read a large memory range, causing the out-of-gas exception.

■ The ​signatures​ buffer needs to be large enough to hold the dynamic
data, i.e.,​ ​signatures.length >= s + 32 + dynamic-data-size​. Otherwise, it
will read some garbage value from the memory.

○ (Optional) Each dynamic data buffer should not be pointed to by multiple
signatures. Otherwise, the same dynamic data will be used to check the
validity of different signatures.

○ (Optional) Different dynamic data buffers should not overlap.

For a reference, the following checks are inserted in the bytecode by the Solidity
compiler for each ​bytes​-type argument.

1​. CALLDATASIZE >= ​4​ ? ​// checks if the function signature is provided

2​. CALLDATASIZE >= ​4​ + ​32​ * NUM_OF_ARGS

 ​// checks if the headers of all arguments are provided

3​. ​// load static type arguments and checks the range

4​. startLOC := CALLDATALOAD(​4​ + ​32​ * IDX)

 ​// suppose the bytes-type argument is given in the IDX-th position

5​. startLOC <= ​2​^​32​ ?

6​. startLOC + ​4​ + ​32​ <= CALLDATASIZE ?

 ​// checks if the length information is provided

7​. dataLen := CALLDATALOAD(startLoc + ​4​)

19

8​. startLoc + ​4​ + ​32​ + dataLen <= CALLDATASIZE ?

 ​// checks if the actual data buffer is provided

9​. dataLen <= ​2​^​32​ ?

10​. ... CALLDATACOPY(..., startLoc + ​4​ + ​32​, dataLen) ...

 // copy the data buffer to the memory

Discussion

The presented vulnerability allows malicious users to control the memory access (i.e.,
read) pattern. However, we have not yet found any critical exploit against this
vulnerability, but we note that it does not necessarily imply the absence of exploits, and
it is not a good practice to admit unintended behaviors.

Recommendation

Implement the signature encoding validity check.

20

Informative Findings & Recommendations
Here we discuss other identified issues of the GnosisSafe contract that are informative,
but not necessarily critical. Nevertheless, we highlight them below to ensure the Gnosis
team is fully aware of these issues and of their implications.

Lazy enum type check

The ​operation​ argument value must be with the range of ​Enum.Operation​, i.e., ​[0,2]
inclusive, and the Solidity compiler is expected to generate the range check in the
compiled bytecode. The range check does not appear in the​ ​execTransaction​ function,
but appears only inside the ​execute​ function. We have not yet discovered an exploit of
this missing range check. However, it could be potentially vulnerable and requires a
careful examination whenever the new bytecode is generated.

Address range

All address argument values (e.g., ​to​) must be within the range of ​address​, i.e., ​[0,

2^160-1]​ inclusive. Otherwise, the fist 96 (= 256 - 160) bits are silently truncated (with no
exception). Thus, any client of the function that takes address arguments should check
the validity of addresses before passing them to the function.

Scanning ​isValidSignature​ when adding an owner

It may be considered to scan the ​isValidSignature​ function whenever adding a new owner
(either on-chain or off-chain), to ensure that the function body contains no malicious
opcode.

Example:

● Scanner implementation (in Vyper):
https://github.com/ethereum/casper/blob/master/casper/contracts/purity_checker.py

● Scanner usage (on-chain):
https://github.com/ethereum/casper/blob/master/casper/contracts/simple_casper.v.py#L578

21

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L73
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/Executor.sol#L12-L25
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L70
https://github.com/ethereum/casper/blob/master/casper/contracts/purity_checker.py
https://github.com/ethereum/casper/blob/master/casper/contracts/simple_casper.v.py#L578

Local validity check of ​checkSignatures

checkSignatures​ checks only the first​ ​threshold​ number of signatures. Thus, the validity of
the remaining signatures is not considered. Also, the entire list of signatures is not
required to be sorted, as long as the first ​threshold​ number of signatures are locally
sorted. However, we have not found any attack exploiting this.

Another questionable behavior is the case where there are​ ​threshold​ valid signatures in
total, but some of them at the beginning are invalid. Currently, ​checkSignatures​ fails in
this case. A potential issue for this behavior is that a ​bad​ owner intentionally sends an
invalid signature to ​veto​ the transaction. He can ​always​ veto if his address is the first
(i.e., the smallest) among the owners. On the other hand, a ​good​ owner is hard to veto
some bad transaction if his address is the last (i.e., the largest) among the owners.

No explicit check for the case ​2 <= v <= 26​ in ​checkSignatures

According to the signature encoding scheme, a signature with​ ​2 <= v <= 26​ is invalid, but
the code does not have an explicit check for the case, Instead, it relies on ​ecrecover​ to
implicitly reject the case. It may be considered to introduce the explicit check for the
robustness of the code, as long as the additional gas cost is affordable, since the
underlying C implementation of ​secp256k1​ has not been formally verified, and there
might exist unknown zero-day vulnerabilities (especially for some corner cases).

handlePayment​ allows to send Ether to the precompiled contract
addresses

handlePayment​ sends Ether to ​receiver​ (in case of​ ​gasToken == address(0)​):

● https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L120

Here, we see that ​receiver​ is non-zero, provided that ​tx.origin​ is non-zero. But, ​receiver
could still be a non-owned account, especially one of the precompiled (0x1 - 0x8)
contract addresses. Here​ ​receiver.send(amount)​ will succeed even with the small gas
stipend 2300 for precompiled contracts (at least, for 0x2, 0x3, 0x4, and 0x6). For
reference, detailed below is the gas cost for executing each precompiled contract.

22

https://github.com/bitcoin-core/secp256k1
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L120

Address Contract Gas Cost

0x1 ECREC 3,000

0x2 SHA256 60 + 12 * <byte-size-of-call-data>

0x3 RIP160 600 + 120 * <byte-size-of-call-data>

0x4 ID 15 + 3 * <byte-size-of-call-data>

0x5 MODEXP ...

0x6 ECADD 500

0x7 ECMUL 40,000

0x8 ECPAIRING 100,000 + ...

