SHERLOCK SECURITY REVIEW FOR

Contest type:
Prepared for:
Prepared by:

Lead Security Expert:
Dates Audited:
Prepared on:

OP

Public

Optimism

Sherlock

Trust

March 27 - April 4,2024
June 7,2024

1

'/ SHERLOCK

https://github.com/trust1995

The first open source, permissionless, feature-complete fault proof system in the
Ethereum ecosystem.

Repository: ethereum-optimism/optimism
Branch: develop
Commit: 5137f3b74c6ebcac4f0f5a118b0f4909df03aec6

For the detailed scope, see the contest details.

Each issue has an assigned severity:

» Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
4 0

Trust Stiglitz haxatron
GalloDaSballo l[emonmon nirohgo
MiloTruck fibonacci ctf_sec
obront Oxdeadbeef tallo
guhu95 zigtur bin2chen

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/README.md#audit-scope
https://github.com/trust1995
https://github.com/GalloDaSballo
https://github.com/MiloTruck
https://github.com/zobront
https://github.com/guhu95
https://github.com/bemic
https://github.com/lemonmon1984
https://github.com/0xf1b0
https://github.com/0xdeadbeef0x
https://github.com/zigtur
https://github.com/haxatron
https://github.com/nirohgo
https://github.com/ctf-sec
https://github.com/talllo
https://github.com/bin2chen66

Source:
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84

Found by

Stiglitz, guhu95, lemonmon, obront

Summary

The gameProxy.gameType () .raw() conversions used by OptimismPortal2 in the
proving and finalization steps incorrectly casts the gameType t0 @ uint8 instead of a
uint32, which causes mismatched game types to be considered equivalent. In the
event that a game is exploitable, this can be used to skirt around the off-chain
monitoring to finalize an invalid withdrawal.

Vulnerability Detail

Each game can be queried for its gameType, Which is compared to the current
respectedGameType in the Portal to confirm the game is valid.

GameType is represented as a uint32, allowing numbers up to 2 ** 32 - 1.

type GameType is uint32;

However, when converting the GameType to an integer type in order to perform
comparisons in the proving and finalization process, we unsafely downcase to a
uint8:

function raw(GameType _gametype) internal pure returns (uint8 gametype_) {
assembly {
gametype_ := _gametype
}

This means that for any o1dGameType % 256 == X, any newGameType % 256 == X Will
be considered the same game type.

This has the potential to shortcut the safeguards to allow malicious games to be
finalized.

As is explained in the comments, only games of the current respectedGameType Will
be watched by the off-chain challenger. This is why we do not allow games that

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84

pre-date the last update to be finalized:

/| The game must have been created after respectedGameTypeUpdatedAt.
This is to prevent users from creating // invalid disputes against a
deployed game type while the off-chain challenge agents are not
watching.

However, the watcher will not be watching games where gameType % 256 ==
respectedGameType 7 256.

Let's imagine a situation where game type 0 has been deemed unsafe. It is well
known that a user can force a DEFENDER_WINS state, even when it is not correct.

At a future date, when the current game type is 256, a user creates a game with
gameType = 0. It is not watched by the off chain challenger. This game can be used
to prove an invalid state, and then finalize their withdrawal, all while not being
watched by the off chain monitoring system.

Proof of Concept

The following proof of concept can be added to its own file in test/L1 to
demonstrate the vulnerability:

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.0;

import { Test } from "forge-std/Test.sol";
import "./OptimismPortal2.t.sol";

contract UnsafeDowncastTest is CommonTest {
// Reusable default values for a test withdrawal
Types.WithdrawalTransaction _defaultTx;
bytes32 _stateRoot;
bytes32 _storageRoot;
bytes32 _outputRoot;
bytes32 _withdrawalHash;
bytes[] _withdrawalProof;
Types.0OutputRootProof internal _outputRootProof;

// Use a constructor to set the storage vars above, so as to minimize the
— number of ffi calls.
function setUp() public override {
super . enableFaultProofs() ;
super.setUp() ;

_defaultTx = Types.WithdrawalTransaction({
nonce: O,

3 @/ SHERLOCK

—

—

sender: alice,

target: bob,

value: 100,

gasLimit: 100_000,

data: hex""
b
// Get withdrawal proof data we can use for testing.
(_stateRoot, _storageRoot, _outputRoot, _withdrawalHash,

_withdrawalProof) =

ffi.getProveWithdrawalTransactionInputs(_defaultTx) ;

// Setup a dummy output root proof for reuse.

