
SHERLOCK SECURITY REVIEW FOR

Contest type: PublicPrepared for: OptimismPrepared by: SherlockLead Security Expert: TrustDates Audited: March 27 - April 4, 2024Prepared on: June 7, 2024
1

https://github.com/trust1995

Introduction
The first open source, permissionless, feature-complete fault proof system in theEthereum ecosystem.
ScopeRepository: ethereum-optimism/optimismBranch: developCommit: 5137f3b74c6ebcac4f0f5a118b0f4909df03aec6
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High4 0
Security experts who found valid issues
TrustGalloDaSballoMiloTruckobrontguhu95

Stiglitzlemonmonfibonacci0xdeadbeefzigtur
haxatronnirohgoctf_sectallobin2chen

1

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/README.md#audit-scope
https://github.com/trust1995
https://github.com/GalloDaSballo
https://github.com/MiloTruck
https://github.com/zobront
https://github.com/guhu95
https://github.com/bemic
https://github.com/lemonmon1984
https://github.com/0xf1b0
https://github.com/0xdeadbeef0x
https://github.com/zigtur
https://github.com/haxatron
https://github.com/nirohgo
https://github.com/ctf-sec
https://github.com/talllo
https://github.com/bin2chen66

Issue M-1: Incorrect game type can be proven and final-ized due to unsafe cast
Source:https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84
Found byStiglitz, guhu95, lemonmon, obront
SummaryThe gameProxy.gameType().raw() conversions used by OptimismPortal2 in theproving and finalization steps incorrectly casts the gameType to a uint8 instead of a
uint32, which causes mismatched game types to be considered equivalent. In theevent that a game is exploitable, this can be used to skirt around the off-chainmonitoring to finalize an invalid withdrawal.
Vulnerability DetailEach game can be queried for its gameType, which is compared to the current
respectedGameType in the Portal to confirm the game is valid.GameType is represented as a uint32, allowing numbers up to 2 ** 32 - 1.
type GameType is uint32;

However, when converting the GameType to an integer type in order to performcomparisons in the proving and finalization process, we unsafely downcase to a
uint8:
function raw(GameType _gametype) internal pure returns (uint8 gametype_) {

assembly {
gametype_ := _gametype

}
}

This means that for any oldGameType % 256 == X, any newGameType % 256 == X willbe considered the same game type.This has the potential to shortcut the safeguards to allowmalicious games to befinalized.As is explained in the comments, only games of the current respectedGameType willbe watched by the off-chain challenger. This is why we do not allow games that
2

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84

pre-date the last update to be finalized:// The game must have been created after respectedGameTypeUpdatedAt.This is to prevent users from creating // invalid disputes against adeployed game type while the off-chain challenge agents are notwatching.However, the watcher will not be watching games where gameType % 256 ==
respectedGameType % 256.Let's imagine a situation where game type 0 has been deemed unsafe. It is wellknown that a user can force a DEFENDER_WINS state, even when it is not correct.At a future date, when the current game type is 256, a user creates a game with
gameType = 0. It is not watched by the off chain challenger. This game can be usedto prove an invalid state, and then finalize their withdrawal, all while not beingwatched by the off chain monitoring system.
Proof of ConceptThe following proof of concept can be added to its own file in test/L1 todemonstrate the vulnerability:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Test } from "forge-std/Test.sol";
import "./OptimismPortal2.t.sol";

contract UnsafeDowncastTest is CommonTest {
// Reusable default values for a test withdrawal
Types.WithdrawalTransaction _defaultTx;
bytes32 _stateRoot;
bytes32 _storageRoot;
bytes32 _outputRoot;
bytes32 _withdrawalHash;
bytes[] _withdrawalProof;
Types.OutputRootProof internal _outputRootProof;

// Use a constructor to set the storage vars above, so as to minimize the
number of ffi calls.,!

function setUp() public override {
super.enableFaultProofs();
super.setUp();

_defaultTx = Types.WithdrawalTransaction({
nonce: 0,

3

sender: alice,
target: bob,
value: 100,
gasLimit: 100_000,
data: hex""

});
// Get withdrawal proof data we can use for testing.
(_stateRoot, _storageRoot, _outputRoot, _withdrawalHash,

_withdrawalProof) =,!

ffi.getProveWithdrawalTransactionInputs(_defaultTx);

// Setup a dummy output root proof for reuse.
_outputRootProof = Types.OutputRootProof({

version: bytes32(uint256(0)),
stateRoot: _stateRoot,
messagePasserStorageRoot: _storageRoot,
latestBlockhash: bytes32(uint256(0))

});

// Fund the portal so that we can withdraw ETH.
vm.deal(address(optimismPortal2), 0xFFFFFFFF);

}

function testWrongGameTypeSucceeds() external {
// we start with respected gameType == 256
vm.prank(superchainConfig.guardian());
optimismPortal2.setRespectedGameType(GameType.wrap(256));

// create a game with gameType == 0, which we know is exploitable
FaultDisputeGame game = FaultDisputeGame(

payable(
address(

disputeGameFactory.create(
GameType.wrap(0), Claim.wrap(_outputRoot),

abi.encode(uint(0xFF)),!

)
)

)
);

// proving works, even though gameType is incorrect
vm.warp(block.timestamp + 1);
optimismPortal2.proveWithdrawalTransaction({

_tx: _defaultTx,
_disputeGameIndex: disputeGameFactory.gameCount() - 1,
_outputRootProof: _outputRootProof,
_withdrawalProof: _withdrawalProof

4

});

// warp beyond the game duration and resolve the game
vm.warp(block.timestamp + 4 days);
game.resolveClaim(0);
game.resolve();

// warp another 4 days so withdrawal can be finalized
vm.warp(block.timestamp + 4 days);

// finalizing works, even though gameType is incorrect
uint beforeBal = bob.balance;
optimismPortal2.finalizeWithdrawalTransaction(_defaultTx);
assertEq(bob.balance, beforeBal + 100);

}
}

ImpactThe user is able to prove and finalize their withdrawal against a game that is notbeing watched and is known to be invalid. This would allow them to prove arbitrarywithdrawals and steal all funds in the Portal.
Code Snippethttps://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500
Tool usedManual Review
Recommendation
- function raw(GameType _gametype) internal pure returns (uint8 gametype_) {
+ function raw(GameType _gametype) internal pure returns (uint32 gametype_) {

assembly {
gametype_ := _gametype

5

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500

}
}

DiscussionsmartcontractsWe see this as a valid medium severity issuesherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/ethereum-optimism/optimism/pull/10152nevillehuangBased on scope highlighted below (issue exists and affects portal contract, whichis a non-game contract) and sherlock scoping ruleshttps://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit2. In case the vulnerability exists in a library and an in-scope contractuses it and is affected by this bug this is a valid issue.I believe this is a medium severity issue given the following constraints:• At least 256 games must exist in a single game type• This issue doesn't bypass the airgap/Delayed WETH safety net, so can still bemonitored off-chain to trigger a fallback mechanism to pause the system andupdate the respected game type if a game resolves incorrectly.zobrontEscalateI believe this issue should be judged as High Severity.The purpose of this contest was to examine the safeguards that could lead to thecatastrophic consequences of having an invalid fault proof accepted. We weregiven the constraints of assuming the game is buggy. This means that (a) none ofthose issues were accepted, but also that (b) issues that would arise IF the systemwere very buggy are valid.This is the only issue in the contest that poses this extreme risk.While it has the condition that 255 other games are created, based on theassumption that the game is buggy, it doesn't seem out of the question that a largenumber of additional game types would need to be deployed. This is the onlyrequirement for this issue to be exploitable (counter to what the judge mentioned
6

https://github.com/ethereum-optimism/optimism/pull/10152
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit

above), because Optimism's off chain watcher only watches the currently activegame).More importantly, in the event that this happens, the consequences arecatastrophic. A game that is (a) not being watched and (b) known to be buggy, isaccepted as valid (both in the proving step of withdrawal and the finalization stepof withdrawal).This leads to a very real, very extreme risk of a fraudulent withdrawal gettingthrough the system.With the constraints of the contest in mind (assuming the game is buggy), as wellas the potential billions of dollars of lost funds that could occur, I believe this is theexact kind of issue that was crucial to find, and clearly fits the criteria for HighSeverity.sherlock-admin2EscalateI believe this issue should be judged as High Severity.The purpose of this contest was to examine the safeguards that couldlead to the catastrophic consequences of having an invalid fault proofaccepted. We were given the constraints of assuming the game is buggy.This means that (a) none of those issues were accepted, but also that (b)issues that would arise IF the system were very buggy are valid.This is the only issue in the contest that poses this extreme risk.While it has the condition that 255 other games are created, based onthe assumption that the game is buggy, it doesn't seem out of thequestion that a large number of additional game types would need to bedeployed. This is the only requirement for this issue to be exploitable(counter to what the judge mentioned above), because Optimism's offchain watcher only watches the currently active game).More importantly, in the event that this happens, the consequences arecatastrophic. A game that is (a) not being watched and (b) known to bebuggy, is accepted as valid (both in the proving step of withdrawal andthe finalization step of withdrawal).This leads to a very real, very extreme risk of a fraudulent withdrawalgetting through the system.With the constraints of the contest in mind (assuming the game isbuggy), as well as the potential billions of dollars of lost funds that couldoccur, I believe this is the exact kind of issue that was crucial to find, andclearly fits the criteria for High Severity.
7

You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.guhu95Three additional points to support the escalation in favor of high:1. There isn't a constraint of 256 prior games due to use of non-sequential gametypes.2. DoS impact that is caused by the mitigation actions qualifies for high severity.3. Off-chain monitoring for this issue is not plausible without prior knowledge ofthe issue.
1. Games types are not sequential"- At least 256 games must exist in a single game type""While it has the condition that 255 other games are created"This appears to be neither a constraint nor a condition:1. setImplementation does not require sequential game type values.2. The 3 already defined GameTypes are not sequential: 0, 1, and 255, and allare configured in the same factory during deployment.3. The further use of non-sequential game types is highly likely due to"namespacing" via higher order bits, as is already done with predeployaddresses (0x42...01), and with their implementation addresses (0xc0de...01)etc. This kind of namespacing will result in many exploitable collisions.
2. The DoS impact of mitigation qualifies as high...to pause the system and update the respected game type if a gameresolves incorrectly.Switching the respected game type pauses the bridge for a significant amount oftime qualifying as a DoS issue for the valid withdrawals delayed by the mitigation.The DoS impact for a valid withdrawal that would otherwise be finalizable is wellover one week:1. Off-chain monitoring needs to detect the suspicious WithdrawalProven thatwas not expected. The issue needs to be validated to require pausing (SLA of24 hours).