Insufficient external call result check and gas efficiency of
transferToken

The transferToken function checks only the termination status (i.e., whether an
exception occurred) and the return value of the token contract call to see if the token
transfer succeeds. Thus, the GnosisSafe contract may fail the payment if the token
contract does not properly implement the ERC20 transfer function. A more obvious way
to check the token transfer is to examine the balance of the token-receiver before and
after the transfer function call. If the token transfer succeeds, the amount of increase in
the balance must be equal to the amount of tokens transferred.

Another concern is about gas efficiency. If the token transfer function returns a large
value (or reverts with a large message), it consumes the gas for copying the return
value (or the revert message, respectively) to the local memory that is not used at all.

addOwnerWithThreshold​ in case of contract invariant being
unsatisfied

Although it is unlikely, in the case where ​ownerCount​ is corrupted (possibly due to the
hash collision), ​ownerCount++​ may cause an overflow, resulting in​ ownerCount​ being

23

zero, provided that ​threshold == _threshold​. However, in the case where ​threshold !=

_threshold​, if​ ​ownerCount++​ contain the overflow, ​changeThreshold​ will always revert
because the following two requirements cannot be satisfied at the same time, where
ownerCount​ is zero:

 // Validate that threshold is smaller than number of owners.

 require​(_threshold <= ownerCount, ​"Threshold cannot exceed owner count"​);

 // There has to be at least one Safe owner.

 require​(_threshold >= ​1​, ​"Threshold needs to be greater than 0"​);

signatures​ byte-size limit

Considering the ​current max block gas limit​ (~8M) and the gas cost for the local memory
usage (i.e., ​n^2/512 + 3n​ for​ n​ bytes), the size of​ ​signatures​ (and other ​bytes​-type
arguments) must be (much) less than 2^16 (i.e., 64KB).

Note that the bytecode generated by the Solidity compiler checks if a​ ​bytes​-type
argument size is less than 2^32 (bytes), and reverts otherwise.

24

https://etherscan.io/blocks

Common Antipattern Analysis
In this section, we analyze some common antipatterns that have caused failures or
losses in past smart contracts. This list includes
https://consensys.github.io/smart-contract-best-practices/known_attacks/​ as well as
https://blog.sigmaprime.io/solidity-security.html​, and other literature on smart contract
security and the experience of our RV team of auditors and formal methods engineers.

1. Re-entrancy vulnerability is present, as described in previous section.

2. Arithmetic over/underflow is possible if the contract invariant is not satisfied, as
described in previous section.

3. Unexpected Ether. The default function in ​Proxy.sol​ is payable, and Ether is used by
GnosisSafe to emit refunds. The contract does not have issues related to presence of a
specific amount of Ether.

4. Delegatecall. The payload call performed by GnosisSafe may be not only the regular
call​, but also a​ ​delegatecall​ or​ ​create​. The call type is managed by transaction
parameter​ ​operation​, e.g. must be signed by other owners. However,​ ​delegatecall​ is a
dangerous type of transaction that can alter the GnosisSafe persistent data in
unexpected ways. This danger is properly described in the GnosisSafe documentation.
An earlier security audit ​for GnosisSafe​ recommends disabling​ ​delegatecall​ and​ ​create
entirely unless there is an important use case for it. As it currently stands, it depends on
the GnosisSafe client application to properly communicate to the owners the type of call
performed, and the dangers involved. This is outside the scope of the present audit.

5. Default Visibilities. All functions have the visibility explicitly declared, and only
functions that ​must​ be​ ​public/external​ are declared as such. Thus no functions use the
default public visibility.

6. Entropy Illusion. GnosisSafe does not try to simulate random events. Thus the issue
is unrelated to GnosisSafe.

7. Delegating functionality to external contracts. GnosisSafe uses the ​proxy pattern​.
Each instantiation of the safe deploys only the lightweight​ Proxy.sol ​contract, which
delegates (via ​delegatecall​) almost all calls to the proper​ ​GnosisSafe.sol​ deployed in
another account. This reduces the cost of instantiating the safe and allows future
upgrades. The contract account can upgrade the implementation by calling

25

https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://blog.sigmaprime.io/solidity-security.html
https://github.com/gnosis/safe-contracts/blob/68685cd811398ef229c719de0a108732443f71c1/docs/Gnosis_Safe_Audit_Report.pdf
https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201

GnosisSafe.changeMasterCopy()​ with the address where the updated GnosisSafe code is
deployed. This function can only be called from the proxy account, thus is secure. This
pattern presents a security issue when the address of the master cannot be inspected
by the contract users, and they have no way to audit its security. In GnosisSafe, master
copy can be publicly accessed via ​Proxy.implementation()​, so the issue is not present.

8. Short address/parameter attack. The transaction payload in GnosisSafe is received
via transaction parameter ​data​, and then used without changes to initiate an external
call. Other external calls are performed using standard methods from Solidity, thus the
call data has the correct format. The issue is not present.

9. Unchecked CALL Return Values. Solidity methods​ ​call()​ and​ ​send()​ ​do not revert
when the external call reverts, instead they return​ ​false​. Some smart contracts naively
expect such calls to revert, leading to bugs and potentially security issues. In
GnosisSafe, the return value of all such calls is correctly checked.

10. Race Conditions / Front Running. This vulnerability may be present in contracts in
which the amount of some Ether/token transfer depends on a sequence of transactions.
Thus, an attacker may gain an advantage by manipulating the order of transactions. In
GnosisSafe, all the data from which refund token and amount are computed is given as
parameters to​ ​execTransaction​, thus the issue is not present.

11. Denial of Service. Non-owners cannot alter the persistent state of this contract, or
use it to call external contracts. Thus no external DoS attack is possible. In principle if
an owner loses the private key to his contract and can no longer exercise his duties to
sign transactions, this would result in some hindrance. However, the list of owners can
always be edited from the contract account, thus it will be a temporary issue.

12. Block Timestamp manipulation. The contract does not use block timestamp.

13. Constructors with Care. Before Solidity​ ​v0.4.22​, constructor name was the same as
the name of the contract. This posed the risk to introduce a dangerous bug if between
versions contract would be renamed but constructor would not. GnosisSafe is compiled
with Solidity​ ​v5.0​, where constructors are declared with keyword ​constructor​, thus the
issue is not present.