_outputRootProof = Types.OutputRootProof ({
version: bytes32(uint256(0)),
stateRoot: _stateRoot,
messagePasserStorageRoot: _storageRoot,
latestBlockhash: bytes32(uint256(0))

1) 3

// Fund the portal so that we can withdraw ETH.
vm.deal (address (optimismPortal2), OxFFFFFFFF) ;

function testWrongGameTypeSucceeds() external {

abi.

// we start with respected gameType == 256
vm. prank (superchainConfig.guardian()) ;
optimismPortal?2.setRespectedGameType (GameType.wrap (256)) ;

// create a game with gameType == 0, which we know is exploitable
FaultDisputeGame game = FaultDisputeGame (
payable(
address(

disputeGameFactory.create(
GameType.wrap(0), Claim.wrap(_outputRoot),
encode (uint (0xFF))
)

)

// proving works, even though gameType is incorrect
vm.warp(block.timestamp + 1);
optimismPortal2.proveWithdrawalTransaction ({

_tx: _defaultTx,

_disputeGameIndex: disputeGameFactory.gameCount() - 1,

_outputRootProof: _outputRootProof,

_withdrawalProof: _withdrawalProof

V SHERLOCK

3

// warp beyond the game duration and resolve the game
vm.warp(block.timestamp + 4 days);

game .resolveClaim(0) ;

game .resolve() ;

// warp another 4 days so withdrawal can be finalized
vm.warp(block.timestamp + 4 days);

// finalizing works, even though gameType is incorrect
uint beforeBal = bob.balance;
optimismPortal2.finalizeWithdrawalTransaction(_defaultTx) ;
assertEq(bob.balance, beforeBal + 100);

Impact

The user is able to prove and finalize their withdrawal against a game that is not
being watched and is known to be invalid. This would allow them to prove arbitrary
withdrawals and steal all funds in the Portal.

Code Snippet

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/p
ackages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/p
ackages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/p
ackages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500

Tool used

\YERTEIRREVIEY

Recommendation

- function raw(GameType _gametype) internal pure returns (uint8 gametype_) {
+ function raw(GameType _gametype) internal pure returns (uint32 gametype_) {
assembly {
gametype_ := _gametype

c @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/lib/LibUDT.sol#L117-L126
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L260-L261
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L497-L500

B
\

Discussion

smartcontracts

We see this as a valid medium severity issue
sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/ethereum-optimism/optimism/pull/10152

nevillehuang

Based on scope highlighted below (issue exists and affects portal contract, which
is a non-game contract) and sherlock scoping rules

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5z
BHAvBJBw/edit

2. In case the vulnerability exists in a library and an in-scope contract
uses it and is affected by this bug this is a valid issue.

| believe this is a medium severity issue given the following constraints:
o At least 256 games must exist in a single game type

o This issue doesn't bypass the airgap/Delayed WETH safety net, so can still be
monitored off-chain to trigger a fallback mechanism to pause the system and
update the respected game type if a game resolves incorrectly.

zobront
Escalate
| believe this issue should be judged as High Severity.

The purpose of this contest was to examine the safeguards that could lead to the
catastrophic consequences of having an invalid fault proof accepted. We were
given the constraints of assuming the game is buggy. This means that (a) none of
those issues were accepted, but also that (b) issues that would arise IF the system
were very buggy are valid.

This is the only issue in the contest that poses this extreme risk.

While it has the condition that 255 other games are created, based on the
assumption that the game is buggy, it doesn't seem out of the question that a large
number of additional game types would need to be deployed. This is the only
requirement for this issue to be exploitable (counter to what the judge mentioned

5 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/10152
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit

above), because Optimism's off chain watcher only watches the currently active
game).

More importantly, in the event that this happens, the consequences are
catastrophic. A game that is (a) not being watched and (b) known to be buggy, is
accepted as valid (both in the proving step of withdrawal and the finalization step
of withdrawal).

This leads to a very real, very extreme risk of a fraudulent withdrawal getting
through the system.

With the constraints of the contest in mind (assuming the game is buggy), as well
as the potential billions of dollars of lost funds that could occur, | believe this is the
exact kind of issue that was crucial to find, and clearly fits the criteria for High
Severity.

sherlock-admin2
Escalate
| believe this issue should be judged as High Severity.

The purpose of this contest was to examine the safeguards that could
lead to the catastrophic consequences of having an invalid fault proof
accepted. We were given the constraints of assuming the game is buggy.
This means that (a) none of those issues were accepted, but also that (b)
issues that would arise IF the system were very buggy are valid.

This is the only issue in the contest that poses this extreme risk.

