
Solady ERC721 Security Review

Part of OpenSense Solwaifu Initiative

Shung

License: CC BY-SA 3.0

July 8, 2023

Table of Contents
1 Introduction 1

2 Scope 1

3 Custom Storage Layout Review 1

4 Manual Memory Operations Review 2

5 Security Review Findings 3
5.1 No underflow check exists when decrementing user balance 3
5.2 Precompile 0x04 might be missing on some chains 3
5.3 Internal functions are not reused . 4
5.4 Treating zero address as a special condition in by argument 5
5.5 External functions are marked payable . 6
5.6 No event is emitted for auxiliary and extra data changes 7
5.7 Typographical errors in the comments . 7
5.8 Local variable can be set after the conditional revert 8
5.9 Master slot might be unnecessary . 10
5.10 mstore can be avoided by passing the length to identity precompile 11

6 Conclusion 13

i

Solady ERC721 Security Review

1 Introduction

This report is part of OpenSense’s Operation Solwaifu initiative to community audit Solady
contracts. As part of the initiative, I have volunteered to review the ERC721 contract.

The review took place between June 26, 2023 and July 1, 2023. Over the course of the
review I have not found any significant issues.

Disclaimer: This security report is not a guarantee that the system has no other bugs.
This is a best effort review of the system by a single person conducted within a limited
time period. All the diffs and code samples provided are for demonstration purposes only,
are not tested, and have no security guarantees.

About Me - shung: I am an independent smart contract auditor with deep knowledge of
EVM, Solidity, and decentralized finance. I have a long track record of developing safe
and secure smart contracts at Pangolin. I am also an NFT and crypto enjoyer. If you’re in
need of smart contract development or auditing services, find me on Twitter.

2 Scope

The review covered the smart contract code hosted at the following repository, version
tag, commit hash, and contract names:

Repository: https://github.com/Vectorized/solady

Version Tag: v0.0.107

Commit Hash: 7175c21f95255dc7711ce84cc32080a41864abd6

Contract Names:

src/
tokens/

ERC721.sol

3 Custom Storage Layout Review

Solady ERC721 implements a custom storage layout. This storage layout is secure and
does not clash within itself or with any native Solidity storage slot. The storage slots are
always accessed and written correctly in the contract.

The storage layout is defined in the comments.

1

https://www.opensense.pw/
https://twitter.com/shunduquar
https://github.com/Vectorized/solady

Solady ERC721 Security Review

79 The ownership data slot of `id` is given by:
80 ```
81 mstore(0x00, id)
82 mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
83 let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
84 ```
85 Bits Layout:
86 - [0..159] `addr`
87 - [160..223] `extraData`
88

89 The approved address slot is given by: `add(1, ownershipSlot)`.
90

91 See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip
92

93 The balance slot of `owner` is given by:
94 ```
95 mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
96 mstore(0x00, owner)
97 let balanceSlot := keccak256(0x0c, 0x1c)
98 ```
99 Bits Layout:

100 - [0..31] `balance`
101 - [32..225] `aux`
102

103 The `operator` approval slot of `owner` is given by:
104 ```
105 mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
106 mstore(0x00, owner)
107 let operatorApprovalSlot := keccak256(0x0c, 0x30)
108 ```

Code 1: ERC721.sol#L79

4 Manual Memory Operations Review

Solady ERC721 almost always manually reads and writes from the memory. With the
exception of _checkOnERC721Received function, memory is only written to the first two
32 byte chunks. In _checkOnERC721Received, memory is written from the safe memory
pointer onwards. There is no memory read operation that reads an unknown byte. All
memory reads are made to the bytes that are written in the same assembly block. All in
all, memory operations in the contract have no errors.

2

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L79

Solady ERC721 Security Review

5 Security Review Findings

5.1 No underflow check exists when decrementing user balance

Severity: Low risk

Context: ERC721.sol#L287-L288, ERC721.sol#L555-L556, ERC721.sol#L750-L751

Description

There is no underflow checks when decrementing the from balance during a transfer or
burn. Although within the constraints of Solady ERC721 the underflow is impossible, an
inheriting contract can invalidate this assumption.

Recommendation

Consider either checking for underflow or documenting this feature.

Response

Vectorized (Solady): Added a cautionary comment to remind developers to never violate
the ERC721 invariant when overriding. As long as the user balance is always equal to
their number of ownership slots, underflow is not possible.

