
Gnosis Safe
November 11, 2019

Security Review of

Overview

G0 Group was engaged to perform a security review of Gnosis Safe v1.1.0. G0 Group was
contracted for an eight person-week effort to that end. The primary subjects of this review
were the smart contracts which implement the Gnosis Safe: an extensible, multi-signature
smart contract wallet. This review was initially performed on
https://github.com/gnosis/safe-contracts/commit/1a9e5ce768e134c556770ea50e114fd836
66b8a8​.

Files in Scope

contracts/

 base/

 Executor.sol

 FallbackManager.sol

 Module.sol

 ModuleManager.sol

 OwnerManager.sol

 common/

 Enum.sol

 EtherPaymentFallback.sol

 MasterCopy.sol

 SecuredTokenTransfer.sol

 SelfAuthorized.sol

 SignatureDecoder.sol

 handler/

 DefaultCallbackHandler.sol

 interfaces/

 ERC1155TokenReceiver.sol

 ERC721TokenReceiver.sol

 ERC777TokensRecipient.sol

 ISignatureValidator.sol

 libraries/

 CreateAndAddModules.sol

 CreateCall.sol

 MultiSend.sol

 modules/

 DailyLimitModule.sol

 SocialRecoveryModule.sol

 StateChannelModule.sol

 WhitelistModule.sol

1​ G0 GROUP // GNOSIS SAFE V1.1.0

https://github.com/gnosis/safe-contracts/commit/1a9e5ce768e134c556770ea50e114fd83666b8a8
https://github.com/gnosis/safe-contracts/commit/1a9e5ce768e134c556770ea50e114fd83666b8a8

 proxies/

 DelegateConstructorProxy.sol

 PayingProxy.sol

 Proxy.sol

 ProxyFactory.sol

 GnosisSafe.sol

Result Summary

During the course of this review, 6 issues were discovered and reported. None of these
issues constitute an immediately exploitable security vulnerability; however, users should
be aware of them as they concern additional precautions users should take to ensure
predictable behavior of the safe. Further developing client side tools to verify the state
history and providence of the safe, as discussed below, would make using the safe securely
easier.

No further issues were discovered in
https://github.com/gnosis/safe-contracts/commit/78494bcdbc61b3db52308a25f0556c42cf6
56ab1​ (v1.1.0)

2​ G0 GROUP // GNOSIS SAFE V1.1.0

https://github.com/gnosis/safe-contracts/commit/78494bcdbc61b3db52308a25f0556c42cf656ab1
https://github.com/gnosis/safe-contracts/commit/78494bcdbc61b3db52308a25f0556c42cf656ab1

Issues

1. Safe state integrity can be maliciously corrupted

through delegatecall, leading to a lack of predictability

Type:​ security​ ​/ ​Severity: ​dependant on use

There are multiple ways through which a quorum of owners can induce a ​delegatecall
from the safe contract that can lead to an arbitrary modification of the contract's state.
Most significantly, this can lead to addition of hidden entries in the ​owners​ mapping
structure defined on the ​line 15​ of ​OwnerManager.sol​ which holds the record of
authorised owners of the contract and the ​modules​ mapping structure defined on the ​line
18​ of ​ModuleManager.sol​. These entries are not only invisible through a standard getter
functions of the contract's interface, but can also be added in a way that makes the state
entry unidentifiable and undecodable until it is activated through submitting a message
authorised through the owner's address or private key. Any unexplained state modification
that occurred as a result of a ​delegatecall​ is suspect, and results in a loss of transparency
regarding the contract's ownership. This means that any owner that hasn't taken part (at
least as an observer) in all of the contract's past calls can only verify the contract's
ownership structure after carefully examining all past state changes. This makes the
contract potentially ill-suited for use cases where dynamic ownership is expected: as this
burden of verification could be relatively high.

2. Fragile code segment in StateChannelModule.sol can

lead to creation of reentrancy vulnerability in the future

Type:​ security​ ​/​ Severity: ​potential issue (fragile code)

checkHash()​ function call in ​StateChannelModule.sol​ on ​line 45​ is positioned in
between check that ensures identical call has not been already executed and state update
that marks the current call as executed, if there's an update to the ​checkHash()​ function or
the downstream functions in the future that introduces an external call to an untrusted
address, it will allow an attacker to re-enter the contract to execute the same call multiple
times. To prevent this possibility the call should be moved two lines down, under the state
update.

3​ G0 GROUP // GNOSIS SAFE V1.1.0

3. Safe transfer not used in DailyLimitModule.sol

Type:​ security​ ​/​ Severity: ​low

Safe transfer is not used for token transfers in the ​DailylimitModule​ contract, potentially
leading to certain malformed tokens being incorrectly marked as spent for the day even if
no actual transfer occurred.

4. Notes on deployment

Type:​ note

It's necessary to ensure that masterCopies aren’t controlled by anyone, and can't be
maliciously ​selfdestructed​ or replaced (via create2). This has to be achieved by correct
deployment. Ideally, this would be easily verifiable by users. In the case of the current
iteration of the safe contract, users would verify that the provided masterCopy was setup
without: accessible owners (e.g. Gnosis intends to use 0x02 & 0x03), any modules, or
fallback manager set. This ensures no further transactions will be executed on said
deployment, since the ownership of the safe has been given to inaccessible accounts; and
that no unexpected state changes occurred during setup. In general, specific attention
should be paid to masterCopies which have the ability to make arbitrary delegate calls: to
ensure that this functionality is not accessible to potential attackers.

5. In SocialRecoveryModule.sol, an identically configured

recovery can't be executed multiple times

Type:​ usability

In the unlikely event that an identical owner replacement needs to be executed multiple
times, it isn't possible to do it directly in the current version of the contract: it has to be
done through an intermediate address because of the implemented protections against
replay attacks.

6. Note on hardcoded storage addresses

Type:​ note

It's important for users to verify that any hard-coded storage address like the one in
FallbackManager​ is generated in a way that precludes intentional collision with a storage
slot that is used by another state variable. The employed technique of hashing english
strings seems like a good way to ensure that.

4​ G0 GROUP // GNOSIS SAFE V1.1.0