While it has the condition that 255 other games are created, based on
the assumption that the game is buggy, it doesn't seem out of the
question that a large number of additional game types would need to be
deployed. This is the only requirement for this issue to be exploitable
(counter to what the judge mentioned above), because Optimism's off
chain watcher only watches the currently active game).

More importantly, in the event that this happens, the consequences are
catastrophic. A game that is (a) not being watched and (b) known to be
buggy, is accepted as valid (both in the proving step of withdrawal and
the finalization step of withdrawal).

This leads to a very real, very extreme risk of a fraudulent withdrawal
getting through the system.

With the constraints of the contest in mind (assuming the game is
buggy), as well as the potential billions of dollars of lost funds that could
occur, | believe this is the exact kind of issue that was crucial to find, and
clearly fits the criteria for High Severity.

. @/ SHERLOCK

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

guhu95
Three additional points to support the escalation in favor of high:

1. There isn't a constraint of 256 prior games due to use of non-sequential game
types.

2. DoS impact that is caused by the mitigation actions qualifies for high severity.

3. Off-chain monitoring for this issue is not plausible without prior knowledge of
the issue.

1. Games types are not sequential
"~ At least 256 games must exist in a single game type"
"While it has the condition that 255 other games are created"
This appears to be neither a constraint nor a condition:

1. setImplementation does not require sequential game type values.

2. The 3 already defined GameTypes are not sequential: 0, 1, and 255, and all
are configured in the same factory during deployment.

3. The further use of non-sequential game types is highly likely due to
"namespacing" via higher order bits, as is already done with predeploy
addresses (0x42...01), and with their implementation addresses (0xcOde. . .01)
etc. This kind of namespacing will result in many exploitable collisions.

2. The DoS impact of mitigation qualifies as high

...to pause the system and update the respected game type if a game
resolves incorrectly.

Switching the respected game type pauses the bridge for a significant amount of
time qualifying as a DoS issue for the valid withdrawals delayed by the mitigation.

The DoS impact for a valid withdrawal that would otherwise be finalizable is well
over one week:

1. Off-chain monitoring needs to detect the suspicious WithdrawalProven that
was not expected. The issue needs to be validated to require pausing (SLA of
24 hours).

8 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189-L192
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L104-L111
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/scripts/Deploy.s.sol#L327-L329

2. A new implementation of the dispute game, with a new game type value, and t
he new anchor registry (which are immutable) will need to be deployed.

3. The factory will need to be
updated by the owner (SLA of 72 hours) to include the new implementation.

4. The respected game type for the portal would need to be updated by
guardian (SLA of 24 hours).

5. New dispute games will need to be created by proposers for the withdrawals
backlog caused by the delays.

6. Only after all these steps the re-proving for previously valid withdrawals for
previously valid games can be restarted, and would require waiting at least 7
days from the point of unpausing.

Because this blocks all cross-chain interactions on the bridge for a prolonged
period of time, and delays message passing, it blocks all cross-chain protocols
operating across this bridge (including their time-sensitive operations) and not only
locks up funds.

3. Off-chain monitoring is conditional on knowing of this issue

e This issue doesn't bypass the airgap/Delayed WETH safety net, so
can still be monitored off-chain to trigger a fallback mechanism

While it is theoretically possible to monitor for this off-chain, it is unlikely to result in
this action without knowledge of this vulnerability. This is because a creation of
new instance of an old game, that is no longer "respected" by the portal, should not
raise cause for concern (if the issue is unknown at that point).

trust1995
Escalate

Firstly, the finding is brilliant and extremely well noticed by the participants. In my
mind, the finding falls under Low severity, with the reasoning below:

o As far as devs are concerned, there are a maximum of 256 game types. The
bug is an unsynchronized view between the underlying structure and the
definition of GameType as uint32. All evidence points to the fact Optimism did
not plan to make use of over 256 game types.

e From a practical standpoint, even if over 256 game types were planned to be
supported, to get to such a high amount of different game types is extremely
unlikely (as of now, three are planned). The odds of the architecture not
getting refactored, closing the issue, by the time 256 game types are needed,
| estimate to be under a thousandth of a percent.

e For there to be an impact, the following must hold:

S @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L46-L52
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L46-L52
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L448-L449
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L48

A new, vulnerable game type must be defined (highly hypothetical) after 256

game types.