8

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189-L192
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L104-L111
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/scripts/Deploy.s.sol#L327-L329

2. A new implementation of the dispute game, with a new game type value, and the new anchor registry (which are immutable) will need to be deployed.3. The factory will need to beupdated by the owner (SLA of 72 hours) to include the new implementation.4. The respected game type for the portal would need to be updated byguardian (SLA of 24 hours).5. New dispute games will need to be created by proposers for the withdrawalsbacklog caused by the delays.6. Only after all these steps the re-proving for previously valid withdrawals forpreviously valid games can be restarted, and would require waiting at least 7days from the point of unpausing.Because this blocks all cross-chain interactions on the bridge for a prolongedperiod of time, and delays message passing, it blocks all cross-chain protocolsoperating across this bridge (including their time-sensitive operations) and not onlylocks up funds.
3. Off-chain monitoring is conditional on knowing of this issue• This issue doesn't bypass the airgap/Delayed WETH safety net, socan still be monitored off-chain to trigger a fallback mechanismWhile it is theoretically possible to monitor for this off-chain, it is unlikely to result inthis action without knowledge of this vulnerability. This is because a creation ofnew instance of an old game, that is no longer "respected" by the portal, should notraise cause for concern (if the issue is unknown at that point).trust1995EscalateFirstly, the finding is brilliant and extremely well noticed by the participants. In mymind, the finding falls under Low severity, with the reasoning below:• As far as devs are concerned, there are a maximum of 256 game types. Thebug is an unsynchronized view between the underlying structure and thedefinition of GameType as uint32. All evidence points to the fact Optimism did

not plan to make use of over 256 game types.• From a practical standpoint, even if over 256 game types were planned to besupported, to get to such a high amount of different game types is extremelyunlikely (as of now, three are planned). The odds of the architecture notgetting refactored, closing the issue, by the time 256 game types are needed,I estimate to be under a thousandth of a percent.• For there to be an impact, the following must hold:
9

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L46-L52
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L46-L52
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L448-L449
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L48

• A new, vulnerable game type must be defined (highly hypothetical) after 256game types.• It's encoding suffix must line up with the respectedGameId set by the admin• All honest challengers must not look at the vulnerable game type, despite thefact that challenging it is +EV (they are guaranteed to pick up the attacker'sbond if the claim is invalid)• The airgap is not bypassed - At any the guardian is able to blacklist the gameand make it unfinalizable. This reason caused for dozens of issues in thiscontest to be invalidated, and not applying it for this bug is inconsistent andshows unsound logic.sherlock-admin2EscalateFirstly, the finding is brilliant and extremely well noticed by theparticipants. In my mind, the finding falls under Low severity, with thereasoning below:• As far as devs are concerned, there are a maximum of 256 gametypes. The bug is an unsynchronized view between the underlyingstructure and the definition of GameType as uint32. All evidencepoints to the fact Optimism did not plan to make use of over 256game types.• From a practical standpoint, even if over 256 game types wereplanned to be supported, to get to such a high amount of differentgame types is extremely unlikely (as of now, three are planned). Theodds of the architecture not getting refactored, closing the issue, bythe time 256 game types are needed, I estimate to be under athousandth of a percent.• For there to be an impact, the following must hold:• A new, vulnerable game type must be defined (highly hypothetical)after 256 game types.• It's encoding suffix must line up with the respectedGameId set by theadmin• All honest challengers must not look at the vulnerable game type,despite the fact that challenging it is +EV (they are guaranteed topick up the attacker's bond if the claim is invalid)• The airgap is not bypassed - At any the guardian is able to blacklistthe game and make it unfinalizable. This reason caused for dozens
10

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L48

of issues in this contest to be invalidated, and not applying it for thisbug is inconsistent and shows unsound logic.The escalation could not be created because you are not exceeding the escalationthreshold.You can view the required number of additional valid issues/judging contestpayouts in your Profile page, in the Sherlock webapp.guhu95@trust1995 the main argument you present (sequential game types constraint onlikelihood) is refuted by the evidence in my message above yours (see "1. Games
types are not sequential")Would you mind specifying what part of the reasoning or evidence you agree anddisagree with?There are more details and links above, but for your convenience these are: 1.Setter doesn't require sequential numbers. 2. The three existing games arenon-sequential (1, 2, 255) and are all added to the factory on deployment. 3.Namespacing via higher bits is already prevalent in the codebase and makes this ahighly probable scenario.trust1995The game types defined below follow a common pattern where the upper value isset as a placeholder for a safe non-production value. It's clearly not meant toassume they do skipping as a policy, and any experienced developer can confirmthe intention is to keep running from 0,1, up to 255.
library GameTypes {

/// @dev A dispute game type the uses the cannon vm.
GameType internal constant CANNON = GameType.wrap(0);
/// @dev A permissioned dispute game type the uses the cannon vm.
GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
/// @notice A dispute game type that uses an alphabet vm.
/// Not intended for production use.
GameType internal constant ALPHABET = GameType.wrap(255);

}

This is further confirmed by their docs which outline the intended structure of theGameID:
/// @notice A `GameId` represents a packed 1 byte game ID, an 11 byte timestamp,

and a 20 byte address.,!

/// @dev The packed layout of this type is as follows:
///
/// Bits Value

11

https://app.sherlock.xyz/audits/

///
/// [0, 8) Game Type
/// [8, 96) Timestamp
/// [96, 256) Address
///

It's very hard to look at these points of evidence and think there is any intention tohave more than 256 game types to be played. I realize the issue will be heavilydebated since a lot of money is on the line, so throwing this quote whichsummarizes escalations in a nutshell:“It is difficult to get a man to understand something, when his salarydepends on his not understanding it.” - Upton Sinclairguhu95the fact Optimism did not plan to make use of over 256 game typesany intention to have more than 256 game types to be playedthe intention is to keep running from 0,1, up to 255The project clearly decided (before this contest) that game types values higherthan 256 are needed. This is easy to see in these facts:1. They've previously (in Jan) refactored GameType from uint8 to uint32, leavingno room for doubt on this aspect.2. They've fixed the vulnerability as recommended instead of switching back to
uint8.3. They've accepted the finding as valid.The team's intention (and explicit previous switch) to use uint32 over uint8 clearlyshows the likelihood of using game types with values > 255. This removes thisincorrectly considered constraint.This finding justifies high severity for both the unconditionally broken key safetymechanism of respectedGameType allowing forged withdrawals, and the prolongedbridge DoS which would result from its mitigation.MightyFox3Issues predicted to arise from future integrations or updates, which aren'tdocumented in the current documentation or README, are not considered valid.For instance, although the audit currently includes only three game types, even ifthe number were to exceed 255 in future implementations, such scenarios arecategorized under future integrations.Future issues: Issues that result out of a futureintegration/implementation that was not mentioned in the docs/README

12

https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80
https://github.com/ethereum-optimism/optimism/pull/10152/commits/eba00dbb382f4323305401eaa99630f03f07dd12
https://docs.sherlock.xyz/audits/judging/judging

or because of a future change in the code (as a fix to another issue) arenot valid issues.Referencing the Optimism official dispute game documents, the game type isclearly defined as a uint8. This definition does not suggest any future expansionbeyond 255 game types, thereby rendering any inconsistencies between the codeand documents as minor and of low severity.bemicThe previous comment by @guhu95 seems to be a sufficient counterargument.Nevertheless, the fact that a 2-day-old github profile is part of the discussion isinteresting.trust1995The previous comment by @guhu95 seems to be a sufficientcounterargument. Nevertheless, the fact that a 2-day-old github profileis part of the discussion is interesting.You really will do anything to get the last answer in a thread, even with 0 content toadd except cringeworthy ad-hominem.bemicPardon, let me clarify.I do not find the argument "future integration/implementation/code change" to berelated. The problem stems from the current state of the codebase, where nochanges are necessary.As mentioned, few months ago the team made a very specific change to the codeusing a PR called "Bump GameType size to 32 bits", where they changed the typefrom uint8 to uint32. This clearly indicates that a number > 255 is expected.It is important to note again, that this does not necessarily mean more than 255games. Larger type can be used to encode different game types more categorically.You correctly pointed out that the documentation contains uint8. However, thedocumentation cannot be taken as a source of truth in cases like this one.Otherwise, projects can describe the correct and expected behavior in theirdocumentation and use the argument "inconsistencies between code and
documentation" as a reason to mark every problem as Low.guhu95Regarding:Issues predicted to arise from future integrations or updates, whicharen't documented in the current documentation or README, are notconsidered valid.

13

https://specs.optimism.io/experimental/fault-proof/stage-one/dispute-game-interface.html
https://docs.sherlock.xyz/audits/judging/judging

First, the game type is an argument of the both the game and the factory, so canhave any value depending on usage - so all uint32's possible 4294967296 valuesare fully in scope, and not only the specific 3 values. It's uint32, not an enum.Second, even if it was an enum, in this case the README explicitly allows "futureintegrations issues" for OptimismPortal2:Should potential issues, like broken assumptions about functionbehavior, be reported if they could pose risks in future integrations,even if they might not be an issue in the context of the scope? If yes,can you elaborate on properties/invariants that should hold?Yes, but this should be limited to the OptimismPortal2 contract.Contracts other than the OptimismPortal2 contract are not intended forexternal integrations and risks for future integrations into these contractswill likely not be considered valid.trust1995You correctly pointed out that the documentation contains uint8.However, the documentation cannot be taken as a source of truth incases like this one. Otherwise, projects can describe the correct andexpected behavior in their documentation and use the argument"inconsistencies between code and documentation" as a reason to markevery problem as Low.We've seen two strong points of evidence for source of truth - the in-codedocumentation of GameType and the docs page. On the other hand we see acommit bumping GameType to uint32, without adding any game types. It seemsspeculative to infer they plan to use larger values, contest rules state we need togive project the assumption of competence in cases like these. For impact to occur,the following has to occur:• Optimism must intend to creative game types of uint8• Future audits of the codebase with the new game type must miss a bug thatis directly in scope• The issue must be missed by the extremely detailed test suite ran by Optimism• The mismatched game type (the phantom game) must not be tracked, or musthave a second unrelated vulnerability allowing to use it for proofs• Finally the air-gap protections must be bypassed, a fact which reduced to Lowmany other submissions.First, the game type is an argument of the both the gameand the factory, so can have any value depending on usage - so all
uint32's possible 4294967296 values are fully in scope, and not onlythe specific 3 values. It's uint32, not an enum.