14. Uninitialised local storage variables. Not used in GnosisSafe.

15. Floating Points and Numerical Precision. Floating point numbers are not used in
GnosisSafe.

26

16. Tx.Origin Authentication. In GnosisSafe​ ​tx.origin​ is not used for authentication.

17. Constantinople gas issue. The issue may appear only in contracts without explicit
protection for re-entrancy. We already discussed re-entrancy on point 1.

27

Formal Specification & Verification Overview

Here we provide the background and overview of the formal specification and
verification artifact of GnosisSafe.

Formal Verification Methodology

Our methodology for formal verification of smart contracts is as follows. First, we
formalize the high-level business logic of the smart contracts, based on a typically
informal specification provided by the client, to provide us with a precise and
comprehensive specification of the functional correctness properties of the smart
contracts. This high-level specification needs to be confirmed by the client, possibly
after several rounds of discussions and changes, to ensure that it correctly captures the
intended behavior of their contracts. Then we refine the specification all the way down
to the Ethereum Virtual Machine (EVM) level, often in multiple steps, to capture the
EVM-specific details. The role of the final EVM-level specification is to ensure that
nothing unexpected happens at the bytecode level, that is, that only what was specified
in the high-level specification will happen when the bytecode is executed. To precisely
reason about the EVM bytecode without missing any EVM quirks, we adopted ​KEVM​, a
complete formal semantics of the EVM, and instantiated the ​K-framework​ ​reachability
logic theorem prover​ to generate a correct-by-construction deductive program verifier
for the EVM. We use the verifier to verify the compiled EVM bytecode of the smart
contract against its EVM-level specification. Note that the Solidity compiler is not part of
our trust base, since we directly verify the compiled EVM bytecode. Therefore, our
verification result does not depend on the correctness of the Solidity compiler.

For more details, resources, and examples, we refer the reader to our Github repository
for formal verification of smart contracts, publicly available at:

https://github.com/runtimeverification/verified-smart-contracts

Resources

We use the ​K-framework​ and its verification infrastructure throughout the formal
verification effort. All of the formal specifications are mechanized within the K-framework
as well. Therefore, some background knowledge about the K-framework would be
necessary for reading and fully understanding the formal specifications and reproducing

28

https://github.com/kframework/evm-semantics
http://www.kframework.org/
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
https://github.com/runtimeverification/verified-smart-contracts
http://www.kframework.org/

the mechanized proofs. We refer the reader to the following resources for background
knowledge about the K-framework and its verification infrastructure.

● K-framework
○ Download​ and​ ​install
○ K tutorial
○ K editor support

● KEVM​: an executable formal semantics of the EVM in K
○ Jellopaper​: reader-friendly formatting of KEVM
○ KEVM technical report

● K reachability logic prover
○ eDSL​: domain-specific language for EVM-level specifications

● ERC20-K​: a formal specification of the high-level business logic of ​ERC20
● ERC20-EVM​: an EVM-level refinement of ERC20-K
● ERC777-K​: a formal specification of the high-level business logic of​ ​ERC777

Mechanized Specification and Proof

Following our formal verification methodology described above, ​we formalized the
high-level specification of the GnosisSafe contract, and ​refined the specification all the
way down to the Ethereum Virtual Machine (EVM) level to capture the EVM-specific
details.

The fully mechanized, EVM-level formal specification that we verified against the
GnosisSafe contract ​bytecode​, the code released with​ ​version 0.1.0​ (commit ID ​427d6f7​)
on the​ ​gnosis/safe-contracts​ ​Github repository, is available at:

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini

Note that our verification result is valid only for the aforementioned bytecode. Any
change to the bytecode may invalidate all our claims, findings, and recommendations.

The formal specification is fully mechanized within and automatically verified by our
EVM verifier, a correct-by-construction deductive program verifier derived from ​KEVM
and ​K-framework​'s ​reachability logic theorem prover​.

Below are some statistics of the mechanized formal specification:

● Size of the mechanized formal specification: ~2,000 LOC

29

http://www.kframework.org/
https://github.com/kframework/k5/releases
https://github.com/kframework/k5/blob/master/README.md
https://github.com/kframework/k5/blob/master/README.md
https://github.com/kframework/k5/tree/master/k-distribution/tutorial
https://github.com/kframework/k5/tree/master/k-distribution/tutorial
https://github.com/kframework/k-editor-support
https://github.com/kframework/k-editor-support
https://github.com/kframework/evm-semantics
https://jellopaper.org/
https://www.ideals.illinois.edu/handle/2142/97207
https://www.ideals.illinois.edu/handle/2142/97207
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages
https://github.com/runtimeverification/verified-smart-contracts/blob/master/resources/edsl.md
https://github.com/runtimeverification/erc20-semantics
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/runtimeverification/verified-smart-contracts/blob/master/resources/erc20-evm.md
https://github.com/runtimeverification/erc777-semantics
https://github.com/ethereum/eips/issues/777
https://github.com/gnosis/safe-contracts/releases/tag/v0.1.0
https://github.com/gnosis/safe-contracts/commits/427d6f7e779431333c54bcb4d4cde31e4d57ce96
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini
https://github.com/kframework/evm-semantics
http://www.kframework.org/
http://fsl.cs.illinois.edu/index.php/Semantics-Based_Program_Verifiers_for_All_Languages

● Number of properties (called ​reachability claims​) in the specification: 65
● Total verification time: 29,103s (~8h) @ Intel i7-4960X CPU 3.60GHz
● Average number of symbolic execution steps with the KEVM semantic rules

taken to verify each reachability claim: 5,050 (max: 11,635)

The specification is written in​ ​eDSL​, a domain-specific language for EVM specifications,
which the reader must understand in order to thoroughly comprehend our EVM-level
specifications. Refer to​ ​resources​ for background on our technology. The full K
reachability logic specifications are automatically derived from the provided ​eDSL
specification.

