// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Optimized sorts and operations for sorted arrays.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Sort.sol)
library LibSort {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      INSERTION SORT                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // - Faster on small arrays (32 or lesser elements).
    // - Faster on almost sorted arrays.
    // - Smaller bytecode.
    // - May be suitable for view functions intended for off-chain querying.

    /// @dev Sorts the array in-place with insertion sort.
    function insertionSort(uint256[] memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let n := mload(a) // Length of `a`.
            mstore(a, 0) // For insertion sort's inner loop to terminate.
            let h := add(a, shl(5, n)) // High slot.
            let s := 0x20
            let w := not(0x1f)
            for { let i := add(a, s) } 1 {} {
                i := add(i, s)
                if gt(i, h) { break }
                let k := mload(i) // Key.
                let j := add(i, w) // The slot before the current slot.
                let v := mload(j) // The value of `j`.
                if iszero(gt(v, k)) { continue }
                for {} 1 {} {
                    mstore(add(j, s), v)
                    j := add(j, w) // `sub(j, 0x20)`.
                    v := mload(j)
                    if iszero(gt(v, k)) { break }
                }
                mstore(add(j, s), k)
            }
            mstore(a, n) // Restore the length of `a`.
        }
    }

    /// @dev Sorts the array in-place with insertion sort.
    function insertionSort(int256[] memory a) internal pure {
        _flipSign(a);
        insertionSort(_toUints(a));
        _flipSign(a);
    }

    /// @dev Sorts the array in-place with insertion sort.
    function insertionSort(address[] memory a) internal pure {
        insertionSort(_toUints(a));
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      INTRO-QUICKSORT                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // - Faster on larger arrays (more than 32 elements).
    // - Robust performance.
    // - Larger bytecode.

    /// @dev Sorts the array in-place with intro-quicksort.
    function sort(uint256[] memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let s := 0x20
            let n := mload(a) // Length of `a`.
            mstore(a, 0) // For insertion sort's inner loop to terminate.

            // Let the stack be the start of the free memory.
            let stack := mload(0x40)

            for {} iszero(lt(n, 2)) {} {
                // Push `l` and `h` to the stack.
                // The `shl` by 5 is equivalent to multiplying by `0x20`.
                let l := add(a, s)
                let h := add(a, shl(5, n))

                let j := l
                // forgefmt: disable-next-item
                for {} iszero(or(eq(j, h), gt(mload(j), mload(add(j, s))))) {} {
                    j := add(j, s)
                }
                // If the array is already sorted.
                if eq(j, h) { break }

                j := h
                // forgefmt: disable-next-item
                for {} iszero(gt(mload(j), mload(add(j, w)))) {} {
                    j := add(j, w) // `sub(j, 0x20)`.
                }
                // If the array is reversed sorted.
                if eq(j, l) {
                    for {} 1 {} {
                        let t := mload(l)
                        mstore(l, mload(h))
                        mstore(h, t)
                        h := add(h, w) // `sub(h, 0x20)`.
                        l := add(l, s)
                        if iszero(lt(l, h)) { break }
                    }
                    break
                }

                // Push `l` and `h` onto the stack.
                mstore(stack, l)
                mstore(add(stack, s), h)
                stack := add(stack, 0x40)
                break
            }

            for { let stackBottom := mload(0x40) } iszero(eq(stack, stackBottom)) {} {
                // Pop `l` and `h` from the stack.
                stack := sub(stack, 0x40)
                let l := mload(stack)
                let h := mload(add(stack, s))