14

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L107
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://docs.soliditylang.org/en/v0.8.25/structure-of-a-contract.html#enum-types
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L107
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://docs.soliditylang.org/en/v0.8.25/structure-of-a-contract.html#enum-types

Nope, not anything that can be misconfigured by an admin can be viewed asin-scope. That's an indefensible statement which, if correct, would inflate anycontest by dozens of useless findings.nevillehuang1. It is not impossible to ever reach over 255 gametypes, given any possibleincorrect resolution logic will also force a game type upgrade, however Ibelieve the likelihood is low. Since the root cause is in a non-game contract,based on agreed upon scope and low likelihood, I believe medium severity isappropriate, as no safety mechanism is bypassed.2. I don't think we can assume the behavior of off-chain mechanisms here thatact as a safety mechanism, since it is explicitly mentioned as out of scope andthat such scenarios will always be monitored comprehensively.Off-chain mechanisms exist as part of the system but are not in scopefor this competition. Assume that comprehensive monitoring exists thatwill detect most obviously detectable malicious activity.zobront@nevillehuang Making sure you've seen this comment from OptimismPortal2:// The game must have been created after respectedGameTypeUpdatedAt.This is to prevent users from creating // invalid disputes against adeployed game type while the off-chain challenge agents are notwatching.You should check with the Optimism team about this if you're unclear. This situationis explicitly not being watched, and therefore is the exact kind of bypass this wholecontest was designed to detect.If they agree that this bypasses the safety mechanism, I can't see how this couldbe anything except High Severity.guhu95@nevillehuang in addition to the above consideration of off-chain watchers, pleasealso consider the DoS impact of mitigation described above inhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067.I am no expert on Sherlock rules, but to me the DoS impact appears to also qualifyfor high severity.MightyFox31. It is not impossible to ever reach over 255 gametypes, given anypossible incorrect resolution logic will also force a game typeupgrade, however I believe the likelihood is low. Since the root
15

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067

cause is in a non-game contract, based on agreed upon scope andlow likelihood, I believe medium severity is appropriate, as no safetymechanism is bypassed.2. I don't think we can assume the behavior of off-chain mechanismshere that act as a safety mechanism, since it is explicitly mentionedas out of scope and that such scenarios will always be monitoredcomprehensively.Off-chain mechanisms exist as part of the system but are not inscope for this competition. Assume that comprehensivemonitoring exists that will detect most obviously detectablemalicious activity.Only three games are currently implemented, even though there are over 255 gametypes planned for the future. This does not apply to the existing codebase. Thankyou.guhu951. It is not impossible to ever reach over 255 gametypes, given anypossible incorrect resolution logic will also force a game typeupgrade, however I believe the likelihood is low. Since the rootcause is in a non-game contract, based on agreed upon scope andlow likelihood@nevillehuang since it also might have been lost in the long discussion, I'd like topoint out again the fact the Optimismexplicitly decided to switch from uint8 to uint32. Would you not agree that thisdirectly establishes the likelihood as likely? Why would they switch from uint8 to
uint32 if they didn't consider it necessarily needed and therefore likely?Furthermore, as any value above max uint8 may trigger the bug, any "next" gamecan cause this, without having to go through 255 game types before that.Please reconsider your view of the likelihood of a game type with value > 255,especially given Optimism's explicit switch away from uint8.
To sum up, I see three independent arguments for high being presented:1. Possible bypass of safeguards as documented by the team, and pointed out inhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-20817334312. The likelihood argument discussed throughout the issue, but mostly summedup in https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2078702993 (and in the current comment)

16

https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081733431
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081733431
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2078702993
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2078702993

3. Severe and prolonged DoS due to mitigation as presented inhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067nevillehuang@guhu95This depends on 255 distinct unique gametype, NOT 255 FDG games of the sametype. My understanding is that to reach this point, an additional 250+ game typesmust have been introduced from new game types or game type switches (such asdue to resolution bug logic or any other game bug). The assumptions ofsequential/non-sequential gaming Ids can go both ways.I think the severity here comes down to whether or not the off-chain watchingmechanism is bypassed, which seems to be so as indicated by code commentshere implying so. There is conflicting statements per contest details stated here,that states off-chain mechanisms are out of scope and is assumed to becomprehensive enough. If the off-chain mechanism is confirmed to be bypassed,then I agree with high severity.guhu95@nevillehuangThis depends on 255 distinct unique gametypeMy understanding is that to reach this point, an additional 250+ gametypes must have been introducedPlease help me understand why all of 2..254 must be assumed to be used beforeusing any of the 256..4294967295 values.1. There's no requirement in the code for sequential game types.2. The existing code deploys the factory with 3 types that are already nonsequential: 0, 1, 255.3. A value like 0x4200, 0x1000 or 0x42000001, can be the very next game typeto be used. Such semantic "versioning" or "namespacing" is both highlypractical (reduces chances of errors) and already common (OP predeploys,chainIds, opcodes).4. If "using up" all first 256 games types would be the anticipated approach,there would be little need to deliberately switch from uint8 to uint32.Using all of 0..255 before ever touching the 256..4294967295 range seems like theleast likely scenario. It's like having a huge fridge, but insisting to keep crammingeverything into it's tiniest compartment (of just 0.0000059% of available space).nevillehuang
17

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L502-L503
https://github.com/sherlock-audit/2024-02-optimism-2024?tab=readme-ov-file#q-are-there-any-off-chain-mechanisms-or-off-chain-procedures-for-the-protocol-keeper-bots-arbitrage-bots-etc
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189-L192
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/scripts/Deploy.s.sol#L327-L329
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/core-utils/src/optimism/constants.ts#L21-L24

@guhu95 I can see your point, I just believe it has no relevance to considering theissues severity, and that the focus should be on whether the safety mechanismsare bypassed or not.trust1995I think the severity here comes down to whether or not the off-chainwatching mechanism is bypassed, which seems to be so as indicated bycode comments here implying so. There is conflicting statements percontest details stated here, that states off-chain mechanisms are out ofscope and is assumed to be comprehensive enough. If the off-chainmechanism is confirmed to be bypassed, then I agree with high severity.The statements are not conflicting. The rules state very clearly that off-chainmonitoring is OOS and assumed trustable. Airgaps must therefore come from thecode itself. The comment linked to explains an added validation step in the code,which is not bypassed. I would appreciate answers to the detailed argumentsraised here.0xjuaanThe following comments (referred to by @trust1995 previously) clearly state thatthe gameId will only be represented by 1 byte (the first 8 bits of the uint32). Fromthat, it can be concluded that the protocol does not intend to have more than 256different game types.Based on this documentation provided, casting from uint32 to uint8 is a safe andcorrect way to obtain the gameId.Doesn't this clearly make the submission invalid? Please let me know if I am missingsomething.Me and a lot of other people would have submitted this issue if it wasn't for thefollowing documentation in DisputeTypes.sol:

bemic.. gameId will only be represented by 1 byte (the first 8 bits of theuint32). .. casting from uint32 to uint8 is a safe and correct way to obtainthe gameId.

18

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L502-L503
https://github.com/sherlock-audit/2024-02-optimism-2024?tab=readme-ov-file#q-are-there-any-off-chain-mechanisms-or-off-chain-procedures-for-the-protocol-keeper-bots-arbitrage-bots-etc
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081118969

I see one fact wrong in your comment @0xjuaan. GameId is bytes32 (256 bits) not
uint32 (32 bits). The casting is performed on GameType which is uint32.We can see in the PR with the fix that casting and this part of in-codedocumentation was updated:
[0, 32) Game Type
[32, 96) Timestamp

0xjuaanOh ok yeah that makes sense (I got GameId and GameType mixed up). This is agreat finding in that case!thanks @bemic for clarifyingguhu95@nevillehuang the last part of that README sentence is important for thisdiscussion:Assume that comprehensive monitoring exists that will detect most
obviously detectable malicious activity.I understand "most obviously detectable" to mean that monitoring should beassumed thorough and reasonably scoped, but NOT all-seeing and all-validating.This "most obviously detectable" also resolves the conflict with the "while the

off-chain challenge agents are not watching" comment. It presumes "blindspots",like monitoring "all games all the time", that require on-chain logic, which was thefocus of the contest, and which this bug thoroughly breaks.To me this bug's impact is highly non-obvious and so has an unacceptable risk ofbypassing the safety measures.Evert0xLet me state some of the facts that this discussion highlightedIF the game types are sequential, 250+ new game types must be created beforethe bug gets triggered. ELSE, the game types are not sequential; the bug couldtrigger when the next game type is created.In both scenarios, the bug is only activated by a specific external condition,introducing new game type(s). This trigger condition is why I believe Mediumseverity should be assigned.
Also, for the recordAt the time of the audit, the following information was NOT KNOWN:

19

https://github.com/ethereum-optimism/optimism/pull/10152/files#diff-9df3153262863aa3e5fe876b5467474c0a3f69c24d5f659e372db11e081ab185

• If the team intends to deploy 250+ new game types• If the new game types are going to be deployed in a sequential wayThe following information was KNOWN• The three defined game types are 0, 1, and 255zobront@Evert0x I'm not sure how you think about likelihood vs severity, but for what it'sworth, I see this as:1) Agree that it's not extremely likely. I agree with @guhu95 that it is a clearpossibility based on the Optimism team's actions, but clearly isn't somethingthat would immediately be vulnerable.2) But the purpose of this contest is to make sure the safeguards are solidagainst all possible risks with the games, and all the external conditionsrequired for this to happen would come from games having issues. If thiscontest said "assume games can be exploited" (which is what disqualified somany other issues), that is the only assumption needed for this to bevulnerable.3) The outcome is not just "bad" but catastrophic: all could be stolen from theOptimismPortal (not including ERC20s in the Optimism bridge, plus all assetsbridged to Base, Blast, etc if they follow this upgrade).trust19952. If this contest said "assume games can be exploited" (which is whatdisqualified so many other issues), that is the only assumptionneeded for this to be vulnerable.Yet at the same breath, you don't bypass the airgap, which disqualified so manyother issues. Yes you can make the argument that off-chain setups would notnecessarily detect it, but I think that's a diversion tactic because since the dawn ofsecurity contests the scope was strictly on-chain security, which remains intact.zobrontThe airgap would be bypassed and all the funds from the bridge would bevulnerable.I’m not going to play definition games here. I’m talking about what would happen inreality with users funds.On Thu, May 2, 2024 at 10:52 AM Trust@.***> wrote:2. If this contest said "assume games can be exploited" (which is whatdisqualified so many other issues), that is the only assumptionneeded for this to be vulnerable.
20

https://etherscan.io/address/0x49048044d57e1c92a77f79988d21fa8faf74e97e

Yet at the same breath, you don't bypass the airgap, which disqualifiedso many other issues. Yes you can make the argument that off-chainsetups would not necessarily detect it, but I think that's a diversion tacticbecause since the dawn of security contests the scope was strictlyon-chain security, which remains intact.— Reply to this email directly, view it on GitHubhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2090865347, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4 . You arereceiving this because you were mentioned.Message ID:@.*** com>guhu95At the time of the audit, the following information was NOT KNOWN:• If the new game types are going to be deployed in a sequential wayIn my understanding, there is overwhelming evidence for non-sequential, so it was"known" at the time of the audit (and was detailed in my duplicate). Forgive me forreiterating that evidence:1. No requirement in the code.2. Exiting games already non sequential: 0, 1, 255.3. Values like 0x4200, 0x1000 or 0x42000001, are frequently used in practice.This semantic "versioning" or "namespacing" is both highly practical (reduceschances of errors) and already common (OP predeploys, chainIds, opcodes).4. If "sequential" would be the anticipated approach, there would be no need toswitch from uint8 to uint32.By analogy, "sequential", is like after upgrading to a huge new fridge, insisting tokeep cramming everything into it's tiniest compartment (of just 0.0000059% ofavailable space). It is overwhelmingly implausible.Given this evidence, non-sequential must be assumed, therefore is not an externalcondition, but the default assumption. Any new game type with last byte 0x00,0x01, or 0xff will collide with the existing ones.
@Evert0xI propose to amend the "known facts" like so:1. New game types are certain to be used. The current game implementation isnot final - it's assumed WIP at the time of the audit (to the point of being

21

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2090865347
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2090865347
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/core-utils/src/optimism/constants.ts#L21-L24
https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80

OOS), and the only way to use a new game implementation is via game types.2. The game types are overwhelmingly likely to be non-sequential.Evert0xIV. How to identify a high issue:1. Definite loss of funds without (extensive) limitations of externalconditions.This is the requirement for high. It's clear that this issue requires externalconditions to materialize.I don't disagree with the points you listed, but I don't see it as an argument toassign High Severity.zobront@Evert0x Just to make sure I understand your point: In a contest where the explicitinstructions were to assume that games could be broken, where any time a game isbroken it must be incremented by at least 1, you think it's a "extensive" limitationthat 256 games are reached?I'm not valuing the fact that the hack is in the billions of dollars at all (whichobviously should be weighted), but just on the definition above, I'm not positive Iunderstand your disagreement?guhu95@Evert0xI don't disagree with the points you listed, but I don't see it as anargument to assign High Severity.Thanks for recognizing my arguments. However, if you do agree withthat reasoning, it directly leads to these conclusions: 1) game types will definitelybe updated; 2) they definitely be updated such that the issue will happen after onlya handful of updates (between 1 and "a few"):• Even if we assume that game type will be updated initially once a month.• And the update increment is either +1 with 50%, or bump to new version with50%.• It means that the probability of the bug is 50% after one month, 75% after twomonths, ... 99.975% after one year. Such probabilities cannot be "extensivelimitations", and instead are "nearly certain".One may choose a different P(jump) and different bumps-in-first-year , but with 1
- [1 - P(jump)]ˆ(bumps-in-first-year) it's very difficult to justify numbers thatwill result in anything corresponding to "extensive limitation".