Run the following command in the root directory of ​the verified-smart-contracts Github
repository​, and it will generate the full specifications under the directory ​specs/gnosis​:

 $ make -C gnosis all

Run the EVM verifier to prove that the specifications are satisfied by (the compiled EVM
bytecode of) the target functions. See these ​instructions​ for more details of running the
verifier.

30

https://github.com/runtimeverification/verified-smart-contracts/blob/master/resources/edsl.md
https://github.com/runtimeverification/verified-smart-contracts/blob/master/README.md#resources
https://github.com/runtimeverification/verified-smart-contracts/blob/master/resources/edsl.md
https://github.com/runtimeverification/verified-smart-contracts/
https://github.com/runtimeverification/verified-smart-contracts/
https://github.com/runtimeverification/verified-smart-contracts/blob/master/resources/instructions.md

Formal Specification Details
Now we describe the details of the formal specification that we verified against the
GnosisSafe contract. We first clarify our assumption (i.e., what is ​not​ verified), and then
describe the formal specification for each function we verified.

Assumptions

We found that certain input states (including function argument values and unknown
external accounts’ state) may lead to the failure of the contract satisfying the desired
properties, although some of those failure cases are not likely to happen in practice. For
the failure cases that are possible to happen, we carefully reviewed and provided the
details of our analysis and suggestions in the previous section (see the ​List of Findings
section).

In order to verify that the contract satisfies the desired properties ​except for those failure
cases​, we had to assume that the input states are adequate (i.e., assuming the
negation of the failure conditions). Below we compile the list of the assumptions (i.e.,
pre-conditions) we made. Some of those assumptions are general, while others are
specific to certain functions. The function-specific assumptions will be clarified in

subsequent sections, where we describe the formal specification of each function as we
formally verify it.

We note that it is the sole responsibility of the developers of the contract (and their
clients, respectively) to ensure that the assumptions are met whenever they update
(and use, respectively) the contract.

No wrap-around overflow:

● threshold​ is assumed small enough to avoid overflow (wrap-around).
● nonce​ is assumed small enough to avoid overflow (wrap-around).

If an overflow happens and the value is wrapped around, the contract will be in an
unexpected state, and may not work properly thereafter. However, we note that the
overflow case is not likely to happen, considering the resource limitation (such as gas).

31

Well-formed input:

● The ​address​-type argument (and storage) values are within the range of ​address​,
i.e., ​[0, 2^160-1]​, inclusive. Otherwise, the first 96 (= 256 - 160) bits are silently
truncated (with no exception).

● No overlap between multiple memory chunks of ​byte​-typed arguments.
Otherwise, the function becomes nondeterministic.

● (Only for ​signatureSplit​)​ ​No list index out of bounds.
● (Only for ​checkSignatures​)​ ​Every signature encoding is well-formed. Otherwise, the

function becomes nondeterministic.

If the input well-formedness conditions are not met, the function may not work as
expected, and its behavior depends on the VM state when the function is called.

We note that these conditions are satisfied for all internal functions in the current
GnosisSafe contract. For the external functions, however, it is the responsibility of any
client of this contract to ensure that these conditions are met when they prepare for the
function call data.

Non-interfering external contract call:

● The external contract call does not change the current (i.e., the proxy) storage.

Roughly speaking, the non-interfering condition rules out the possibility of reentrancy. In
other word, this assumption requires any client of the contract to ensure that they do not
send a user transaction to an external contract without knowing what the external
contract does.

Trusted ERC20 token contract:

● The ​gasToken​ contract properly implements the ERC20 transfer function.

In case of token payment, the given token contract is called for transferring tokens.
However, the GnosisSafe contract checks only the termination status (i.e., whether an
exception occurred) and the return value of the token contract call to see if the token
transfer succeeds. Thus, if the token contract does not implement the transfer function
properly, the GnosisSafe contract may fail the payment. It is the responsibility of any
client of this contract to ensure that a valid ERC20 token contract is provided for the
token payment.

32

GnosisSafe contract

Function ​signatureSplit

signatureSplit​ is an internal function that takes a sequence of signatures and an index,
and returns the indexed signature as a tuple of its ​v​,​ r​, and​ s​ fields.

 ​function​ signatureSplit(bytes ​memory​ signatures, uint256 pos)

 ​internal

 ​pure

 ​returns​ (uint8 v, bytes32 r, bytes32 s)

Stack and memory:

The function takes two inputs,​ signatures​ and​ pos​, where​ signatures​ is passed through the
memory while​ pos​ is through the stack.

The input stack is given as follows:

POS : SIGS_LOC : RETURN_LOC : WS

where ​POS​ is the value of​ pos​, and​ SIGS_LOC​ is the starting location of the memory that
stores the ​signatures ​byte buffer.

NOTE: Throughout this specification, ​RETURN_LOC​ is the return address (PC value), and
WS​ is the caller's stack frame, which are not relevant for the current function's behavior.

The memory stores the​ signatures​ buffer starting at the location​ SIGS_LOC​, where it first
stores the size of the buffer ​SIGS_LEN​, followed by the actual buffer​ SIGNATURES​, as
illustrated below:

33

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/common/SignatureDecoder.sol#L32

The function's return value is a tuple of​ (v, r, s)​, which is pushed into the stack, as in the
following output stack:

RETURN_LOC : S : R : V : WS

where

● R​: 32 bytes from the offset ​65 * POS​ of ​SIGNATURES

● S​: 32 bytes from the offset ​65 * POS + 32​ of​ SIGNATURES

● V​: 1 byte at the offset ​65 * POS + 64​ of ​SIGNATURES

Function visibility and modifiers:

The function cannot be directly called from outside, as it is​ internal​. An external call to
this function will silently terminate with no effect (and no exception).

The function does not update the storage, as it is marked​ pure​.

Exceptions:

If one of the following no-overflow conditions is ​not​ met, the function will throw or revert:

● The input stack size should be small enough to avoid the stack overflow.
● The maximum memory location accessed, i.e.,​ SIGS_LOC + 32 + (65 * POS + 65)​,

should be small enough to avoid the integer overflow for the pointer arithmetic.