                // Do insertion sort if `h - l <= 0x20 * 12`.
                // Threshold is fine-tuned via trial and error.
                if iszero(gt(sub(h, l), 0x180)) {
                    // Hardcode sort the first 2 elements.
                    let i := add(l, s)
                    if iszero(lt(mload(l), mload(i))) {
                        let t := mload(i)
                        mstore(i, mload(l))
                        mstore(l, t)
                    }
                    for {} 1 {} {
                        i := add(i, s)
                        if gt(i, h) { break }
                        let k := mload(i) // Key.
                        let j := add(i, w) // The slot before the current slot.
                        let v := mload(j) // The value of `j`.
                        if iszero(gt(v, k)) { continue }
                        for {} 1 {} {
                            mstore(add(j, s), v)
                            j := add(j, w)
                            v := mload(j)
                            if iszero(gt(v, k)) { break }
                        }
                        mstore(add(j, s), k)
                    }
                    continue
                }
                // Pivot slot is the average of `l` and `h`.
                let p := add(shl(5, shr(6, add(l, h))), and(31, l))
                // Median of 3 with sorting.
                {
                    function swap(a_, b_) -> _b, _a {
                        _b := a_
                        _a := b_
                    }
                    let e0 := mload(l)
                    let e1 := mload(h)
                    if iszero(lt(e0, e1)) { e1, e0 := swap(e0, e1) }
                    let e2 := mload(p)
                    if iszero(lt(e2, e1)) { e2, e1 := swap(e1, e2) }
                    if iszero(lt(e0, e2)) { e2, e0 := swap(e0, e2) }
                    mstore(p, e2)
                    mstore(h, e1)
                    mstore(l, e0)
                }
                // Hoare's partition.
                {
                    // The value of the pivot slot.
                    let x := mload(p)
                    p := h
                    for { let i := l } 1 {} {
                        for {} 1 {} {
                            i := add(i, s)
                            if iszero(gt(x, mload(i))) { break }
                        }
                        let j := p
                        for {} 1 {} {
                            j := add(j, w)
                            if iszero(lt(x, mload(j))) { break }
                        }
                        p := j
                        if iszero(lt(i, p)) { break }
                        // Swap slots `i` and `p`.
                        let t := mload(i)
                        mstore(i, mload(p))
                        mstore(p, t)
                    }
                }
                // If slice on right of pivot is non-empty, push onto stack.
                {
                    mstore(stack, add(p, s))
                    // Skip `mstore(add(stack, 0x20), h)`, as it is already on the stack.
                    stack := add(stack, shl(6, lt(add(p, s), h)))
                }
                // If slice on left of pivot is non-empty, push onto stack.
                {
                    mstore(stack, l)
                    mstore(add(stack, s), p)
                    stack := add(stack, shl(6, gt(p, l)))
                }
            }
            mstore(a, n) // Restore the length of `a`.
        }
    }

    /// @dev Sorts the array in-place with intro-quicksort.
    function sort(int256[] memory a) internal pure {
        _flipSign(a);
        sort(_toUints(a));
        _flipSign(a);
    }

    /// @dev Sorts the array in-place with intro-quicksort.
    function sort(address[] memory a) internal pure {
        sort(_toUints(a));
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  OTHER USEFUL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance, the `uniquifySorted` methods will not revert if the
    // array is not sorted -- it will simply remove consecutive duplicate elements.

    /// @dev Removes duplicate elements from a ascendingly sorted memory array.
    function uniquifySorted(uint256[] memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            // If the length of `a` is greater than 1.
            if iszero(lt(mload(a), 2)) {
                let x := add(a, 0x20)
                let y := add(a, 0x40)
                let end := add(a, shl(5, add(mload(a), 1)))
                for {} 1 {} {
                    if iszero(eq(mload(x), mload(y))) {
                        x := add(x, 0x20)
                        mstore(x, mload(y))
                    }
                    y := add(y, 0x20)
                    if eq(y, end) { break }
                }
                mstore(a, shr(5, sub(x, a)))
            }
        }
    }

    /// @dev Removes duplicate elements from a ascendingly sorted memory array.
    function uniquifySorted(int256[] memory a) internal pure {
        uniquifySorted(_toUints(a));
    }

    /// @dev Removes duplicate elements from a ascendingly sorted memory array.
    function uniquifySorted(address[] memory a) internal pure {
        uniquifySorted(_toUints(a));
    }

    /// @dev Returns whether `a` contains `needle`, and the index of `needle`.
    /// `index` precedence: equal to > nearest before > nearest after.
    function searchSorted(uint256[] memory a, uint256 needle)
        internal
        pure
        returns (bool found, uint256 index)
    {
        (found, index) = _searchSorted(a, needle, 0);
    }