22

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2091870312

This not even considering that this can affect the OP stack (and not just Optimism),so affects up to already 19 (!?) rollups in its first year (with ~19B TVL). Thismultiplies the probability by the number of OP Stack rollups using this system.nevillehuangThis is information from the op handbookOff-chain monitoring can observe FaultDisputeGame contractresolutions and trigger a fallback mechanism to pause the system andupdate the respected game type if a game resolves incorrectly.The issue here is highlighting a possible bypass in the off-chain monitoringmentioned above because of a code comment highlighted of how it is presumablysupposed to work. But the contest details stated it is OOS.Off-chain mechanisms exist as part of the system but are not in scopefor this competition.My opinion is since there is still an issue arising from an inscope root cause thatresults in incorrect resolution and thus finalization of withdrawals but off-chainmonitoring mechanism is assumed to be comprehensive and not be bypassed,medium severity is appropriate since no airgap/safety mechanism is assumed to bebreachedzobront@nevillehuang I would agree with this if the issue discovered was in the off chainmechanisms (ie if the issue highlighted a fix that should be made to the offchainmechanisms).But that is not the case. The off chain piece behaves perfectly appropriately andexactly as documented. I am pointing out no fault in that part of the system.What I am pointing out is that as a result of this CORRECT behavior, the on chaincontract is highly vulnerable (airgap bypassed).off-chain monitoring mechanism is assumed to be comprehensiveI don't think this is right. When a part of the system is marked as out of scope, itmeans it is assumed to act correctly and according to its specifications. It doesn'tmean it is assumed to magically act in ways that it actually doesn't to save the daywhen the in scope system has an error.nevillehuang@zobront How would the airgap be bypassed when the off-chain monitoring ispresumed to have caught the incorrect resolution, where like you mentioned it
23

https://oplabs.notion.site/Public-OP-Stack-Fault-Proofs-Sherlock-Competition-Handbook-e4cfdf210a5c45c79230af19653163cc
https://l2beat.com/scaling/summary

means the off-chain monitoring mechanism is assumed to have acted correctly andaccording to its specifications?guhu95The full scope quote is this (emphasis mine):Assume that comprehensive monitoring exists that will detect MOSTOBVIOUSLY detectable malicious activity.It's "specification" is not that it will catch anything and everything.I this case, it will likely NOT bemonitoring the games that are NO LONGER beingused, since this is obviously not needed. Proving a withdrawal using a game that isno longer being used being the root cause of the issue here.This is further supported by this code comment that assumes games that are notcurrently being used are not being monitored.// The game must have been created afterrespectedGameTypeUpdatedAt. This is to prevent users from creating //invalid disputes against a deployed game type while the off-chainchallenge agents are not watching.zobrontIts specification is that it accurately monitors the currently set game type andcatches all exploits in that game type.It does that action correctly, so there is no issue with the off chain mechanism.But because of the on chain issue discovered, the airgap will be bypassed(because the off chain mechanism is not watching the other game type).My point is that since the off chain mechanism is out of scope, we should NOTreward issues in this mechanism. But this doesn’t mean we can assume it hasdifferent behavior that magically solves all on chain issues.To summarize: If we assume the off chain mechanism works exactly as specified(which is reasonable since it’s out of scope), then the on chain issue will bypass theairgap, so that’s how it would be most fair to judge.On Tue, May 7, 2024 at 3:58 PM 0xnevi@.***> wrote:@zobront https://github.com/zobront How would the airgap be bypassedwhen the off-chain monitoring is presumed to have caught the incorrectresolution, where like you mentioned it means the off-chain monitoringmechanism is assumed to have acted correctly and according to itsspecifications?— Reply to this email directly, view it on GitHubhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu
24

https://github.com/zobront
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989

es/84#issuecomment-2099299989, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE . You arereceiving this because you were mentioned.Message ID:@.*** com>trust1995Discussing an airgap in an off-chain context is useless once those componentswere defined as OOS. The only source of truth for airgap / not an airgap is theon-chain state.This discussion is orthogonal to the 256 game requirement, which by itself is anextensive limitation.guhu95@nevillehuangHow would the airgap be bypassed when the off-chain monitoring ispresumed to have caught the incorrect resolutionThe resolution of the OTHER game may be fully correct according to that game'simplementation. It is another game entirely, so:• it could be an older version of the game that is vulnerable - which is why it'sno longer used. And this is also why this game won't be monitored - it makesno sense to challange if it's buggy.• it could be the permissioned version (as shown, the permissioned one isadded to the factory on deployment).• it could be the alphabet testing game (which is added to the factory ondeployment). no reason to monitor this one• it could be a game used by a different OP stack rollup, proving withdrawals forit, that would allow fully correct resolutions of the game to be used to replaywithdrawal from that other rollup in Optimism.• ...The assumption that the OTHER game is possible to challange because it'sresolved incorrectly is not needed here. A just as likely scenario is that the OTHERgame is resolved correctly, but the bridge MUST NOT be using it.Evert0xAlthough for a different reason, I believe it's right to assign Medium as well.High is reserved for unrestricted losses. Watsons were to assume that the game'sresolution logic was broken, not that game types were added regularly.
25

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE

I still believe it's an extensive limitation for a new game type to get (created,audited, and) deployed with a specific ID, as that's the trigger that can potentiallycause this catastrophic bug.guhu95Watsons were to assume that the game's resolution logic was broken,not that game types were added regularly.@Evert0x But a broken game is resolved by updating the game type. Doesn't theassumption "the game's resolution logic is broken" unavoidably and directlyincludes the assumption of updating the game type?How can there be an extensive limitation if one thing directly causes the other?Evert0xResult: Medium Has Duplicates
@guhu95 assuming "the game's resolution logic is broken" and assuming "the teamwill continuously deploy new game types" are two different things.sherlock-admin4Escalations have been resolved successfully!Escalation status:• zobront: rejectedguhu95@Evert0x your response:@guhu95 assuming "the game's resolution logic is broken" and assuming"the team will continuously deploy new game types" are two differentthings.Did not answer either of the specific questions I've asked.Doesn't the assumption "the game's resolution logic is broken"unavoidably and directly includes the assumption of updating the gametype?How can there be an extensive limitation if one thing directly causes theother?
I can see the escalation shows as resolved now, but https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201 was re-opened 3 days afterescalation resolution, so not sure how to interpret the resolution update.

26

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84/#issuecomment-2073174916
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201

IssueM-2: Faultgamefactorycanbemanipulated toDOSgame type using malicious l2BlockNumber
Source:https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90
Found by0xdeadbeef, GalloDaSballo, Trust, bin2chen, ctf_sec, fibonacci, haxatron, nirohgo,obront, tallo, zigtur
SummaryAll new games are proven against the most recent L2 block number in the
ANCHOR_STATE_REGISTRY. This includes requiring that the block number we areintending to prove is greater than the latest proven block number in the registry.Due to insufficient validations of the passed L2 block number, it is possible for auser to set the latest block to type(uint256).max, blocking all possible future gamesfrom being initialized.
Vulnerability DetailNew games are created for a given root claim and L2 block number using thefactory, by cloning the implementation of the specified game type and passingthese values as immutable args (where _extraData is the L2 block number).
proxy_ = IDisputeGame(address(impl).clone(abi.encodePacked(_rootClaim,

parentHash, _extraData)));,!

proxy_.initialize{ value: msg.value }();

As a part of the initialize function, we pull the latest confirmed root and
rootBlockNumber from the ANCHOR_STATE_REGISTRY. These will be used as the"starting points" for our proof. In order to confirm they are valid starting points, werequire that the L2 block number we passed is greater than the last proven rootblock number.
(Hash root, uint256 rootBlockNumber) = ANCHOR_STATE_REGISTRY.anchors(GAME_TYPE);

// Should only happen if this is a new game type that hasn't been set up yet.
if (root.raw() == bytes32(0)) revert AnchorRootNotFound();

// Set the starting output root.
startingOutputRoot = OutputRoot({ l2BlockNumber: rootBlockNumber, root: root });

27

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90

// Do not allow the game to be initialized if the root claim corresponds to a
block at or before the,!

// configured starting block number.
if (l2BlockNumber() <= rootBlockNumber) revert UnexpectedRootClaim(rootClaim());

However, the L2 block number we pass does not appear to be sufficientlyvalidated. If we look at the Fault Dispute Game, we can see that disputed L2 blocknumber passed to the oracle is calculated using the _execLeafIdx and does notmake any reference to the L2 block number passed via extraData:
uint256 l2Number = startingOutputRoot.l2BlockNumber +

disputedPos.traceIndex(SPLIT_DEPTH) + 1;,!

oracle.loadLocalData(_ident, uuid.raw(), bytes32(l2Number << 0xC0), 8,
_partOffset);,!

This allows us to pass an L2 block number that is disconnected from the proofbeing provided.After the claim is resolved, we update the ANCHOR_STATE_REGISTRY to include ournew root by calling tryUpdateAnchorState().
function tryUpdateAnchorState() external {

// Grab the game and game data.
IFaultDisputeGame game = IFaultDisputeGame(msg.sender);
(GameType gameType, Claim rootClaim, bytes memory extraData) =
game.gameData();,!

// Grab the verified address of the game based on the game data.
// slither-disable-next-line unused-return
(IDisputeGame factoryRegisteredGame,) =

DISPUTE_GAME_FACTORY.games({ _gameType: gameType, _rootClaim: rootClaim,
_extraData: extraData });,!

// Must be a valid game.
require(

address(factoryRegisteredGame) == address(game),
"AnchorStateRegistry: fault dispute game not registered with factory"

);

// No need to update anything if the anchor state is already newer.
if (game.l2BlockNumber() <= anchors[gameType].l2BlockNumber) {

return;
}

// Must be a game that resolved in favor of the state.

28

if (game.status() != GameStatus.DEFENDER_WINS) {
return;

}

// Actually update the anchor state.
anchors[gameType] = OutputRoot({ l2BlockNumber: game.l2BlockNumber(), root:
Hash.wrap(game.rootClaim().raw()) });,!