5.2 Precompile 0x04 might be missing on some chains

Severity: Low risk

Context: ERC721.sol#L860

Description

In _checkOnERC721Received internal function, there is a call made to the identity precom-
pile at address 0x04. This precompile does not exist on zkSync, and might also be missing
on other chains. Moreover, _checkOnERC721Received function lacks any checks to ensure
the returned value from the precompile is valid. This silent failure can lead to user provided
safe transfer data to be passed incorrectly to the NFT recipient.

3

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L287-L288
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L555-L556
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L750-L751
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L860

Solady ERC721 Security Review

Recommendation

Consider either using the standard opcodes for memory manipulation or documenting this
feature.

Response

Vectorized (Solady): Edited README in a1ae24c to contain a section on EVM compati-
bility.

5.3 Internal functions are not reused

Severity: Informational

Context: ERC721.sol#616-618, ERC721.sol#606-613, ERC721.sol#572-602, ERC721.sol#796-
798, ERC721.sol#813-819, ERC721.sol#771-773, ERC721.sol#787-793, ERC721.sol#664-
680, ERC721.sol#702-768, ERC721.sol#687-689

Description

There are internal functions added mostly for the convenience of parent contract. These
functions are not reused in relevant external functions. This can lead to blunders where
a parent contract overrides an internal function with the expectation that the behaviour of
the external function would change.

In the below call graph of internal transfer functions, the transfer logic is at _transfer
by function. However, none of the internal functions below in the graph are used by
safeTransferFrom, safeTranferFrom with data, or transferFrom.

_transfer by

_transfer

_safeTransfer by

_safeTransfer by with data_safeTransfer with data

_safeTransfer

Figure 1: Call graph of internal transfer functions

4

https://github.com/Vectorized/solady/commit/a1ae24ca6824913b26077e7e99264e36019c6824
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#616-618
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#606-613
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#572-602
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#796-798
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#796-798
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#813-819
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#771-773
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#787-793
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#664-680
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#664-680
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#702-768
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#687-689

Solady ERC721 Security Review

transferFrom

safeTransferFrom safeTransferFrom with data

Figure 2: Call graph of external transfer functions

The same design is used for approval functions. An inheriting contract can override
_approve which would have no effect on approve.

_approve by

_approve approve

Figure 3: Call graph of approve functions

Similarly, getApproved and setApprovalForAll re-implements the logic of _getApproved
and _setApprovalForAll, respectively.

Another example is _isApprovedOrOwner and _ownerOf functions, which are not used for
access control in functions like transferFrom and approve. A deveoper might blunder by
overriding _isApprovedOrOwner function with the expectation that it is reused in all relevant
functions. All in all, this design can subvert developer expectations and lead to mistakes.

Recommendation

Consider thoroughly documenting this design.

Response

Vectorized (Solady): Added a cautionary comment mentioning that code duplicated and
manually inlined for performance, and overriding internal functions may not affect the be-
havior of external functions.

5.4 Treating zero address as a special condition in by argument

Severity: Informational

5

Solady ERC721 Security Review

Context: ERC721.sol#L517, ERC721.sol#L628, ERC721.sol#L664, ERC721.sol#L702,
ERC721.sol#L796, ERC721.sol#L813

Description

Many internal functions take a by argument. Inheriting contract can pass msg.sender,
address(0), or another address as by. If address(0) is passed, it is treated as a boolean
flag, and the function executes without checking for access control. For that purpose, to
be more explicit a boolean can be used. Otherwise, these functions appear more prone
to developer errors.

Recommendation

Consider using boolean or thoroughly documenting what to pass as by.

Response

Vectorized (Solady): This is intentional to reduce the number of stack operations for per-
formance.

5.5 External functions are marked payable

Severity: Informational

Context: ERC721.sol#L190, ERC721.sol#L241, ERC721.sol#L308, ERC721.sol#L325-
L329

Description

Four external functions in the contract are marked payable. Although this complies with
ERC-721 standard, user mistakes can lead to locked ether in the contract.

Recommendation

Consider either removing payable modifier from those functions or documenting this fea-
ture.

Response

Addressed by an inline comment in PR 496.