* It's encoding suffix must line up with the respectedGameId set by the admin

« All honest challengers must not look at the vulnerable game type, despite the
fact that challenging it is +EV (they are guaranteed to pick up the attacker's
bond if the claim is invalid)

e The airgap is not bypassed - At any the guardian is able to blacklist the game
and make it unfinalizable. This reason caused for dozens of issues in this
contest to be invalidated, and not applying it for this bug is inconsistent and
shows unsound logic.

sherlock-admin2

Escalate

Firstly, the finding is brilliant and extremely well noticed by the
participants. In my mind, the finding falls under Low severity, with the
reasoning below:

As far as devs are concerned, there are a maximum of 256 game
types. The bug is an unsynchronized view between the underlying
structure and the definition of GameType as uint32. All evidence
points to the fact Optimism did not plan to make use of over 256
game types.

From a practical standpoint, even if over 256 game types were
planned to be supported, to get to such a high amount of different
game types is extremely unlikely (as of now, three are planned). The
odds of the architecture not getting refactored, closing the issue, by
the time 256 game types are needed, | estimate to be under a
thousandth of a percent.

For there to be an impact, the following must hold:

A new, vulnerable game type must be defined (highly hypothetical)
after 256 game types.

It's encoding suffix must line up with the respectedGamelId set by the
admin

All honest challengers must not look at the vulnerable game type,
despite the fact that challenging it is +EV (they are guaranteed to
pick up the attacker's bond if the claim is invalid)

The airgap is not bypassed - At any the guardian is able to blacklist
the game and make it unfinalizable. This reason caused for dozens

10 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/libraries/DisputeTypes.sol#L48

of issues in this contest to be invalidated, and not applying it for this
bug is inconsistent and shows unsound logic.

The escalation could not be created because you are not exceeding the escalation
threshold.

You can view the required number of additional valid issues/judging contest
payouts in your Profile page, in the Sherlock webapp.

guhu95

@trust1995 the main argument you present (sequential game types constraint on
likelihood) is refuted by the evidence in my message above yours (see "1. Games
types are not sequential")

Would you mind specifying what part of the reasoning or evidence you agree and
disagree with?

There are more details and links above, but for your convenience these are: 1.
Setter doesn't require sequential numbers. 2. The three existing games are
non-sequential (1, 2, 255) and are all added to the factory on deployment. 3.
Namespacing via higher bits is already prevalent in the codebase and makes this a
highly probable scenario.

trust1995

The game types defined below follow a common pattern where the upper value is
set as a placeholder for a safe non-production value. It's clearly not meant to
assume they do skipping as a policy, and any experienced developer can confirm
the intention is to keep running from 0,1, up to 255.

library GameTypes {
/// @dev A dispute game type the uses the cannon vm.
GameType internal constant CANNON = GameType.wrap(0);
/// @dev A permissioned dispute game type the uses the cannon vm.
GameType internal constant PERMISSIONED_CANNON = GameType.wrap(1);
/// @notice A dispute game type that uses an alphabet vm.
/// Not intended for production use.
GameType internal constant ALPHABET = GameType.wrap(255);

This is further confirmed by their docs which outline the intended structure of the
GamelD:

/// @notice A ~Gameld represents a packed 1 byte game ID, an 11 byte timestamp,
— and a 20 byte address.

/// @dev The packed layout of this type is as follows:

/17

/17 Bits Value

T @/ SHERLOCK

https://app.sherlock.xyz/audits/

/17

/// [0, 8) Game Type
/// (8, 96) Timestamp
/// [96, 256) Address
/17

It's very hard to look at these points of evidence and think there is any intention to
have more than 256 game types to be played. | realize the issue will be heavily
debated since a lot of money is on the line, so throwing this quote which
summarizes escalations in a nutshell:

“It is difficult to get a man to understand something, when his salary
depends on his not understanding it.” - Upton Sinclair

guhu95
the fact Optimism did not plan to make use of over 256 game types
any intention to have more than 256 game types to be played
the intention is to keep running from 0,1, up to 255

The project clearly decided (before this contest) that game types values higher
than 256 are needed. This is easy to see in these facts:

1. They've previously (in Jan) refactored GameType from uint8 to uint32, leaving
no room for doubt on this aspect.

2. They've fixed the vulnerability as recommended instead of switching back to
uint8.

3. They've accepted the finding as valid.

The team's intention (and explicit previous switch) to use uint32 over uint8 clearly
shows the likelihood of using game types with values > 255. This removes this
incorrectly considered constraint.

This finding justifies high severity for both the unconditionally broken key safety
mechanism of respectedGameType allowing forged withdrawals, and the prolonged
bridge DoS which would result from its mitigation.