}

As long as the L2 block number we passed is greater than the last proven one, weupdate it with our new root. This allows us to set the ANCHOR_STATE_REGISTRY tocontain an arbitrarily high blockRootNumber.If we were to pass type(uint256).max as this value, it would be set in the anchorsmapping, and would cause all other games to fail to initialize, because there is novalue they could pass for the L2 block number that would be greater, and wouldtherefore fail the check described above.
Proof of ConceptThe following test can be dropped into DisputeGameFactory.t.sol to demonstratethe vulnerability:
function testZach_DOSWithMaxBlockNumber(uint256 newBlockNum) public {

// propose a root with a block number of max uint256
bytes memory maxBlock = abi.encode(type(uint256).max);
IDisputeGame game = disputeGameFactory.create(GameType.wrap(0),
Claim.wrap(bytes32(uint(1))), maxBlock);,!

assertEq(game.l2BlockNumber(), type(uint256).max);

// when the game passes, it's saved in the anchor registry
vm.warp(block.timestamp + 4 days);
game.resolveClaim(0);
game.resolve();

// now we can fuzz newly proposed block numbers, and all fail for the same
reason,!

bytes memory maxBlock2 = abi.encode(newBlockNum);
vm.expectRevert(abi.encodeWithSelector(UnexpectedRootClaim.selector, 1));
disputeGameFactory.create(GameType.wrap(0), Claim.wrap(bytes32(uint(1))),
maxBlock2);,!

}

29

ImpactFor no cost, the factory can be DOS'd from creating new games of a given type.
Code Snippethttps://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-L87
Tool usedManual Review
RecommendationIn order to ensure that ordering does not need to be preserved,
ANCHOR_STATE_REGISTRY should store a mapping of claims to booleans. This wouldallow users to prove against any proven state, instead of being restricted to provingagainst the latest state, which could be manipulated.
DiscussionsmartcontractsFactually valid although the impact here isn't different than having any gameresolve incorrectly which would poison the AnchorStateRegistry and require thegame type to be changed.nevillehuangBased on scoping details below, I believe this issue is valid and in-scope of thecontest, as the root cause stems from the lack of a sanity check within the disputegame factory allowing large l2BlockNumber to be appendedhttps://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/editThe potential to block the entire fault proofs system entirely by preventing furthercreation of new games is significant, so I believe it warrants high severity given thepotential to block withdrawals from an OP bridge. Although the admin cantemporarily resolve this by switching game type, I believe it is not a valid solutiongiven the attack can be easily repeated.0xjuaan

30

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-L87
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-L87
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit

just a thought @nevillehuang:I believe it is not a valid solution given the attack can be easily repeatedIs this actually true? If they change the game type, the new FaultDisputeGameimplementation will be fixed and won't have this vulnerability so the attack can't berepeated. Because of that, the sponsor's comment seems to make the most senseand calling this a high severity issue is quite sus.Evert0xForwarding a comment from the protocol team--This issue isn't valid because the decoupling of the L2 block number that'sdetermined during output bisection and the one on the root claim is intentional.They claim that you can propose an output belonging to block n (so, right hash),but for the wrong block number in the future (i.e. n + 1). The challenger would beable to challenge this, as they would see that the output at the claimed block iswrong (or that the block just doesn't exist) The program, once ran, can either show:• The output at the given block number isn't correct (i.e. the proposed blocknumber is part of the safe chain captured by the data available on L1 at the L1head hash persisted when the game starts)• The given block number cannot be derived with the data available on L1 (i.e.the block number is super far in the future, and doesn't even exist)Essentially a proposal of this form would be invalidated by the current fault proofsystem so the bug itself wouldn't be possibleHaxatronThis bug operates under assumption that the FP system can cause a invalid gameto be resolved as valid, and there were multiple ways to do this in the contest (see#8). If this can occur then no more dispute games can be created for the samegame type which will lead to DoS. Only possible solution is to update game type aspointed out by comments above.JeffCXIn this case, one single invalid game resolution with very large block number DOSthe whole game type,update game type does not seems to be a long term solution, there are not manygame type to update.The fix is still add proper validation for block number or the fix in this report can beused as well
31

In order to ensure that ordering does not need to be preserved,ANCHOR_STATE_REGISTRY should store a mapping of claims tobooleans. This would allow users to prove against any proven state,instead of being restricted to proving against the latest state, whichcould be manipulated.lemonmon1984For no cost, the factory can be DOS'd from creating new games of agiven type.I want to note that the attacker is risking the bonds. They will likely to lose it if anyhonest party challenges them.JeffCXWhether the attacker get challenged or not is not in-scope,the audit and report is under the assumption that the game can be resolvedincorrectlyFaultDisputeGame resolution logic is not included in the scope of thiscontest. Participants should assume that the FaultDisputeGame canresolve incorrectly (i.e.g, can resolve to DEFENDER_WINS when it shouldresolve to CHALLENGER_WINS or vice versa).and in case the game resolved incorrectly, massive DOS for game type occurs asoutlined in the report.zobrontTo share my perspective here:TLDR: This is a difficult case, because the issue should be in scope, but theoutcome that it causes is no worse than the manual fixes that would happen whenthe safeguards work properly.Severity: As much as I'd like to, I can't see a justification for High. The outcomedoes not seem bad enough.Scope: This does seem to meet the definitions laid out in the scope document. Theissue is in the in scope contracts, and the outcome (DOS of game type) should besufficient for a Medium. However, it is a weird dynamic because when safeguardsare used, it also causes a DOS of game type, so it seems strange that the sameoutcome could be a valid issue.Conclusion: My assessment is that this should remain as a valid Medium, becausethe contest rules didn't rule out all game type DOS, only those caused by gamecontract logic. That being said, I recognize this is difficult to judge and respectwhatever decision the judge makes.
32

JeffCXas the original well-written report highlightsAs long as the L2 block number we passed is greater than the lastproven one, we update it with our new root. This allows us to set theANCHOR_STATE_REGISTRY to contain an arbitrarily highblockRootNumber.If we were to pass type(uint256).max as this value, it would be set in theanchors mapping, and would cause all other games to fail to initialize,because there is no value they could pass for the L2 block number thatwould be greater, and would therefore fail the check described above.the impact of DOS game creation and game type means no user can finalize theirwithdraw transaction / execution l2 -> l1 message, which is a leads to clearly lossof fund and lock of fund as multiple duplicates highlight such as #206nevillehuangThis issue seems invalid per sponsor comments here.Any reasons addressing sponsor comments why this should be a valid issue?@zobront @JeffCX @HaxatronHaxatronHi,Already given my reasoning above.I will defer to @zobront and @JeffCX for any additional commentsAcknowledge this one is quite tricky to judge.zobrontI explained my assessment based on that sponsor comment here:https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2090639437On Fri, May 3, 2024 at 4:02 PM Haxatron@.***> wrote:Hi,Already given my reasoning above.I will defer to @zobront https://github.com/zobront and @JeffCXhttps://github.com/JeffCX for any additional commentsAcknowledge this one is quite tricky to judge.

33

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2090639437
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2090639437
https://github.com/zobront
https://github.com/JeffCX

— Reply to this email directly, view it on GitHubhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2093758255, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU . You arereceiving this because you were mentioned.Message ID:@.*** com>JeffCXForwarding a comment from the protocol team--This issue isn't valid because the decoupling of the L2 block numberthat's determined during output bisection and the one on the root claimis intentional. They claim that you can propose an output belonging toblock n (so, right hash), but for the wrong block number in the future (i.e.n + 1). The challenger would be able to challenge this, as they would seethat the output at the claimed block is wrong (or that the block justdoesn't exist) The program, once ran, can either show:• The output at the given block number isn't correct (i.e. the proposedblock number is part of the safe chain captured by the data availableon L1 at the L1 head hash persisted when the game starts)• The given block number cannot be derived with the data availableon L1 (i.e. the block number is super far in the future, and doesn'teven exist)Essentially a proposal of this form would be invalidated by the currentfault proof system so the bug itself wouldn't be possibleEmm seems like this is saying that the game cannot be resolved incorrectly....but during judging, we mark the game resolution logic out of scope and use theargument to invalid many issueIt is contradictory to use the argument "incorrect game resolution out of scope" toinvalid many other issue.while use the argument "game cannot be resolved incorrectly" to invalid this issue.the comments strongly contradicts the readme as well:from read meParticipants should assume that the FaultDisputeGame can resolveincorrectly (i.e.g, can resolve to DEFENDER_WINS when it should resolveto CHALLENGER_WINS or vice versa).
34

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2093758255
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2093758255
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU

the report is perfect derivation from the statement above without worrying aboutthe game dispute logic...Participants should assume that the FaultDisputeGame can resolveincorrectly (i.e.g, can resolve to DEFENDER_WINS when it should resolveto CHALLENGER_WINS or vice versa).then I think the original judging decision still stands.guhu95I actually don't understand why the sponsor’s claim is correct. If it does make senseto anyone else, can someone please explain?What I understand they're saying is that the game can't resolve correctly in thisway. But I don't understand how that is possible if the extraData's l2Blocknumber isnever actually used by the proof system? The only user of that value is
AnchorStateRegistry and it doesn't validate it.There is no check I can see that checks that extraData's l2Blocknumber is actuallyin the rootClaim in any way.From the point of view of the proof system, the block number it is using is unrelatedto the one later being passed to AnchorStateRegistry.If so, isn't it the case that anyone can always frontrun the legitimate proposals anduse the legitimate data, but pass in type(uint).max as l2BlockNumber? Isn't that aperpetual DoS of the system?What am I missing here?HaxatronIf I am not wrong, it will be used in VM.step() after adding the block number into thepreimage oracle via addLocalData()On Sun, 5 May 2024, 10:04 Guhu,@.***> wrote:I actually don't understand why the sponsor's claimhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104 is correct. If it does make sense toanyone else, can someone please explain?What I understand they're saying is that the game can't resolve correctlyin this way. But I don't understand how that is possible if the extraData'sl2Blocknumber is never actually used by the proof system? The only userof that value is AnchorStateRegistry and it doesn't validate it.There is no check I can see that checks that extraData's l2Blocknumberis actually in the rootClaim in any way.