Pre-conditions:

Well-formed input:

● No index out of bounds, i.e., ​(POS + 1) * 65 <= SIGS_LEN

We note that the input well-formedness condition is satisfied for all internal uses of this
function in the current GnosisSafe contract.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L54-L89

34

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L54-L89
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L54-L89

Function ​encodeTransactionData

encodeTransactionData​ is a public function that calculates the hash value of the given
transaction data.

 ​function​ encodeTransactionData(

 address to,

 uint256 value,

 bytes ​memory​ data,

 Enum.Operation operation,

 uint256 safeTxGas,

 uint256 dataGas,

 uint256 gasPrice,

 address gasToken,

 address refundReceiver,

 uint256 _nonce

)

 ​public

 ​view

 ​returns​ (bytes ​memory​)

Stack and memory:

The function is ​public​, to which both internal and external calls can be made. One of the
main differences between the two types of calls is how to pass the input. The internal
call passes the input through the stack and the memory, while the external call passes
the input through the call data.

For the internal call, the input stack is given as follows:

NONCE : REFUND_RECEIVER : GAS_TOKEN : GAS_PRICE : DATA_GAS : SAFE_TX_GAS :

OPERATION : DATA_LOC : VALUE : TO : RETURN_LOC : WS

where the first ten elements are the function arguments in reverse order, while
DATA_LOC​ is a memory pointer to the actual buffer of​ data​. Note that​ OPERATION​ is
encoded as​ unit8​.

35

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L284

The memory stores the ​data​ buffer starting at the location​ DATA_LOC​, where it first stores
the size of the buffer, followed by the actual buffer bytes, as illustrated below:

The output stack consists of:

RETURN_LOC : OUT_LOC : WS

For the internal call, the return value (buffer) is passed through the memory, being
stored at the starting location ​OUT_LOC​, as follows:

Here the first 32 bytes denote the size of the buffer, and the remaining 66 bytes denote
the result of ​abi.encodePacked(byte(0x19), byte(0x01), domainSeparator, safeTxHash)​. Note
that the first two elements,​ 0x19​ and​ 0x01​, are not aligned, because of the use of
abi.encodePacked​ instead of​ abi.encode​. Also,​ SAFE_TX_HASH​ is the result of
abi.encode(SAFE_TX_TYPEHASH, to, value, keccak256(data), operation, safeTxGas, dataGas,

gasPrice, gasToken, refundReceiver, _nonce)​, where each argument is 32-byte aligned with
zero padding on the left.

For the external call, on the other hand, the return value (buffer) is encoded, in the ABI
format, as follows:

36

Here the prefix (the first 32 bytes) and the postfix (the last 30 bytes) are attached,
compared to that of the internal call. The prefix is the offset to the start of the return
value buffer, and the postfix is the zero padding for the alignment.

For the internal call, the output memory is as follows:

where​ X = ceil32(DATA_LEN) - DATA_LEN​. Here the function writes to the memory starting
from ​DATA_LOC + 32 + ceil32(DATA_LEN)​. The first 384 bytes are used for executing
keccak256​ to compute​ safeTxHash​, i.e., 352 bytes for preparing for 11 arguments (= 32 *
11), and 32 bytes for holding the return value. The next 98 bytes are used for passing
the return value, as described above.

Note that the external call results in the same output memory, but the memory is not
shared by the caller, and does not affect the caller's memory.

Function visibility and modifiers:

The function does not update the storage, as it is marked ​view​.

For the external call,​ msg.value​ must be zero, since the function is not​ payable​.
Otherwise, it throws.

Exceptions:

If one of the following no-overflow conditions is ​not​ met, the function will throw or revert:

● For the external call, the call depth should be small enough to avoid the call
depth overflow.

● For the internal call, the input stack size should be small enough to avoid the
stack overflow.

● The maximum memory location accessed, i.e.,​ DATA_LOC + 32 + ceil32(DATA_LEN)

+ 482​, should be small enough to avoid the integer overflow for the pointer
arithmetic.

37

If one of the following input well-formedness conditions is ​not​ met, the function will throw
or revert:

● The ​operation​ should be either 0, 1, or 2. Otherwise, the ​execute​ function (defined
at​ Executor.sol​) will throw.

● The byte size of ​data​ should be less than 2^32. Otherwise, it reverts.

Pre-conditions:

Well-formed input:

● The​ to, gasToken​, and​ refundReceiver​ argument values are all within the range of
address​, i.e.,​ [0, 2^160-1]​, inclusive. Otherwise, the first 96 (= 256 - 160) bits are
silently truncated (with no exception).

We note that the input well-formedness condition is satisfied for all internal uses of this
function in the current GnosisSafe contract.

Mechanized formal specification:

Below are the specifications that we verified against the GnosisSafe contract bytecode.

For internal call:

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L98-L223

For external call:

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L252-L328

38

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L98-L223
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L98-L223
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L252-L328
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L252-L328

Function ​handlePayment

handlePayment​ is a private function that pays the gas cost to the receiver in either Ether
or tokens.

 ​function​ handlePayment(

 uint256 startGas,

 uint256 dataGas,

 uint256 gasPrice,

 address gasToken,

 address ​payable​ refundReceiver

)

 ​private

Stack and memory:

All of the input arguments are passed through the stack, and no memory is required
since they are all fixed-size:

REFUND_RECEIVER : GAS_TOKEN : GAS_PRICE : DATA_GAS : START_GAS : RETURN_LOC : WS

The function has no return value, and thus the output stack, if succeeds, is as follows:

RETURN_LOC : WS

State update:

The payment amount is calculated by the following formula:

((START_GAS - GAS_LEFT) + DATA_GAS) * GAS_PRICE

where ​GAS_LEFT​ is the result of ​gasleft()​ at ​line 115​.

If an arithmetic overflow occurs when evaluating the above formula, the function reverts.

39

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L106
https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L115

If no overflow occurs, ​receiver​ is set to ​tx.origin​ if ​refundReceiver​ is zero, otherwise it is
set to​ refundReceiver​. Thus​ receiver​ is non-zero.