    /// @dev Returns whether `a` contains `needle`, and the index of `needle`.
    /// `index` precedence: equal to > nearest before > nearest after.
    function searchSorted(int256[] memory a, int256 needle)
        internal
        pure
        returns (bool found, uint256 index)
    {
        (found, index) = _searchSorted(_toUints(a), uint256(needle), 1 << 255);
    }

    /// @dev Returns whether `a` contains `needle`, and the index of `needle`.
    /// `index` precedence: equal to > nearest before > nearest after.
    function searchSorted(address[] memory a, address needle)
        internal
        pure
        returns (bool found, uint256 index)
    {
        (found, index) = _searchSorted(_toUints(a), uint256(uint160(needle)), 0);
    }

    /// @dev Reverses the array in-place.
    function reverse(uint256[] memory a) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(mload(a), 2)) {
                let s := 0x20
                let w := not(0x1f)
                let h := add(a, shl(5, mload(a)))
                for { a := add(a, s) } 1 {} {
                    let t := mload(a)
                    mstore(a, mload(h))
                    mstore(h, t)
                    h := add(h, w)
                    a := add(a, s)
                    if iszero(lt(a, h)) { break }
                }
            }
        }
    }

    /// @dev Reverses the array in-place.
    function reverse(int256[] memory a) internal pure {
        reverse(_toUints(a));
    }

    /// @dev Reverses the array in-place.
    function reverse(address[] memory a) internal pure {
        reverse(_toUints(a));
    }

    /// @dev Returns whether the array is sorted in ascending order.
    function isSorted(uint256[] memory a) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(mload(a), 2)) {
                let end := add(a, shl(5, mload(a)))
                for { a := add(a, 0x20) } 1 {} {
                    let p := mload(a)
                    a := add(a, 0x20)
                    result := iszero(gt(p, mload(a)))
                    if iszero(mul(result, xor(a, end))) { break }
                }
            }
        }
    }

    /// @dev Returns whether the array is sorted in ascending order.
    function isSorted(int256[] memory a) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(mload(a), 2)) {
                let end := add(a, shl(5, mload(a)))
                for { a := add(a, 0x20) } 1 {} {
                    let p := mload(a)
                    a := add(a, 0x20)
                    result := iszero(sgt(p, mload(a)))
                    if iszero(mul(result, xor(a, end))) { break }
                }
            }
        }
    }

    /// @dev Returns whether the array is sorted in ascending order.
    function isSorted(address[] memory a) internal pure returns (bool result) {
        result = isSorted(_toUints(a));
    }

    /// @dev Returns whether the array is strictly ascending (sorted and uniquified).
    function isSortedAndUniquified(uint256[] memory a) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(mload(a), 2)) {
                let end := add(a, shl(5, mload(a)))
                for { a := add(a, 0x20) } 1 {} {
                    let p := mload(a)
                    a := add(a, 0x20)
                    result := lt(p, mload(a))
                    if iszero(mul(result, xor(a, end))) { break }
                }
            }
        }
    }

    /// @dev Returns whether the array is strictly ascending (sorted and uniquified).
    function isSortedAndUniquified(int256[] memory a) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(mload(a), 2)) {
                let end := add(a, shl(5, mload(a)))
                for { a := add(a, 0x20) } 1 {} {
                    let p := mload(a)
                    a := add(a, 0x20)
                    result := slt(p, mload(a))
                    if iszero(mul(result, xor(a, end))) { break }
                }
            }
        }
    }

    /// @dev Returns whether the array is strictly ascending (sorted and uniquified).
    function isSortedAndUniquified(address[] memory a) internal pure returns (bool result) {
        result = isSortedAndUniquified(_toUints(a));
    }

    /// @dev Returns the sorted set difference of `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function difference(uint256[] memory a, uint256[] memory b)
        internal
        pure
        returns (uint256[] memory c)
    {
        c = _difference(a, b, 0);
    }