35

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104

From the point of view of the proof system, the block number it is usingis unrelated to the one later being passed to AnchorStateRegistry.If so, isn't it the case that anyone can always frontrun the legitimateproposals and use the legitimate data, but pass in type(uint).max asl2BlockNumber? Isn't that a perpetual DoS of the system?What am I missing here?— Reply to this email directly, view it on GitHubhttps://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960, or unsubscribehttps://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA . You arereceiving this because you were mentioned.Message ID:@.*** com>guhu95@Haxatron here?. It doesn't seem to be using the l2number value from extraDatahere (or anywhere else in the game itself).It does use the l1head() from extraData above but not the L2 number.HaxatronApologies, you are correct, the L2 block number referenced on that line is theanchor root block number rather than the l2 block number passed via theextraData. Perhaps, this requires more clarification from protocol team...guhu95@Evert0x @nevillehuang it looks like the sponsor's argument for this being invalidis not well understood. The finding is also marked "won't fix", so if it is valid, it is notmitigated. It would appear that a mitigation would be needed at both game leveland at the registry level, as fixing one without the other would leave the othervulnerable.Can @smartcontracts maybe have another look at this, and possibly address thequestions in https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960?Evert0xAfter a discussion with the protocol it's clear that this issue should be a validMediumtrust1995So permissionless shutdown of withdrawals/messaging until redeploy (Freeze ofFunds of 2 weeks) is considered a Medium on Sherlock? Was the magnitude of
36

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L355
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L342C54-L342C62
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960

effect this would have on the Optimism ecosystem considered?A 1-hour shutdown of Blast was the most talked about incident for months, howwould a 2-week FoF be interpreted?guhu95In addition to the prolonged DoS, the DoS appears to be repeatable, and requirechanges to the registry and portal, and not just updating the game.In order for the DoS to NOT be repeatable, the fix must be possible at the gamelevel, such that updating the game type is sufficient. But it doesn't appear to be thecase:Please see these (new) fix PRs in OP dealing with this issue:https://github.com/ethereum-optimism/optimism/pull/10431/files,https://github.com/ethereum-optimism/optimism/pull/10434/files.They add extensive changes to both the ASR and the Portal to deal with thel2BlockNumber issue. The changes to the game are minimal, and it appears thatthis issue is NOT fixable by just updating the game implementation.[I suspect this is because in the game, the l2blocknumber is PART of disputed L2output state, so is not a mutually agreed on external input, unlike the L1 number,which comes directly from the L1 block.number itself. The dispute is about therootClaim output state, not about the input l2blocknumber and something aboutthe proving setup prevents it from being used this way (or from the game beingable to distinguish which one of these inputs is incorrect). But this is just my limitedand possibly wrong understanding]Summary: because the issue is not fixable by updating ONLY the game, and anupgrade of the ASR and Portal are needed, the safety measures are inadequateand the DoS WITHOUT the full fix is repeatable.spearfish5609most talked about incident for monthsthis incident has not even happened 2 months ago and people cared about it for afew days at mostnirohgoAfter a discussion with the protocol it's clear that this issue should be avalid Medium@Evert0x can you elaborate why? (for those of us who weren't on that discussion)Evert0xThe justification for Medium severity is as follows
37

https://github.com/ethereum-optimism/optimism/pull/10431/files
https://github.com/ethereum-optimism/optimism/pull/10434/files

The Proxy Admin Owner is a TRUSTED role that can:• Upgrade all smart contracts that sit behind a Proxy contract.• Set the implementation contract for any dispute game type withinthe DisputeGameFactory.• Modify the initial bond cost for any dispute game type within theDisputeGameFactory.• Remove ETH from the DelayedWETH contract.The Proxy Admin Owner is assumed to be honest and responsive with anSLA of 72 hours.As stated in the README, part of the security model is a honest and responsiveadmin that can recover from a DoS within 72 hours.Are there any off-chain mechanisms or off-chain procedures for theprotocol (keeper bots, arbitrage bots, etc.)?Off-chain mechanisms exist as part of the system but are not in scopefor this competition. Assume that comprehensive monitoring exists thatwill detect most obviously detectable malicious activity.The supplied block being higher than the actual block number in the EVM isobviously detectable malicious activity.In conclusion, once the proposal is detected, the Proxy Admin Owner is trusted tobe responsive within 72 hours and is able to switch the game type to apermissioned implementation within a new AnchorStateRegistry to mitigate theDoS.Note: It’s important to note that there’s a difference between switching the gametype (which invalidates all withdrawals with that game type) and switching theimplementation (which does not invalidate withdrawals).guhu95@Evert0x but can switching to a permissioned implementation be considered final"recovery"?If assumed permanent - it permanently breaks core functionality (no fraud proofsfrom that point).If assumed temporary - it only postpones the switch of the game type and thewithdrawals DoS.trust1995This downplayed take is plagued with intellectual dishonesty.
38

The supplied block being higher than the actual block number in the EVMis obviously detectable malicious activity.If it was obvious as something to look for, Opt would have validated thel2BlockNumber is the same as the VM block number. Detection is highlyunprobable. Please provide the defender off-chain code to show awareness of thisvulnerability. Once again the benefit of the doubt is given to an opaque statementby the sponsor and against honest Watsons. For fairness of discussion, it must beassumed Opt is aware only at the moment games cannot be created.able to switch the game type to a permissioned implementation within anew AnchorStateRegistry to mitigate the DoS.For the past month where Optimism had access to the repo, their suggested fixwas moving to a new game type, confirming the 2 week DOS. Only couple of daysago came the idea of overriding the same game type to avoid the DOS. Using thisto reduce severity is unacceptable. It essentially extended their 3 day SLA to 1month, letting them theorize over best response over a tremendously long time andthen argue the optimized response would be what they would be rolling with onday 1. Clear intellectual dishonesty.Additionally, from an air-gap perspective (up to High according to the README),the resolution and updating of the anchor state registry is instantaneous, makingnew withdrawals impossible from day 0 and bypassing intended airgaps. Acombination of FoF impact (High impact) + airgap bypass (High focus of contest) +permissionless attacker (High likelihood) makes it verry clear high severity is inorder.I will also state that over the past week Optimism has catapulted a variety ofarguments against the submission which were technically proven wrong, showingthey have no problem misrepresenting an issue or its characteristics in order toreduce its severity.spearfish5609I dont know why the optimism team is trying to find some weird loopholes to arguefor downgrade if they could just use official sherlock docs to justify it:according to https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue : Breaks core contract functionality, rendering the contract
useless or leading to loss of funds. is a mediumabout DOS: https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards requires both1. The issue causes locking of funds for users for more than a week2. The issue impacts the availability of time-sensitive functionsto be high severity

39

https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards

1 is true and 2 is questionable if we assume that admin deploys a new game type intime so funds can be recovered and users can just make new game instance, wherethese functions are available again.I dont see any air-gap bypass unless we use different definitions. Myunderstanding is that the air-gap is the delay before withdraw of funds can happenand its not possible for users to withdraw earlyEvert0x@guhu95 It's not a final recovery, but safety mechanisms are put in place first tomitigate the DoS and, secondly, to remove the DoS factor.Evert0x@trust1995 Forwarding from the protocol team the detection code for this case.
So in a nutshell the monitoring service is here:https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87This service calls out to a forecasting function which checks the L2 block numberand the claim provided against the real output root for that block number:https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69Claimed L2 block number and output are pulled from the game’s metadata:https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54So in the case of that bug, the service would try to get the block number for thefuture block that doesn’t exist yet, get the following error, disagree, and raise analert: https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40Evert0x@spearfish5609 I don't think I'm using weird loopholes to decide on the severity ofthis issue.It's not always clear if the DoS should be judged as indefinite just because theadmin can recover from it. However, in this case, the language in the READMEmakes it clear.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/ethereum-optimism/optimism/pull/10438

40

https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40
https://github.com/ethereum-optimism/optimism/pull/10438

IssueM-3: Theft of initial bonds from proposers who areusing smart wallets
Source:https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194
Found byGalloDaSballo, Trust
SummaryProposal of output roots through the DisputeGameFactory from Smart Wallets isvulnerable to frontrunning attacks which will steal the initial bond of the proposer.
Vulnerability DetailA fault dispute game is built from the factory, which initializes the first claim in thearray below:
claimData.push(

ClaimData({
parentIndex: type(uint32).max,
counteredBy: address(0),
claimant: tx.origin,
bond: uint128(msg.value),
claim: rootClaim(),
position: ROOT_POSITION,
clock: LibClock.wrap(Duration.wrap(0),

Timestamp.wrap(uint64(block.timestamp))),!

})
);

The sender passes a msg.value which equals the required bond amount, and theregistered claimant is tx.origin. At the end of the game, if the claim is honest, thefunds will be returned to the claimant.Smart Wallets are extremely popular ways of holding funds and are used by alltypes of entities for additional security properties and/or flexibility. A typical smartwallet will receive some execute() call with parameters, verify it's authenticity viasignature / multiple signatures, and perform the requested external call. That ishow the highly popular Gnosis Safe operates among many others. Smart Walletsare agnostic to whoever actually called the execute() function, as long as the datais authenticated.
41

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194

These properties as well as the use of tx.origin in the FaultDisputeGame make iteasy to steal the bonds of honest proposals:• Scan the mempool for calls to Gnosis execTransaction() or any other variants.• Copy the TX content and call it from the attacker's EOA.• The Smart Wallet will accept the call and send the msg.value to theDisputeGameFactory.• The claimant will now be the attacker.• Upon resolution of the root claim, the attacker will receive the initial bond.
ImpactTheft of funds from an honest victim who did not interact with the system in anywrong way.
Code Snippet
claimData.push(

ClaimData({
parentIndex: type(uint32).max,
counteredBy: address(0),
claimant: tx.origin,
bond: uint128(msg.value),
claim: rootClaim(),
position: ROOT_POSITION,
clock: LibClock.wrap(Duration.wrap(0),

Timestamp.wrap(uint64(block.timestamp))),!

})
);

Tool usedManual Review
RecommendationThe Factory needs to pass down the real msg.sender to the FaultDisputeGame.
Discussionsmartcontracts

42

https://github.com/safe-global/safe-smart-account/blob/1cd7568769128717c1a6862d22fe34873d7c79c8/contracts/Safe.sol#L104

This report is not entirely correct. It is not possible to "steal" funds from a wallet.Instead, it is the case that the user creating the FaultDisputeGame would not receivetheir bonds at the end of the game. Although this behavior was intentional as thecontracts are meant to be used by EOAs directly and not smart contract wallets, webelieve this is a valid low-severity issue and we will fix it.trust1995This report is not entirely correct. It is not possible to "steal" funds froma wallet. Instead, it is the case that the user creating theFaultDisputeGame would not receive their bonds at the end of the game.What you described is essentially stealing - an honest user's bond will be claimedby the attacker.Although this behavior was intentional as the contracts are meant to beused by EOAs directly and not smart contract wallets, we believe this is avalid low-severity issue and we will fix it.• If the behavior is intentional, then why fix it?• Also, no mention anywhere of the assumption that disputers (which arepermissionless) should be EOAs, therefore we can't view that as reducingseverity or OOS in any capacity.smartcontractsI think the implied contract is relatively clear, the user who creates the game is the
tx.origin and not the msg.sender. Smart contract wallets weren't an intended userof the contracts. Either way impact is relatively limited (smallest bond size is at theinitialization level). I think it's a pretty clear footgun though and should be fixed toprevent issues down the line.smartcontractsSo actual stance here is that this is valid but low-likelihood and low-impact inpractice.sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/ethereum-optimism/optimism/pull/10149nevillehuangBased on scope details below, any issue with root cause of the issue stemmingfrom FDG contract will be considered OOS of this contest if airgap and/or delayedWETH mechanism implemented for off-chain review of game results and bonddistribution is not shown to be bypassed

43

https://github.com/ethereum-optimism/optimism/pull/10149

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edittrust1995@nevillehuang The root cause is clearly in the factory contract using an unusafetx.origin parameter, as demonstrated in the submission. The finding is in scope.trust1995EscalateThe issue is in scope, because:• The bug's origin is certainly not in the FDG's initialize() function - without anychanges to the factory there is NO actual way to determine who the correctclaimant should be. The FDG does not have the neceesary context, and theroot cause is lack of sending the msg.sender of the factory as a parameter.This is further evidenced by the fact the fix changed the Factory's call• The impact is clearly high• Based on the following ruling, the submission must be treated as in-scope:
Issues with a root cause in the non-game contracts are IN SCOPEsherlock-admin2EscalateThe issue is in scope, because:• The bug's origin is certainly not in the FDG's initialize() function -without any changes to the factory there is NO actual way todetermine who the correct claimant should be. The FDG does nothave the neceesary context, and the root cause is lack of sendingthe msg.sender of the factory as a parameter. This is furtherevidenced by the fact the fix changed the Factory's call• The impact is clearly high• Based on the following ruling, the submission must be treated asin-scope: Issues with a root cause in the non-game contracts

are IN SCOPEYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuang
44

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol
packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol

Agree that this issue is valid, given the root cause can be seen as stemming fromthe factory contract. Additionally, there is no mention whether only an EOA isallowed to interact with the contracts. Based on agreed upon scope and line drawn,I believe medium severity to be appropriate since no safety mechanisms(DelyayedWETH) is bypassed.MightyFox3Firstly, it's important to clarify that funds cannot be "stolen" from a wallet in themanner described. The scenario involves the user who initiates theFaultDisputeGame; they would not receive their bonds back at the conclusion ofthe game, which differs significantly from the notion of funds being stolen.Regarding the vulnerabilities outlined in the original report, it seems there aremisconceptions about the ease of exploiting these issues. The steps providedsuggest that an attacker can simply scan the mempool, copy transaction content,and execute it from their own externally owned account (EOA). However, thisoverlooks critical security measures inherent in the system:• The Gnosis smart contract requires signatures from its owners, Alice and Bob,to authorize any execution of the execTransaction() function. This meanscopying the transaction content and executing it from an attacker's EOA is notfeasible unless there is a flaw in how signatures are validated, which is nottypical for smart contract wallets, including the Gnosis Safe Wallet.• Furthermore, even if Alice and Bob authorize a transaction, the claim thatfunds are lost is incorrect. If Alice is the transaction originator and her EOAexecutes the transaction, she (tx.origin) retains the ability to claim the bond.Therefore, there is no actual loss of funds.Given these clarifications, it would be more accurate to assess the severity of theissue as low, rather than medium.trust1995@MightyFox3 you seem to have completely missed the meat of the exploit, soallow me to re-iterate:Firstly, it's important to clarify that funds cannot be "stolen" from a walletin the manner described. The scenario involves the user who initiates theFaultDisputeGame; they would not receive their bonds back at theconclusion of the game, which differs significantly from the notion offunds being stolen.Respectfully, when an attacker can receive a bond deposited by a victim's accountwithout proofing their claim was invalid, it is considered a theft of funds.• The Gnosis smart contract requires signatures from its owners, Aliceand Bob, to authorize any execution of the execTransaction()

45

function. This means copying the transaction content and executingit from an attacker's EOA is not feasible unless there is a flaw in howsignatures are validated, which is not typical for smart contractwallets, including the Gnosis Safe Wallet.Of course it requires signatures, this is the part of the original submission: Copy the
TX content and call it from the attacker's EOA. The attacker requires aproposer who is using smart wallet, like the title says. That is not a side exploit orany actual blocking limitation, since we assume the functionality is a valid way ofinteraction (not otherwise noted).Furthermore, even if Alice and Bob authorize a transaction, the claim thatfunds are lost is incorrect. If Alice is the transaction originator and herEOA executes the transaction, she (tx.origin) retains the ability to claimthe bond. Therefore, there is no actual loss of funds.Honestly don't understand the argument - is this saying that if the exploit isbotched (doesn't frontrun like it should), it fails? It is shown in the submission that amalicious frontrunner will be registered as the claimant, and receive the bond at theend of the dispute.MightyFox3Thank you for clarifying the situation further.Alice and Bob, who own the smart contract wallet, need to agree and sign off onany transactions that initiate the claim. If Alice submits the transaction and there'sno frontrunning interference, she should be the one to claim the bond.However, if Bob were to submit his own claim before Alice’s is processed—apractice known as frontrunning—he would then be eligible to claim the bond. Thiscould be unfair to Alice, especially if Bob does this deliberately. But such a situationis quite rare since both parties need to agree to initiate the transaction.This makes the potential problem less severe, as it relies heavily on one partyacting against the agreed-upon terms.54710adk341You can't just 'front-run' any given smart wallet.Safe.sol#L141-L161
{

if (guard != address(0)) {
Guard(guard).checkTransaction(

// Transaction info
to,
value,
data,

46

https://github.com/safe-global/safe-smart-account/blob/8340a4e6e898755aaca8b285f164c20e41891691/contracts/Safe.sol#L141-L161

operation,
safeTxGas,
// Payment info
baseGas,
gasPrice,
gasToken,
refundReceiver,
// Signature info
signatures,
msg.sender

);
}

}

Smart wallets have guards in place, they check against the msg.sender.Front-running would make execTransaction() fail since the msg.sender would bedifferent.trust1995Thank you for clarifying the situation further.Alice and Bob, who own the smart contract wallet, need to agree andsign off on any transactions that initiate the claim. If Alice submits thetransaction and there's no frontrunning interference, she should be theone to claim the bond.However, if Bob were to submit his own claim before Alice’s isprocessed—a practice known as frontrunning—he would then be eligibleto claim the bond. This could be unfair to Alice, especially if Bob doesthis deliberately. But such a situation is quite rare since both partiesneed to agree to initiate the transaction.This makes the potential problem less severe, as it relies heavily on oneparty acting against the agreed-upon terms.No, that's the point. Charlie, an unprivileged attacker who observes the TX Alicesent to the mempool, copies the contents and sends it from his EOA. They frontrunthe origin TX and steal the bond.trust1995You can't just 'front-run' any given smart wallet.Safe.sol#L141-L161
{

if (guard != address(0)) {
Guard(guard).checkTransaction(

47

https://github.com/safe-global/safe-smart-account/blob/8340a4e6e898755aaca8b285f164c20e41891691/contracts/Safe.sol#L141-L161

// Transaction info
to,
value,
data,
operation,
safeTxGas,
// Payment info
baseGas,
gasPrice,
gasToken,
refundReceiver,
// Signature info
signatures,
msg.sender

);
}

}

Smart wallets have guards in place, they check against the msg.sender.Front-running would make execTransaction() fail since the msg.senderwould be different.That's a wildly incorrect statement. The design of smart wallets is exactly withaccount abstraction in mind - The TX contents, gas , calldata etc are all signed bythe multisig and then anyone can transmit the TX to the blockchain. A TX should beperfectly secure regardless of who is initiating the smart wallet execution call.The contestant is referring to the optional guard feature, which can perform anytype of filtering at the discretion of the multisig. The only two multisigs I'vechecked, the Chainlink MS and the Optimism MS, don't use any guards. It is,broadly speaking, a mostly unused feature used to perform arbitrary customvalidation, and has no relevance to the submission.lemonmon1984But at the end, the optimism team can utilize DelayedWETH to address thesituation. There is no airgap bypass, and based on the security measures such asDelayedWETH, the funds are secure.bemic
Signatures of Safe owners for a specific transaction are crafted off-chain and
passed into the function as input parameters. Once there are enough signatures to
pass the threshold, the Safe transaction will be executed. Who is the one who calls
the Execute function? It does not matter.This is the known problem of Safe multisig wallet. There are Guards madespecifically to avoid this situation, and they let only one of the owners call the

48

https://etherscan.io/address/0x4a87ecE3eFffCb012fbE491AA028032e07B6F6cF
https://etherscan.io/address/0x5a0Aae59D09fccBdDb6C6CcEB07B7279367C3d2A#readProxyContract

actual execution. However, they are not set up by default. I see this as a known andreal problem of Safe. But other protocols like optimism are not forced to becompatible (although they probably should).Evert0xThis issue is either invalid as it flags a design recommendation to mitigate an attackvector. From the perspective of the smart contract it's functioning as normal, it'sjust that the user didn't take the necessary measures to profit from this.Or it's valid and Medium as the loss requires specific conditions (smart wallet) andit's constrained as it only applies to the initial bond.Will revisit this issuetrust1995From the perspective of the smart contract it's functioning as normal, it'sjust that the user didn't take the necessary measures to profit from this.The rationale above can be said about any smart contract exploit, from theperspective of the smart contract, everything is functioning as normal. It's not adesign recommendation, because Optimism did not limit interaction with thecontracts to only EOAs, and any usage without using a private mempool (extremelylikely) is vulnerable.Or it's valid and Medium as the loss requires specific conditions (smartwallet)As a C4 Supreme Court judge, that's not the type of conditions that merit loweringa severity. Consider as a thought experiment, a bug that results in loss of funds,only if the first byte of an address is 0xFF. Would that condition reduce severity toMed? Absolutely not, because we realize that over time and considering enoughusers, it is extremely likely there will be affected users. It is incorrect to look at thesingle-victim level when the bug is affecting all potential victims.it's constrained as it only applies to the initial bond.This argument could also be used if the initial bond is $100000000. Would thatmake such billion dollar exploits Med? Just to show that saying it is constraineddoes not cap severities, what matters it the potential concrete impact. There is norespectable judge on the planet that would rule impact of loss of 0.08 ETH = $240as lower than high.Evert0xThe rationale above can be said about any smart contract exploit, fromthe perspective of the smart contract, everything is functioning asnormal. It's not a design recommendation, because Optimism did not
49

limit interaction with the contracts to only EOAs, and any usage withoutusing a private mempool (extremely likely) is vulnerable.From the perspective of the protocol's mechanisms it doesn't matter if Alice or Bobexecutes this transaction. The functionality works as intended as the personexecuting the transaction will receive the bond. Of course this can't be said aboutevery exploit.nevillehuangBonds should belong to the person(s) creating the games that is signing thetransaction to create a claim. However, given the permisionless nature oftransaction execution for smart wallets as seen here, someone can fron-run andcopy the transaction, bypass the transaction checks and act as the tx.origin ofthat initial proposal of the FDG, receiving that initial bond after resolution. I don'tthink it should be high severity given the DelayedWETH safety mechanism is notbypassed, so I believe medium severity is appropriate here.darkbit0Hey @nevillehuang, Clearly the issue exists in the FaultDisputeGame contract.
tx.origin has been used in FaultDisputeGame which its issues were out of scope(unless it bypasses the air-gap). Just because one fix is involving changing theFactory's code doesn't mean the issue exists in out of FaultDisputeGame's code.Also if any smart wallet allows attackers to front-run its txs, then those smartwallets have vulnerability and the real root cause of this issue is in those smartwallet's code which weren't in the scope of this contest. Users who uses thosesmart wallets accepted their risk and they also have options to protect their txs andavoid front-runners (by using private mempools or using Guard feature of smartwallet or using smart wallet without front-run issue). There were a lot of similarsituations in that past contests that 3rd party systems bugs could effect theprotocol and there were fixes for those issues in in-scope Contracts (adding morechecks or ...) but those issues were considered as OOS.trust1995@darkbit0 It is considered very poor contest etiquette to repeat arguments alreadydiscussed. It is showing lack of respect for Watsons and judge's time, and in myopinion should even be punished.Hey @nevillehuang, Clearly the issue exists in the FaultDisputeGamecontract. tx.origin has been used in FaultDisputeGame which its issueswere out of scope (unless it bypasses the air-gap). Just because one fixis involving changing the Factory's code doesn't mean the issue exists inout of FaultDisputeGame's code.Was argued above, and neville's response was:

50

https://github.com/safe-global/safe-smart-account/blob/5feb0d08f59cfbb44918be1ed5889d9bb634562a/contracts/Safe.sol#L108-L122
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L559
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L559