MightyFox3

Issues predicted to arise from future integrations or updates, which aren't
documented in the current documentation or README, are not considered valid.
For instance, although the audit currently includes only three game types, even if
the number were to exceed 255 in future implementations, such scenarios are
categorized under future integrations.

Future issues: Issues that result out of a future
integration/implementation that was not mentioned in the docs/README

7 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80
https://github.com/ethereum-optimism/optimism/pull/10152/commits/eba00dbb382f4323305401eaa99630f03f07dd12
https://docs.sherlock.xyz/audits/judging/judging

or because of a future change in the code (as a fix to another issue) are
not valid issues.

Referencing the Optimism official dispute game documents, the game type is
clearly defined as a uint8. This definition does not suggest any future expansion
beyond 255 game types, thereby rendering any inconsistencies between the code
and documents as minor and of low severity.

bemic

The previous comment by @guhu95 seems to be a sufficient counterargument.
Nevertheless, the fact that a 2-day-old github profile is part of the discussion is
interesting.

trust1995

The previous comment by @guhu95 seems to be a sufficient
counterargument. Nevertheless, the fact that a 2-day-old github profile
is part of the discussion is interesting.

You really will do anything to get the last answer in a thread, even with O content to
add except cringeworthy ad-hominem.

bemic
Pardon, let me clarify.

| do not find the argument "future integration/implementation/code change" to be
related. The problem stems from the current state of the codebase, where no
changes are necessary.

As mentioned, few months ago the team made a very specific change to the code
using a PR called "Bump GameType size to 32 bits", where they changed the type
from uint8 to uint32. This clearly indicates that a number > 255 is expected.

It is important to note again, that this does not necessarily mean more than 255
games. Larger type can be used to encode different game types more categorically.

You correctly pointed out that the documentation contains uint8. However, the
documentation cannot be taken as a source of truth in cases like this one.
Otherwise, projects can describe the correct and expected behavior in their
documentation and use the argument “inconsistencies between code and
documentation" as a reason to mark every problem as Low.

guhu95
Regarding:

Issues predicted to arise from future integrations or updates, which
aren't documented in the current documentation or README, are not
considered valid.

13 @/ SHERLOCK

https://specs.optimism.io/experimental/fault-proof/stage-one/dispute-game-interface.html
https://docs.sherlock.xyz/audits/judging/judging

First, the game type is an argument of the both the game and the factory, so can
have any value depending on usage - so all uint32's possible 4294967296 values
are fully in scope, and not only the specific 3 values. It's uint32, not an enum.

Second, even if it was an enum, in this case the README explicitly allows "future
integrations issues" for OptimismPortal2:

Should potential issues, like broken assumptions about function
behavior, be reported if they could pose risks in future integrations,
even if they might not be an issue in the context of the scope? If yes,
can you elaborate on properties/invariants that should hold?

Yes, but this should be limited to the OptimismPortal2 contract.
Contracts other than the OptimismPortal2 contract are not intended for
external integrations and risks for future integrations into these contracts
will likely not be considered valid.

trust1995

You correctly pointed out that the documentation contains uint8.
However, the documentation cannot be taken as a source of truth in
cases like this one. Otherwise, projects can describe the correct and
expected behavior in their documentation and use the argument
"inconsistencies between code and documentation" as a reason to mark
every problem as Low.

We've seen two strong points of evidence for source of truth - the in-code
documentation of GameType and the docs page. On the other hand we see a
commit bumping GameType to uint32, without adding any game types. It seems
speculative to infer they plan to use larger values, contest rules state we need to
give project the assumption of competence in cases like these. For impact to occur,
the following has to occur:

e Optimism must intend to creative game types of uint8

o Future audits of the codebase with the new game type must miss a bug that
is directly in scope

» Theissue must be missed by the extremely detailed test suite ran by Optimism

» The mismatched game type (the phantom game) must not be tracked, or must
have a second unrelated vulnerability allowing to use it for proofs

» Finally the air-gap protections must be bypassed, a fact which reduced to Low
many other submissions.

First, the game type is an argument of the both the game

and the factory, so can have any value depending on usage - so all
uint32's possible 4294967296 values are fully in scope, and not only
the specific 3 values. It's uint32, not an enum.

0 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L107
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://docs.soliditylang.org/en/v0.8.25/structure-of-a-contract.html#enum-types
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L107
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189
https://docs.soliditylang.org/en/v0.8.25/structure-of-a-contract.html#enum-types

Nope, not anything that can be misconfigured by an admin can be viewed as
in-scope. That's an indefensible statement which, if correct, would inflate any
contest by dozens of useless findings.

nevillehuang

1. It is not impossible to ever reach over 255 gametypes, given any possible
incorrect resolution logic will also force a game type upgrade, however |
believe the likelihood is low. Since the root cause is in a non-game contract,
based on agreed upon scope and low likelihood, | believe medium severity is
appropriate, as no safety mechanism is bypassed.