    /// @dev Returns the sorted set difference between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function difference(int256[] memory a, int256[] memory b)
        internal
        pure
        returns (int256[] memory c)
    {
        c = _toInts(_difference(_toUints(a), _toUints(b), 1 << 255));
    }

    /// @dev Returns the sorted set difference between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function difference(address[] memory a, address[] memory b)
        internal
        pure
        returns (address[] memory c)
    {
        c = _toAddresses(_difference(_toUints(a), _toUints(b), 0));
    }

    /// @dev Returns the sorted set intersection between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function intersection(uint256[] memory a, uint256[] memory b)
        internal
        pure
        returns (uint256[] memory c)
    {
        c = _intersection(a, b, 0);
    }

    /// @dev Returns the sorted set intersection between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function intersection(int256[] memory a, int256[] memory b)
        internal
        pure
        returns (int256[] memory c)
    {
        c = _toInts(_intersection(_toUints(a), _toUints(b), 1 << 255));
    }

    /// @dev Returns the sorted set intersection between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function intersection(address[] memory a, address[] memory b)
        internal
        pure
        returns (address[] memory c)
    {
        c = _toAddresses(_intersection(_toUints(a), _toUints(b), 0));
    }

    /// @dev Returns the sorted set union of `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function union(uint256[] memory a, uint256[] memory b)
        internal
        pure
        returns (uint256[] memory c)
    {
        c = _union(a, b, 0);
    }

    /// @dev Returns the sorted set union of `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function union(int256[] memory a, int256[] memory b)
        internal
        pure
        returns (int256[] memory c)
    {
        c = _toInts(_union(_toUints(a), _toUints(b), 1 << 255));
    }

    /// @dev Returns the sorted set union between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function union(address[] memory a, address[] memory b)
        internal
        pure
        returns (address[] memory c)
    {
        c = _toAddresses(_union(_toUints(a), _toUints(b), 0));
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Reinterpret cast to an uint256 array.
    function _toUints(int256[] memory a) private pure returns (uint256[] memory casted) {
        /// @solidity memory-safe-assembly
        assembly {
            casted := a
        }
    }

    /// @dev Reinterpret cast to an uint256 array.
    function _toUints(address[] memory a) private pure returns (uint256[] memory casted) {
        /// @solidity memory-safe-assembly
        assembly {
            // As any address written to memory will have the upper 96 bits
            // of the word zeroized (as per Solidity spec), we can directly
            // compare these addresses as if they are whole uint256 words.
            casted := a
        }
    }

    /// @dev Reinterpret cast to an int array.
    function _toInts(uint256[] memory a) private pure returns (int256[] memory casted) {
        /// @solidity memory-safe-assembly
        assembly {
            casted := a
        }
    }

    /// @dev Reinterpret cast to an address array.
    function _toAddresses(uint256[] memory a) private pure returns (address[] memory casted) {
        /// @solidity memory-safe-assembly
        assembly {
            casted := a
        }
    }

    /// @dev Converts an array of signed integers to unsigned
    /// integers suitable for sorting or vice versa.
    function _flipSign(int256[] memory a) private pure {
        /// @solidity memory-safe-assembly
        assembly {
            let w := shl(255, 1)
            for { let end := add(a, shl(5, mload(a))) } iszero(eq(a, end)) {} {
                a := add(a, 0x20)
                mstore(a, add(mload(a), w))
            }
        }
    }

    /// @dev Returns whether `a` contains `needle`, and the index of `needle`.
    /// `index` precedence: equal to > nearest before > nearest after.
    function _searchSorted(uint256[] memory a, uint256 needle, uint256 signed)
        private
        pure
        returns (bool found, uint256 index)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0)
            let l := 1
            let h := mload(a)
            let t := 0
            for { needle := add(signed, needle) } 1 {} {
                index := shr(1, add(l, h))
                t := add(signed, mload(add(a, shl(5, index))))
                if or(gt(l, h), eq(t, needle)) { break }
                // Decide whether to search the left or right half.
                if iszero(gt(needle, t)) {
                    h := add(index, w)
                    continue
                }
                l := add(index, 1)
            }
            // `index` will be zero in the case of an empty array,
            // or when the value is less than the smallest value in the array.
            found := eq(t, needle)
            t := iszero(iszero(index))
            index := mul(add(index, w), t)
            found := and(found, t)
        }
    }