Finally, the amount of Ether or tokens is sent to​ receiver​. If the payment succeeds, the
function returns (with no return value). Otherwise, it reverts. There are two payment
methods, and each method has the following success/failure behaviors:

● Ether payment:
○ If​ send ​succeeds, then the function returns (with no return value).
○ Otherwise, it reverts.

● Token payment:
○ If ​gasToken.transfer()​ succeeds (i.e., no exception):

■ If​ gasToken.transfer()​ returns nothing, the function returns.
■ If​ gasToken.transfer() ​returns a (32-byte) non-zero value, it returns.
■ If ​gasToken.transfer()​ returns zero, it reverts.
■ Otherwise, it reverts.

○ If​ gasToken.transfer()​ throws or reverts, the function reverts regardless of
the return value of​ gasToken.transfer()​.

Here, we have little concern about the reentrancy for​ send​ or​ gasToken.transfer()​, since
there is no critical statement after​ send/transfer​, and also the function is private.

Function visibility and modifiers:

The function cannot be directly called from outside, as it is​ private​. An external call to
this function will silently terminate with no effect (and no exception).

Exceptions:

If one of the following no-overflow conditions is ​not​ met, the function will throw or revert:

● The input stack size should be small enough to avoid the stack overflow.

Pre-conditions:

Well-formed input:

● The value of the address arguments are within the range of​ address​, i.e., ​[0,

2^160-1]​, inclusive. Otherwise, the first 96 (= 256 - 160) bits are silently truncated
(with no exception).

40

We note that the input well-formedness condition is satisfied for all internal uses of this
function in the current GnosisSafe contract.

Trusted ERC20 token contract:

● The ​gasToken​ contract properly implements the ERC20 transfer function.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L438-L563

41

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L438-L563
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L438-L563

Function ​checkSignatures

checkSignatures​ is an internal function that checks the validity of the given signatures.

 ​function​ checkSignatures(

 bytes32 dataHash,

 bytes ​memory​ data,

 bytes ​memory​ signatures,

 bool consumeHash

)

 ​internal

 ​returns​ (bool)

Stack and memory:

The input arguments are passed through the stack as follows:

CONSUME_HASH : SIGS_LOC : DATA_LOC : DATA_HASH : RETURN_LOC : WS

where ​data​ and ​signatures​ are stored in the memory:

The function returns true if:

● the number of signatures is more than equal to​ threshold​, and
● the first​ threshold​ number of signatures are valid, signed by owners, and sorted

by their owner address.

where a signature is valid if:

● case v = 0: ​r​'s isValidSignature returns true.
● case v = 1:​ r ==​ msg.sender or​ dataHash​ is already approved.

42

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L134

● otherwise: it is a valid ECDSA signature.

Otherwise, the function returns false, unless​ isValidSignature​ throws (or reverts).

If​ isValidSignature ​throws or reverts,​ checkSignatures​ reverts, immediately terminating
without returning to​ execTransaction​.

Also, if​ consumeHash = true​, the function may update
approvedHashes[currentOwner][dataHash]​ to zero.

Function visibility and modifiers:

The function cannot be directly called from outside, as it is ​internal​. An external call to
this function will silently terminate with no effect (and no exception).

Exceptions:

If one of the following no-overflow conditions is ​not​ met, the function will throw or revert:

● The input stack size should be small enough to avoid the stack overflow.
● The maximum memory location accessed should be small enough to avoid the

integer overflow for the pointer arithmetic.

If one of the following input well-formedness conditions is ​not​ met, the function will throw
or revert:

● The byte size of​ data​ should be less than 2^32. Otherwise, it reverts.

Pre-conditions:

No wrap-around:

● threshold​ is small enough to avoid overflow (wrap-around).

Well-formed input:

● Every owner (i.e., some ​o​ such that​ owners[o] =/= 0​) is within the range of ​address​.
Otherwise, the function simply truncates the higher bits when validating the
signatures.

● No overlap between two memory chunks of​ data​ and​ signatures​, i.e., ​DATA_LOC +

32 + DATA_LEN <= SIGS_LOC​. Otherwise, the function becomes nondeterministic.

43

● Every signature encoding is well-formed. Otherwise, the function becomes
nondeterministic.

We note that the first two input well-formedness conditions are satisfied for all internal
uses of this function in the current GnosisSafe contract. However, the last condition
should be satisfied by the client when he calls​ execTransaction​, since the current contract
omits the well-formedness check of the signature encoding.

Non-interfering external contract call:

● The external contract call does not change the current (i.e., the proxy) storage.

Formal specification (at a high-level):

We formalize the validity of (arbitrary number of) signatures in a way that we can avoid
explicit quantifier reasoning during the mechanized formal verification, as follows.

We first define​ the-first-invalid-signature-index ​as follows: (The mechanized definition is
here​.)

● A1: For all ​i < the-first-invalid-signature-index, signatures[i]​ is valid.
● A2:​ signatures[the-first-invalid-signature-index] ​is NOT valid.

Now we can formulate the behavior of​ checkSignatures​ using the above definition (with no
quantifiers!) as follows:

● T1:​ checkSignatures ​returns true if​ the-first-invalid-signature-index >= threshold​.
● T2: Otherwise, returns false.

To prove the above top-level specifications, T1 and T2, we need the following loop
invariant:

For some​ i​ such that​ 0 <= i < threshold​ and​ i <= the-first-invalid-signature-index​:

● L1: If​ i < threshold <= the-first-invalid-signature-index​, then the function returns true
once the loop terminates.

● L2: Else (i.e., if ​i <= the-first-invalid-signature-index < threshold​), then the function
eventually returns false.

To prove the above loop invariant, L1 and L2, we need the following claims for a single
loop iteration:

44

https://github.com/runtimeverification/verified-smart-contracts/blob/a3ca2bcbc152cd0b597669f6d3ac067fab363e33/gnosis/verification.k#L346-L421

● M1: If​ signatures[i]​ is valid, it continues to the next iteration (i.e., goes back to the
loop head).