2. 1 don't think we can assume the behavior of off-chain mechanisms here that
act as a safety mechanism, since it is explicitly mentioned as out of scope and
that such scenarios will always be monitored comprehensively.

Off-chain mechanisms exist as part of the system but are not in scope
for this competition. Assume that comprehensive monitoring exists that
will detect most obviously detectable malicious activity.

zobront
@nevillehuang Making sure you've seen this comment from OptimismPortal2:

/| The game must have been created after respectedGameTypeUpdatedAt.
This is to prevent users from creating // invalid disputes against a
deployed game type while the off-chain challenge agents are not
watching.

You should check with the Optimism team about this if you're unclear. This situation
is explicitly not being watched, and therefore is the exact kind of bypass this whole
contest was designed to detect.

If they agree that this bypasses the safety mechanism, | can't see how this could
be anything except High Severity.
guhu95

@nevillehuang in addition to the above consideration of off-chain watchers, please
also consider the DoS impact of mitigation described above in
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#iss
uecomment-2073880067.

| am no expert on Sherlock rules, but to me the DoS impact appears to also qualify
for high severity.

MightyFox3

1. It is not impossible to ever reach over 255 gametypes, given any
possible incorrect resolution logic will also force a game type
upgrade, however | believe the likelihood is low. Since the root

15 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067

cause is in a non-game contract, based on agreed upon scope and
low likelihood, | believe medium severity is appropriate, as no safety
mechanism is bypassed.

2. | don't think we can assume the behavior of off-chain mechanisms
here that act as a safety mechanism, since it is explicitly mentioned
as out of scope and that such scenarios will always be monitored
comprehensively.

Off-chain mechanisms exist as part of the system but are not in
scope for this competition. Assume that comprehensive
monitoring exists that will detect most obviously detectable
malicious activity.

Only three games are currently implemented, even though there are over 255 game
types planned for the future. This does not apply to the existing codebase. Thank
you.

guhu95

1. It is not impossible to ever reach over 255 gametypes, given any
possible incorrect resolution logic will also force a game type
upgrade, however | believe the likelihood is low. Since the root
cause is in a non-game contract, based on agreed upon scope and
low likelihood

@nevillehuang since it also might have been lost in the long discussion, I'd like to
point out again the fact the Optimism

explicitly decided to switch from uint8 to uint32. Would you not agree that this
directly establishes the likelihood as likely? Why would they switch from uint8 to
uint32 if they didn't consider it necessarily needed and therefore likely?

Furthermore, as any value above max uint8 may trigger the bug, any "next" game
can cause this, without having to go through 255 game types before that.

Please reconsider your view of the likelihood of a game type with value > 255,
especially given Optimism's explicit switch away from uints.

To sum up, | see three independent arguments for high being presented:

1. Possible bypass of safeguards as documented by the team, and pointed out in
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/8
4#tissuecomment-2081733431

2. The likelihood argument discussed throughout the issue, but mostly summed
up in https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu

es/84#issuecomment-2078702993 (and in the current comment)

16 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081733431
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081733431
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2078702993
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2078702993

3. Severe and prolonged DoS due to mitigation as presented in
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/8
4#tissuecomment-2073880067

nevillehuang
@guhu95

This depends on 255 distinct unique gametype, NOT 255 FDG games of the same
type. My understanding is that to reach this point, an additional 250+ game types
must have been introduced from new game types or game type switches (such as
due to resolution bug logic or any other game bug). The assumptions of
sequential/non-sequential gaming lds can go both ways.

| think the severity here comes down to whether or not the off-chain watching
mechanism is bypassed, which seems to be so as indicated by code comments
here implying so. There is conflicting statements per contest details stated here,
that states off-chain mechanisms are out of scope and is assumed to be
comprehensive enough. If the off-chain mechanism is confirmed to be bypassed,
then | agree with high severity.

guhu95
@nevillehuang
This depends on 255 distinct unique gametype

My understanding is that to reach this point, an additional 250+ game
types must have been introduced

Please help me understand why all of 2. .254 must be assumed to be used before
using any of the 256. .4294967295 values.