6

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L517
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L628
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L664
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L702
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L796
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L813
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L190
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L241
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L308
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L325-L329
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L325-L329
https://eips.ethereum.org/EIPS/eip-721
https://github.com/Vectorized/solady/pull/496/files#diff-2a1f0c78c338ce20b02482766a691eff70cd654a314c24fb1ba1806406e31b8cR14

Solady ERC721 Security Review

5.6 No event is emitted for auxiliary and extra data changes

Severity: Informational

Context: ERC721.sol#L387-L399, ERC721.sol#L413-L425

Description

_setAux and _setExtraData internal functions update the extra data attached to an ad-
dress and a token respectively. Although these functions perform important state changes,
no event is emitted.

Recommendation

Consider either adding events or documenting that parent contracts using these functions
should emit appropriate events.

Response

Vectorized (Solady): This is intentional for performance. A comment is added to remind
users to emit their own events if needed.

5.7 Typographical errors in the comments

Severity: Informational

Context: ERC721.sol#L568, ERC721.sol#L596, ERC721.sol#L663

Description

The managed should be manage:

568 /// @dev Returns whether `account` is the owner of token `id`, or is
approved to managed it.↪→

Code 2: ERC721.sol#L568

The end of sentence should have a period:

7

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L387-L399
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L413-L425
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L568
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L596
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L663
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L568

Solady ERC721 Security Review

596 // Check if `account` is approved to

Code 3: ERC721.sol#L596

The a should be an:

663 /// Emits a {ApprovalForAll} event.

Code 4: ERC721.sol#L663

Two forward slashes should be three forward slashes:

86 // - [0..159] `addr`
87 // - [160..223] `extraData`

Code 5: ERC721.sol#L86-L87

Recommendation

Consider fixing the typos.

Response

Vectorized (Solady): Addressed in this PR [URL].

5.8 Local variable can be set after the conditional revert

Severity: Execution cost optimization

Context: ERC721.sol#L580-L592

Description

In _isApprovedOrOwner view function, the return value is initially set to 1, and then later
conditionally set to 0. However, there is a potential revert in between if token does not
exist. Defining result as 1 after the iszero(owner) check can save gas on reverting
case.

8

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L596
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L663
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L86-L87
https://github.com/Vectorized/solady/pull/496
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L580-L592

Solady ERC721 Security Review

579 assembly {
580 result := 1
581 // Clear the upper 96 bits.
582 account := shr(96, shl(96, account))
583 // Load the ownership data.
584 mstore(0x00, id)
585 mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account))
586 let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
587 let owner := shr(96, shl(96, sload(ownershipSlot)))
588 // Revert if the token does not exist.
589 if iszero(owner) {
590 mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
591 revert(0x1c, 0x04)
592 }
593 // Check if `account` is the `owner`.
594 if iszero(eq(account, owner)) {
595 mstore(0x00, owner)
596 // Check if `account` is approved to
597 if iszero(sload(keccak256(0x0c, 0x30))) {
598 result := eq(account, sload(add(1, ownershipSlot)))
599 }
600 }
601 }

Code 6: ERC721.sol#L579-L601

Recommendation

Consider moving the line with result := 1 below the token existence check.

Response

Vectorized (Solady): This is intentional to aid the compiler to produce more optimized
bytecode. At the beginning of the function, the compiler implicitly generates a result :=
0. Placing result := 1 at the top of the function places it right after the result := 0. The
bytecode locality helps to compiler to detect that it is unnecessary and remove the result
:= 0.

9

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L579-L601

Solady ERC721 Security Review

5.9 Master slot might be unnecessary

Severity: Execution cost optimization

Context: ERC721.sol#L82, ERC721.sol#L95, ERC721.sol#L105

Description

All custom storage slots are derived using a master slot seed constant. The purpose of
the seed is not clear. If it is to prevent slot collision, it would be sufficient to hash different
lengths of data than 32 bytes. This would reduce the access cost of the storage slots.

Recommendation

Consider the below storage layout.

1 The ownership data slot of `id` can be given by:
2 ```
3 mstore(0x00, id)
4 let ownershipSlot := add(id, add(id, keccak256(0x00, 0x1f)))
5 ```
6

7 The approved address slot can be given by: `add(1, ownershipSlot)`.
8

9 The balance slot of `owner` can be given by:
10 ```
11 mstore(0x00, owner)
12 let balanceSlot := keccak256(0x0c, 0x14)
13 ```
14

15 The `operator` approval slot of `owner` can be given by:
16 ```
17 mstore(0x14, operator)
18 mstore(0x00, owner)
19 let operatorApprovalSlot := keccak256(0x0c, 0x28)
20 ```

Response

For upgrade compatibility, we prefer not to change our storage layout unless there is a
bug.