Agree that this issue is valid, given the root cause can be seen asstemming from the factory contract. Additionally, there is no mentionwhether only an EOA is allowed to interact with the contracts. Based onagreed upon scope and line drawn, I believe medium severity to beappropriate since no safety mechanisms (DelyayedWETH) is bypassed.Then:Also if any smart wallet allows attackers to front-run its txs, then thosesmart wallets have vulnerability and the real root cause of this issue is inthose smart wallet's code which weren't in the scope of this contest.Users who uses those smart wallets accepted their risk and they alsohave options to protect their txs and avoid front-runners (by usingprivate mempools or using Guard feature of smart wallet or using smartwallet without front-run issue)This was already explored in depth before your attempt to re-open the discussion.That's a wildly incorrect statement. The design of smart walletsis exactly with account abstraction in mind - The TX contents,gas , calldata etc are all signed by the multisig and then anyonecan transmit the TX to the blockchain. A TX should be perfectlysecure regardless of who is initiating the smart wallet executioncall.The contestant is referring to the optional guard feature, which canperform any type of filtering at the discretion of the multisig. The onlytwo multisigs I've checked, the Chainlink MS and the Optimism MS, don'tuse any guards. It is, broadly speaking, a mostly unused feature used toperform arbitrary custom validation, and has no relevance to thesubmission.54710adk341I think the implied contract is relatively clear, the user who creates thegame is the tx.origin and not the msg.sender. Smart contract walletsweren't an intended user of the contracts. Either way impact is relativelylimited (smallest bond size is at the initialization level). I think it's a prettyclear footgun though and should be fixed to prevent issues down the line.This sums it up pretty well, this is a clear footgun, hence this is a valid Low. Usererrors are not Medium under Sherlock rules.Evert0xThis comment reflects my current stance on this issue https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840Evert0x
51

https://etherscan.io/address/0x4a87ecE3eFffCb012fbE491AA028032e07B6F6cF
https://etherscan.io/address/0x5a0Aae59D09fccBdDb6C6CcEB07B7279367C3d2A#readProxyContract
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840

Result: Medium Has Duplicatessherlock-admin2Escalations have been resolved successfully!Escalation status:• trust1995: acceptedMightyFox3https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/15@Evert0x @nevillehuangtrust1995#15@Evert0x @nevillehuang??? Has nothing to do with this submission.

52

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194/#issuecomment-2075476704
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/15

Issue M-4: Loss of bond amounts on re-org attacks
Source:https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201
Found byMiloTruck, Trust
SummaryThe move() function lacks proper identification of the target of the move, leading tosuccessful re-org attacks which can take the honest participant's funds.
Vulnerability DetailParticipants in the game can call attack(), defend() or move(), each accepting a
parentIndex which corresponds to the claim being challenged, and a _claimcommitment.When participants claim, they have a particular claim in mind which they wish tochallenge, and then pass on that claim's index. However, between the moment theysent the TX and the moment that TX is executed, a block reorg can take place.When it occurs, the challenge corresponding to that ID may change to anotherchallenge, which may be valid or invalid in a different way. Regardless, theparticipant's commitment to that move() will be wrong, and they stand to lose theirbond amount.Chain reorgs are very prevalent in Ethereum mainnet, where the contract isdeployed. You can check this index of reorged blocks on etherscan. It is incorrectto assume the attacker will wait until it achieved finality, because there's nowarnings or documentation available for them to identify this as a threat.Therefore, it remains a very valid concern with reasonable hypotheticals.Note that in high depths, the bond amount is very large, leading to a large loss offunds.Possible flow:• Attacker submits invalid claim hash• Honest defenders rush to prove the claim wrong (note that only first defendergets the bond, so they will rush to submit the TX. They would not beconcerned about waiting against reorgs without warning)• A block re-org occurs• The attacker replaces the invalid claim with a valid claim hash

53

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201
https://etherscan.io/blocks_forked

• Defender's TXs are applied on top of the valid claim.• Attacker can scoop up all the defenders' bonds
ImpactLoss of bond value for honest participants of the dispute game.
Code SnippetTool usedManual Review
RecommendationEvery move needs to include the key parameters which it wishes to attack/defend -the claim hash and the Position in the game tree.
DiscussionsmartcontractsThis is the intended behavior of the contract so we have confirmed the factuality ofthe report and marked as "won't fix". Challenger software can handle this caseoffchain.nevillehuangI believe this is out of scope, given there is no network admins in mainnet and thusdoesn't satisfy the the requirements for the exceptionChain re-org and network liveness related issues are not consideredvalid. Exception: If an issue concerns any kind of a network admin (e.g. asequencer), can be remedied by a smart contract modification, theprotocol team considers external admins restricted and the considerednetwork was explicitly mentioned in the contest README, it may be avalid medium. It should be assumed that any such network issues will beresolved within 7 days, if that may be possible.trust1995EscalateThe finding is in-scope as Medium severity for the following reasons:• The impact is direct loss of bonds of an honest challenger, who did not makeany mistakes

54

• There are no other preconditions except a re-org on the blockchain• As shown in the report, there is more than sufficient likelihood for re-orgs onETH to render this a valuable concern that needs to be protected from• The issue is CLEARLY a smart contract issue, it is a lack of sufficientidentification of a claim and is fixed by adding one line of code. It does notbelong to the usual category of re-org issues which can be treated asunavoidable risks of blockchain architecture. The impact and circumstancesare concrete and likely.• The challenge game is presented as a race where the first challenger picks upthe bond - it is only natural that challengers will pop up as quickly as possibleto challenge a honeypot claim. There are zero warnings or ways where achallenger can foresee such an attack is possible - unless we assumechallengers are coding gurus which would audit the code and identify thisre-org attack could steal their bonds. To be clear, a simple warning sayingchallengers should wait until the claim block is finalized would be sufficient toclose the issue as a user-error, but that's not the case.•sherlock-admin2EscalateThe finding is in-scope as Medium severity for the following reasons:• The impact is direct loss of bonds of an honest challenger, who didnot make any mistakes• There are no other preconditions except a re-org on the blockchain• As shown in the report, there is more than sufficient likelihood forre-orgs on ETH to render this a valuable concern that needs to beprotected from• The issue is CLEARLY a smart contract issue, it is a lack of sufficientidentification of a claim and is fixed by adding one line of code. Itdoes not belong to the usual category of re-org issues which can betreated as unavoidable risks of blockchain architecture. The impactand circumstances are concrete and likely.• The challenge game is presented as a race where the firstchallenger picks up the bond - it is only natural that challengers willpop up as quickly as possible to challenge a honeypot claim. Thereare zero warnings or ways where a challenger can foresee such anattack is possible - unless we assume challengers are coding guruswhich would audit the code and identify this re-org attack couldsteal their bonds. To be clear, a simple warning saying challengers
55

should wait until the claim block is finalized would be sufficient toclose the issue as a user-error, but that's not the case.•You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuangBased on sherlock rules, I believe this is still invalid based on comments here.Evert0xThe following rule appliesChain re-org and network liveness related issues are not consideredvalid.Planning to reject escalation and keep issue state as istrust1995@nevillehuang The rationale for the scoping rules on Sherlock excluding re-orgattacks is the assumption that a TX sender is responsible for waiting for finality(stated by Judge on discord). However, due to Optimism-specific circumstancesdetailed in depth by the dup submission by MiloTruck, it is proven that an honestparty cannot afford to wait for finality (the so called chess-clock mechanism). Forthis reason, and the fact that re-orgs on L1 are proven to be highly likely, it is onlycommon sense to see that the issue is a valid risk of loss of funds for Mediumseverity.nevillehuangHi @Evert0x although I believe this issue could still be possibly out of scope due toit being related to resolution logic, I think @trust1995 has a point here. Re-orgs areoften times out of the control of a user, and in optimisms case, this directly leads toa serious inconsistency where user would dispute a claim incorrectly (althoughthere are safeguards).I believe that re-org issues exception could be re-considered for sherlock's scopein the future, possibly a proposal could be put up to address this per discussed,especially so when a fund loss impact is involved.Evert0xI understand that re-org attacks are possibly more interesting to L1's or L2's thanthe average protocol. However, using the same judging rules as every Watson used
56

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201#issuecomment-2061664567
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201#issuecomment-2085970350
https://discord.com/channels/812037309376495636/881726370370158592/1233391162556026891

during the contest, it would only be fair to invalidate it. As the language is clearChain re-org and network liveness related issues are not consideredvalid.trust1995@Evert0x The language is clear, but guidelines always have exceptions. It is up tothe judge to apply common sense and the contest-specific context to everyverdict. Blindly following every rule will lead to injustice and counterexampleswhere an impact is clearly real and valuable, but is not rewarded. That is wellunderstood in the Sherlock rulebook:Note: Despite these rules, wemust understand that because of thecomplexity & subjective nature of smart contract security, there maybe issues that are judged beyond the purview of this guide. However,for the vast majority of cases, this guide should suffice. Sherlock'sinternal judges continue to have the last word on considering anyissue as valid or not.The chain re-org and liveness rule already has an exception.Exception: If an issue concerns any kind of a network admin (e.g. asequencer), can be remedied by a smart contract modification, theprotocol team considers external admins restricted and the considerednetwork was explicitly mentioned in the contest README, it may be avalid medium. It should be assumed that any such network issues will beresolved within 7 days, if that may be possible.The submission abides by all the criteria for that exception except the network(mainnet) does not have an admin. The intention around that criteria is thatbecause there's no admin, we can assume actors can wait for finality beforesubmitting a transaction, and they could not get attacked. However in theOptimism codebase, we have shown the game clock forces honest parties torespond before blocks are finalized, re-opening the vector.It is very clear that the combination of the impact, simple code fix, execution beforefinality, and ease of exploit make an extremely sound case for Medium severity.Judging is not clerk work, it requires making nuanced decisions and notcontinuously falling back on previous decisions, which were made with differentcontexts. Apply common sense, and determine if the submission is worthy of H/M.Evert0xResult: Invalid Has Duplicates

57

The judges have the last of opinion but objectivity is held to a high regard. As thelanguage is so clear, I believe it's the correct judgmentsherlock-admin2Escalations have been resolved successfully!Escalation status:• trust1995: rejectedEvert0xThis was initially deemed invalid by a strict interpretation of our judging guidelines("Chain re-org and network liveness related issues are not considered valid."). Thisrule exists as the "blockchain is trusted" from the perspective of app builders.However, a different trust level applies when building an L1/L2.After a discussion with the lead judge and the protocol team I'm assigning Mediumseverity.sherlock-admin2The protocol team fixed this issue in the following PRs/commits:https://github.com/ethereum-optimism/optimism/pull/10520/files

58

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201/#issuecomment-2075436915
https://github.com/ethereum-optimism/optimism/pull/10520/files

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

59

	Introduction
	Scope
	Findings
	Issues found
	Issues not fixed or acknowledged
	Security experts who found valid issues

	Issue M-1: Incorrect game type can be proven and finalized due to unsafe cast
	Found by
	Summary
	Vulnerability Detail
	Proof of Concept
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-2: Fault game factory can be manipulated to DOS game type using malicious l2BlockNumber
	Found by
	Summary
	Vulnerability Detail
	Proof of Concept
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-3: Theft of initial bonds from proposers who are using smart wallets
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-4: Loss of bond amounts on re-org attacks
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Disclaimers