1. There's no requirement in the code for sequential game types.

2. The existing code deploys the factory with 3 types that are already non
sequential: 0, 1, 255.

3. A value like 0x4200, 0x1000 or 0x42000001, can be the very next game type
to be used. Such semantic "versioning" or "namespacing" is both highly
practical (reduces chances of errors) and already common (OP predeploys,
chainlds, opcodes).

4. If "using up" all first 256 games types would be the anticipated approach,
there would be little need to deliberately switch from uint8 to uint32.

Using all of 0. .255 before ever touching the 256. .4294967295 range seems like the
least likely scenario. It's like having a huge fridge, but insisting to keep cramming
everything into it's tiniest compartment (of just 0.0000059% of available space).

nevillehuang

- @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2073880067
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L502-L503
https://github.com/sherlock-audit/2024-02-optimism-2024?tab=readme-ov-file#q-are-there-any-off-chain-mechanisms-or-off-chain-procedures-for-the-protocol-keeper-bots-arbitrage-bots-etc
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol#L189-L192
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/scripts/Deploy.s.sol#L327-L329
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/core-utils/src/optimism/constants.ts#L21-L24

@guhu95 | can see your point, | just believe it has no relevance to considering the
issues severity, and that the focus should be on whether the safety mechanisms
are bypassed or not.

trust1995

| think the severity here comes down to whether or not the off-chain
watching mechanism is bypassed, which seems to be so as indicated by
code comments here implying so. There is conflicting statements per
contest details stated here, that states off-chain mechanisms are out of
scope and is assumed to be comprehensive enough. If the off-chain
mechanism is confirmed to be bypassed, then | agree with high severity.

The statements are not conflicting. The rules state very clearly that off-chain
monitoring is OOS and assumed trustable. Airgaps must therefore come from the
code itself. The comment linked to explains an added validation step in the code,
which is not bypassed. | would appreciate answers to the detailed arguments
raised here.

Oxjuaan

The following comments (referred to by @trust1995 previously) clearly state that
the gameId will only be represented by 1 byte (the first 8 bits of the uint32). From
that, it can be concluded that the protocol does not intend to have more than 256
different game types.

Based on this documentation provided, casting from uint32 to uint8 is a safe and
correct way to obtain the gameId.

Doesn't this clearly make the submission invalid? Please let me know if | am missing
something.

Me and a lot of other people would have submitted this issue if it wasn't for the
following documentation in DisputeTypes.sol:

48 /// @notice A "GameId represents a packed 1 byte game ID, an 11 byte timestamp, and a 2@ byte address.
49 /// @dev The packed layout of this type is as follows:

50 /11 T 1

51 /1/ | Bits | value |

52 e ! 1

53 /1/\] e, 8) | Game Type |

54 /// | 8, 96) | Timestamp |

55 /// | [96, 256) | Address |
56 778 1 |

bemic

.. gameld will only be represented by 1 byte (the first 8 bits of the
uint32). .. casting from uint32 to uint8 is a safe and correct way to obtain
the gameld.

18 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/L1/OptimismPortal2.sol#L502-L503
https://github.com/sherlock-audit/2024-02-optimism-2024?tab=readme-ov-file#q-are-there-any-off-chain-mechanisms-or-off-chain-procedures-for-the-protocol-keeper-bots-arbitrage-bots-etc
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2081118969

| see one fact wrong in your comment @0xjuaan. GameId is bytes32 (256 bits) not
uint32 (32 bits). The casting is performed on GameType which is uint32.

We can see in the PR with the fix that casting and this part of in-code
documentation was updated:

[0, 32) Game Type
[32, 96) Timestamp

Oxjuaan

Oh ok yeah that makes sense (I got Gameld and GameType mixed up). Thisis a
great finding in that case!

thanks @bemic for clarifying
guhu95

@nevillehuang the last part of that README sentence is important for this
discussion:

Assume that comprehensive monitoring exists that will detect most
obviously detectable malicious activity.

| understand "most obviously detectable" to mean that monitoring should be
assumed thorough and reasonably scoped, but NOT all-seeing and all-validating.

This "most obviously detectable" also resolves the conflict with the "while the
off-chain challenge agents are not watching" comment. It presumes "blindspots",
like monitoring "all games all the time", that require on-chain logic, which was the
focus of the contest, and which this bug thoroughly breaks.

To me this bug's impact is highly non-obvious and so has an unacceptable risk of
bypassing the safety measures.

EvertOx
Let me state some of the facts that this discussion highlighted

IF the game types are sequential, 250+ new game types must be created before
the bug gets triggered. ELSE, the game types are not sequential; the bug could
trigger when the next game type is created.