10

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L82
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L95
https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L105

Solady ERC721 Security Review

5.10 mstore can be avoided by passing the length to identity precompile

Severity: Execution cost optimization

Context: ERC721.sol#L858-L860

Description

_checkOnERC721Received function calls the identity precompile with the assumption that
the precompile exists. I mentioned in a previous finding that this can be dangerous. But if
Solady team wants to preserve the current behaviour, it is possible to use the precompile
more efficiently.

The function first pushes data length to the stack, and copies it to the memory. This is
done before calling the identity precompile. It instead possible to use the returndata from
identity call to store all the parts of the data (including its length) in the same call.

11

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L858-L860

Solady ERC721 Security Review

849 assembly {
850 // Prepare the calldata.
851 let m := mload(0x40)
852 let onERC721ReceivedSelector := 0x150b7a02
853 mstore(m, onERC721ReceivedSelector)
854 mstore(add(m, 0x20), caller()) // The `operator`, which is always

`msg.sender`.↪→

855 mstore(add(m, 0x40), shr(96, shl(96, from)))
856 mstore(add(m, 0x60), id)
857 mstore(add(m, 0x80), 0x80)
858 let n := mload(data)
859 mstore(add(m, 0xa0), n)
860 if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) }
861 // Revert if the call reverts.
862 if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) {
863 if returndatasize() {
864 // Bubble up the revert if the call reverts.
865 returndatacopy(0x00, 0x00, returndatasize())
866 revert(0x00, returndatasize())
867 }
868 mstore(m, 0)
869 }
870 // Load the returndata and compare it.
871 if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) {
872 mstore(0x00, 0xd1a57ed6) //

`TransferToNonERC721ReceiverImplementer()`.↪→

873 revert(0x1c, 0x04)
874 }
875 }

Code 7: ERC721.sol#L849-L875

Recommendation

Consider the below diff.

1 diff --git a/src/tokens/ERC721.sol b/src/tokens/ERC721.sol
2 index 042c4c3..34a6ce2 100644
3 --- a/src/tokens/ERC721.sol
4 +++ b/src/tokens/ERC721.sol
5 @@ -856,8 +856,7 @@ abstract contract ERC721 {

12

https://github.com/Vectorized/solady/blob/7175c21f95255dc7711ce84cc32080a41864abd6/src/tokens/ERC721.sol#L849-L875

Solady ERC721 Security Review

6 mstore(add(m, 0x60), id)
7 mstore(add(m, 0x80), 0x80)
8 let n := mload(data)
9 - mstore(add(m, 0xa0), n)

10 - if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m,
0xc0), n)) }↪→

11 + if n { pop(staticcall(gas(), 4, data, add(n, 0x20), add(m,
0xa0), add(n, 0x20))) }↪→

12 // Revert if the call reverts.
13 if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m,

0x20)) {↪→

14 if returndatasize() {

Response

Vectorized (Solady): The mstore is still required, as we cannot assume that the memory
is zeroized. An inheriting contract may perform operations that can leave regions in the
free memory in a non-zero state.

6 Conclusion

I have found Solady ERC721 to be sound and secure by itself. Most of the concerns
raised were regarding potential misuses. With the exception of finding 5.4, these were all
addressed through documentation and inline comments in PRs 495 and 496.

13

https://github.com/Vectorized/solady/pull/495
https://github.com/Vectorized/solady/pull/496

	1 Introduction
	2 Scope
	3 Custom Storage Layout Review
	4 Manual Memory Operations Review
	5 Security Review Findings
	5.1 No underflow check exists when decrementing user balance
	5.2 Precompile 0x04 might be missing on some chains
	5.3 Internal functions are not reused
	5.4 Treating zero address as a special condition in by argument
	5.5 External functions are marked payable
	5.6 No event is emitted for auxiliary and extra data changes
	5.7 Typographical errors in the comments
	5.8 Local variable can be set after the conditional revert
	5.9 Master slot might be unnecessary
	5.10 mstore can be avoided by passing the length to identity precompile

	6 Conclusion