● M2: If​ signatures[i]​ is NOT valid, it returns false.

Proof sketch:

The top level specification:

● T1: By L1 with​ i = 0​.
● T2: By L2 with ​i = 0​.

The loop invariant:

● L1: By A1,​ signatures[i]​ is valid. Then by M1, it goes back to the loop head, and
we have two cases:

○ Case 1:​ i + 1 = threshold​: It jumps out of the loop, and return true.
○ Case 2:​ i + 1 < threshold​: By the circular reasoning with L1.

● L2:
○ Case 1:​ i = the-first-invalid-signature-index​: By A2,​ signatures[i]​ is NOT valid.

Then, by M2, we conclude.
○ Case 2:​ i < the-first-invalid-signature-index​: By A1​, signatures[i]​ is valid. Then,

by M1, it goes to the loop head, and by the circular reasoning with L2, we
conclude (since we know that​ i + 1 <= the-first-invalid-signature-index <

threshold​).

The single loop iteration claim does not involve the recursive structure, and thus can be
verified in the similar way as other specifications.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L695-L1155

45

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L695-L1155
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L695-L1155

Function ​execTransaction

execTransaction​ is an external function that executes the given transaction.

 ​function​ execTransaction(

 address to,

 uint256 value,

 bytes calldata data,

 Enum.Operation operation,

 uint256 safeTxGas,

 uint256 dataGas,

 uint256 gasPrice,

 address gasToken,

 address ​payable​ refundReceiver,

 bytes calldata signatures

)

 ​external

 ​returns​ (bool success)

We consider only the case of ​Enum.Operation.Call ​operation (i.e.,​ operation == 0​). The
other two cases are out of the scope of the current engagement.

Stack and memory:

Since it is an external function, it starts with a fresh VM (i.e., both the stack and the
memory are empty, the PC is 0, etc.)

State update:

The function checks the validity of​ signatures​, and reverts if not valid.

Then it increases​ nonce​, and calls​ execute​ with the given transaction.

It finally calls​ handlePayment​.

The function has the following non-trivial behaviors:

● checkSignatures​ may revert, which immediately terminates the current VM, without
returning to​ execTransaction​.

46

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/GnosisSafe.sol#L69

● execute​ does NOT reverts, even if the given transaction execution throws or
reverts. The return value of the given transaction, if any, is silently ignored.

○ However,​ execute​ may still throw for some cases (e.g., when​ operation​ is
not within the range of​ Enum.Operation​).

● handlePayment​ may throw or revert, and in that case,​ execTransaction​ reverts (i.e.,
the given transaction execution is reverted as well, and no ExecutionFailed event
is logged).

Function visibility and modifiers:

msg.value​ must be zero, since the function is not​ payable​. Otherwise, it throws.

Exceptions:

If one of the following input well-formedness conditions is ​not​ met, the function will throw
or revert:

● The byte size of ​data​ and​ signatures​ should be less than 2^32. Otherwise, it
reverts.

Pre-conditions:

No wrap-around:

● nonce ​is small enough to avoid overflow (wrap-around).

Well-formed input:

● The value of the address arguments are within the range of​ address​, i.e.,​ [0,

2^160-1]​, inclusive.

Non-interfering external contract call:

● The external contract call does not change the current (i.e., the proxy) storage.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1157-L1406

47

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1157-L1406
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1157-L1406

OwnerManager contract

The OwnerManager contract maintains the set of owners.

The storage state of​ owners​ represents a (non-empty) list of ​(o_0, o_1, ... o_N)​, which
denotes the (possibly empty) set of owners ​{o_1, ..., o_N}​. (Note that ​o_0​ is a dummy
element of the list, not an owner.)

The OwnerManager contract must satisfy the following contract invariant, once
initialized (after​ setup​):

● ownerCount >= threshold >= 1

● ownerCount​ is small enough to avoid overflow
● owners​ represents the list of ​(o_0, o_1, ..., o_N)​ such that:

○ N = ownerCount

○ o_i​ is non-zero (for all​ 0 <= i <= N​)
○ o_0 = 1

○ all​ o_i​'s are distinct (for ​0 <= i <= N​)
○ owners[o_i] = o_{i+1 mod N+1} ​for ​0 <= i <= N

○ owners[x]​ = 0 for any ​x​ not in the list ​(o_0, ..., o_N)

48

Function ​addOwnerWithThreshold

addOwnerWithThreshold​ is a public authorized function that adds a new owner and
updates ​threshold​.

 ​function​ addOwnerWithThreshold(address owner, uint256 _threshold)

 ​public

 authorized

State update:

Suppose ​owners​ represents ​(o_0, o_1, ..., o_N)​ and the contract invariant holds before
calling the function. Note that the contract invariant implies​ N >= 1​.

The function reverts if one of the following input conditions is not satisfied:

● The argument​ owner​ should be a non-zero new owner, i.e.,​ owner =/= 0​ and​ owner

=/= o_i​ for all ​0 <= i <= N​.
● The argument ​_threshold​ should be within the range of ​[1, N+1]​, inclusive.

NOTE: The check ​require(owner != SENTINEL_OWNERS)​ is logically redundant in the
presence of ​require(owners[owner] == address(0))​ and the given contract invariant.

If the function succeeds, the post state will be:

● owners​ will represent ​(o_0, owner, o_1, ..., o_N)​.
● ownerCount = N+1

● threshold = _threshold

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1412-L1581

49

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L52
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1412-L1581
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1412-L1581

Function removeOwner
removeOwner​ is a public authorized function that removes the given owner and updates
threshold​.

 ​function​ removeOwner(address prevOwner, address owner, uint256 _threshold)

 ​public

 authorized

State update:

Suppose ​owners​ represents ​(o_0, o_1, ..., o_N)​ and the contract invariant holds before
calling the function. Note that the contract invariant implies​ N >= 1​.

The function reverts if one of the following input conditions is not satisfied:

● N >= 2

● There exists ​0 <= k < N ​such that ​prevOwner = o_k​ and ​owner = o_{k+1}​.
● The argument ​_threshold​ should be within the range of ​[1, N-1]​, inclusive.