    /// @dev Returns the sorted set difference of `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function _difference(uint256[] memory a, uint256[] memory b, uint256 signed)
        private
        pure
        returns (uint256[] memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let s := 0x20
            let aEnd := add(a, shl(5, mload(a)))
            let bEnd := add(b, shl(5, mload(b)))
            c := mload(0x40) // Set `c` to the free memory pointer.
            a := add(a, s)
            b := add(b, s)
            let k := c
            for {} iszero(or(gt(a, aEnd), gt(b, bEnd))) {} {
                let u := mload(a)
                let v := mload(b)
                if iszero(xor(u, v)) {
                    a := add(a, s)
                    b := add(b, s)
                    continue
                }
                if iszero(lt(add(u, signed), add(v, signed))) {
                    b := add(b, s)
                    continue
                }
                k := add(k, s)
                mstore(k, u)
                a := add(a, s)
            }
            for {} iszero(gt(a, aEnd)) {} {
                k := add(k, s)
                mstore(k, mload(a))
                a := add(a, s)
            }
            mstore(c, shr(5, sub(k, c))) // Store the length of `c`.
            mstore(0x40, add(k, s)) // Allocate the memory for `c`.
        }
    }

    /// @dev Returns the sorted set intersection between `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function _intersection(uint256[] memory a, uint256[] memory b, uint256 signed)
        private
        pure
        returns (uint256[] memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let s := 0x20
            let aEnd := add(a, shl(5, mload(a)))
            let bEnd := add(b, shl(5, mload(b)))
            c := mload(0x40) // Set `c` to the free memory pointer.
            a := add(a, s)
            b := add(b, s)
            let k := c
            for {} iszero(or(gt(a, aEnd), gt(b, bEnd))) {} {
                let u := mload(a)
                let v := mload(b)
                if iszero(xor(u, v)) {
                    k := add(k, s)
                    mstore(k, u)
                    a := add(a, s)
                    b := add(b, s)
                    continue
                }
                if iszero(lt(add(u, signed), add(v, signed))) {
                    b := add(b, s)
                    continue
                }
                a := add(a, s)
            }
            mstore(c, shr(5, sub(k, c))) // Store the length of `c`.
            mstore(0x40, add(k, s)) // Allocate the memory for `c`.
        }
    }

    /// @dev Returns the sorted set union of `a` and `b`.
    /// Note: Behaviour is undefined if inputs are not sorted and uniquified.
    function _union(uint256[] memory a, uint256[] memory b, uint256 signed)
        private
        pure
        returns (uint256[] memory c)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let s := 0x20
            let aEnd := add(a, shl(5, mload(a)))
            let bEnd := add(b, shl(5, mload(b)))
            c := mload(0x40) // Set `c` to the free memory pointer.
            a := add(a, s)
            b := add(b, s)
            let k := c
            for {} iszero(or(gt(a, aEnd), gt(b, bEnd))) {} {
                let u := mload(a)
                let v := mload(b)
                if iszero(xor(u, v)) {
                    k := add(k, s)
                    mstore(k, u)
                    a := add(a, s)
                    b := add(b, s)
                    continue
                }
                if iszero(lt(add(u, signed), add(v, signed))) {
                    k := add(k, s)
                    mstore(k, v)
                    b := add(b, s)
                    continue
                }
                k := add(k, s)
                mstore(k, u)
                a := add(a, s)
            }
            for {} iszero(gt(a, aEnd)) {} {
                k := add(k, s)
                mstore(k, mload(a))
                a := add(a, s)
            }
            for {} iszero(gt(b, bEnd)) {} {
                k := add(k, s)
                mstore(k, mload(b))
                b := add(b, s)
            }
            mstore(c, shr(5, sub(k, c))) // Store the length of `c`.
            mstore(0x40, add(k, s)) // Allocate the memory for `c`.
        }
    }
}