NOTE: The check ​require(owner != SENTINEL_OWNERS)​ is necessary to ensure​ k != N​.

If the function succeeds, the post state will be:

● owners​ will represent ​(..., o_k, o_{k+2}, ...)​ for​ 0 <= k < N​.
● ownerCount = N-1

● threshold = _threshold

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1583-L1716

50

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L74
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1583-L1716
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1583-L1716

Function swapOwner
swapOwner​ is a public authorized function that replaces ​oldOwner​ with ​newOwner​.

 ​function​ swapOwner(address prevOwner, address oldOwner, address newOwner)

 ​public

 authorized

State update:

Suppose​ owners​ represents​ (o_0, o_1, ..., o_N)​ and the contract invariant holds before
calling the function. Note that the contract invariant implies​ N >= 1​.

The function reverts if one of the following input conditions is not satisfied:

● The argument ​newOwner​ should be a non-zero new owner, i.e.,​ newOwner =/= 0
and ​newOwner =/= o_i​ for all​ 0 <= i <= N​.

● There exists ​0 <= k < N​ such that ​prevOwner = o_k​ and​ oldOwner = o_{k+1}​.

NOTE:

● The check​ require(newOwner != SENTINEL_OWNERS) ​is logically redundant in the
presence of​ require(owners[newOwner] == address(0)) ​and the given contract
invariant.

● The check​ require(oldOwner != SENTINEL_OWNERS)​, however, is necessary to
ensure​ k =/= N​.

If the function succeeds, the post state will be:

● owners​ will represent ​(..., o_k, newOwner, ...)​ for ​0 <= k < N​.
● ownerCount​ and​ threshold​ are not updated.

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1718-L1805

51

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/OwnerManager.sol#L97
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1718-L1805
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1718-L1805

ModuleManager contract

The ModuleManager contract maintains the set of modules.

The storage state of​ modules​ represents a (non-empty) list of​ (m_0, m_1, ... m_N)​, which
denotes the (possibly empty) set of modules​ {m_1, ..., m_N}​. (Note that​ m_0​ is a dummy
element of the list, not a module.)

The ModuleManager contract must satisfy the following contract invariant, once
initialized (after ​setup​):

● modules​ represents the list of ​(m_0, m_1, ..., m_N) ​such that:
○ N >= 0

○ m_i​ is non-zero (for all ​0 <= i <= N​)
○ m_0 = 1

○ all​ m_i​'s are distinct (for​ 0 <= i <= N​)
○ modules[m_i] = m_{i+1 mod N+1}​ for​ 0 <= i <= N

○ modules[x]​ = 0 for any​ x​ not in the list​ (m_0, ..., m_N)

Note that the set of modules could be empty, while the set of owners cannot.

52

Function enableModule
enableModule​ is a public authorized function that adds a new module.

 ​function​ enableModule(Module module)

 ​public

 authorized

State update:

Suppose ​modules ​represents ​(m_0, m_1, ..., m_N)​ and the contract invariant holds before
calling the function.

The function reverts if one of the following input conditions is not satisfied:

● The argument​ module​ should be a non-zero new module, i.e.,​ module =/= 0​ and
module =/= m_i​ for all​ 0 <= i <= N​.

NOTE: The check ​require(module != SENTINEL_OWNERS)​ is logically redundant in the
presence of​ require(modules[address(module)] == address(0))​ and the given contract
invariant.

If the function succeeds, the post state will be:

● modules​ will represent​ (m_0, module, m_1, ..., m_N)​.

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1811-L1874

53

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/ModuleManager.sol#L33
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1811-L1874
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1811-L1874

Function disableModule
disableModule​ is a public authorized function that removes the given module.

 ​function​ disableModule(Module prevModule, Module module)

 ​public

 authorized

State update:

Suppose​ modules​ represents ​(m_0, m_1, ..., m_N)​ and the contract invariant holds before
calling the function.

The function reverts if one of the following input conditions is not satisfied:

● N >= 1

● There exists ​0 <= k < N​ such that​ prevModule = m_k​ and​ module = m_{k+1}​.

NOTE: The check ​require(module != SENTINEL_OWNERS)​ is necessary to ensure​ k =/= N
and ​N >= 1​.

If the function succeeds, the post state will be:

● modules​ will represent ​(..., m_k, m_{k+2}, ...)​ for ​0 <= k < N​.

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1876-L1939

54

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/ModuleManager.sol#L50
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1876-L1939
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1876-L1939

Function execTransactionFromModule
execTransactionFromModule​ is a public function that executes the given transaction.

 ​function​ execTransactionFromModule(

 address to, uint256 value, bytes ​memory​ data, Enum.Operation operation

)

 ​public

 ​returns​ (bool success)

Here we consider only the case that ​modules​ denotes the empty set. The case for a
non-empty set of modules is out of the scope of the current engagement.

The function reverts if ​msg.sender =/= 1​ and ​modules​ denotes the empty set, i.e.,
modules[x] = 0​ for any ​x =/= 1​, and ​modules[1] = 1​.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1941-L1981

55

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/base/ModuleManager.sol#L67
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1941-L1981
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1941-L1981

MasterCopy contract

Function changeMasterCopy
changeMasterCopy​ is a public authorized function that updates ​masterCopy​.

 ​function​ changeMasterCopy(address _masterCopy)

 ​public

 authorized

State update:

The function reverts if the argument ​_masterCopy​ is zero.

Otherwise, it updates ​masterCopy​ to ​_masterCopy​.

Function visibility and modifiers:

The function should be invoked by the proxy account. Otherwise, it reverts.

Mechanized formal specification:

Below is the specification that we verified against the GnosisSafe contract bytecode.

https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0
372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1987-L2037

56

https://github.com/gnosis/safe-contracts/blob/v0.1.0/contracts/common/MasterCopy.sol#L14
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1987-L2037
https://github.com/runtimeverification/verified-smart-contracts/blob/ee8e6c8763dfa57d0372a3a67ed4df2c54fcea5e/gnosis/gnosis-spec.ini#L1987-L2037