In both scenarios, the bug is only activated by a specific external condition,
introducing new game type(s). This trigger condition is why | believe Medium
severity should be assigned.

Also, for the record
At the time of the audit, the following information was NOT KNOWN:

19 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/10152/files#diff-9df3153262863aa3e5fe876b5467474c0a3f69c24d5f659e372db11e081ab185

« If the team intends to deploy 250+ new game types

« If the new game types are going to be deployed in a sequential way
The following information was KNOWN

e The three defined game types are 0, 1, and 255
zobront

@EvertOx I'm not sure how you think about likelihood vs severity, but for what it's
worth, | see this as:

1) Agree that it's not extremely likely. | agree with @guhu95 that it is a clear
possibility based on the Optimism team's actions, but clearly isn't something
that would immediately be vulnerable.

2) But the purpose of this contest is to make sure the safeguards are solid
against all possible risks with the games, and all the external conditions
required for this to happen would come from games having issues. If this
contest said "assume games can be exploited" (which is what disqualified so
many other issues), that is the only assumption needed for this to be
vulnerable.

3) The outcome is not just "bad" but catastrophic: all could be stolen from the
OptimismPortal (not including ERC20s in the Optimism bridge, plus all assets
bridged to Base, Blast, etc if they follow this upgrade).

trust1995

2. If this contest said "assume games can be exploited" (which is what
disqualified so many other issues), that is the only assumption
needed for this to be vulnerable.

Yet at the same breath, you don't bypass the airgap, which disqualified so many
other issues. Yes you can make the argument that off-chain setups would not
necessarily detect it, but | think that's a diversion tactic because since the dawn of
security contests the scope was strictly on-chain security, which remains intact.

zobront

The airgap would be bypassed and all the funds from the bridge would be
vulnerable.

I'm not going to play definition games here. I'm talking about what would happen in
reality with users funds.

On Thu, May 2, 2024 at 10:52 AM Trust @.***> wrote:

2. If this contest said "assume games can be exploited" (which is what
disqualified so many other issues), that is the only assumption
needed for this to be vulnerable.

20 @/ SHERLOCK

https://etherscan.io/address/0x49048044d57e1c92a77f79988d21fa8faf74e97e

Yet at the same breath, you don't bypass the airgap, which disqualified
so many other issues. Yes you can make the argument that off-chain
setups would not necessarily detect it, but | think that's a diversion tactic
because since the dawn of security contests the scope was strictly
on-chain security, which remains intact.

— Reply to this email directly, view it on GitHub
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu
es/84#issuecomment-2090865347, or unsubscribe
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA
4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43
OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4 . You are
receiving this because you were mentioned.Message ID: @.*** com>

guhu95
At the time of the audit, the following information was NOT KNOWN:

« If the new game types are going to be deployed in a sequential way

In my understanding, there is overwhelming evidence for non-sequential, so it was
"known" at the time of the audit (and was detailed in my duplicate). Forgive me for
reiterating that evidence:

1. No requirement in the code.
2. Exiting games already non sequential: 0, 1, 255.

3. Values like 0x4200, 0x1000 or 0x42000001, are frequently used in practice.
This semantic "versioning" or "namespacing" is both highly practical (reduces
chances of errors) and already common (OP predeploys, chainlds, opcodes).

4. If "sequential" would be the anticipated approach, there would be no need to
switch from uint8 to uint32.

By analogy, "sequential”, is like after upgrading to a huge new fridge, insisting to
keep cramming everything into it's tiniest compartment (of just 0.0000059% of
available space). It is overwhelmingly implausible.

Given this evidence, non-sequential must be assumed, therefore is not an external
condition, but the default assumption. Any new game type with last byte 0x00,
0x01, or Oxff will collide with the existing ones.

@EvertOx
| propose to amend the "known facts" like so:

1. New game types are certain to be used. The current game implementation is
not final - it's assumed WIP at the time of the audit (to the point of being

o @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2090865347
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2090865347
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/notifications/unsubscribe-auth/ABL3ULEGKDC4LXLA4GJZCFLZAJOKBAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJQHA3DKMZUG4
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/core-utils/src/optimism/constants.ts#L21-L24
https://github.com/ethereum-optimism/optimism/pull/9220/commits/cde603aa4e458a84cb7b367c5f2176f77ea9dd80

00S), and the only way to use a new game implementation is via game types.
2. The game types are overwhelmingly likely to be non-sequential.
EvertOx
IV. How to identify a high issue:

1. Definite loss of funds without (extensive) limitations of external
conditions.

This is the requirement for high. It's clear that this issue requires external
conditions to materialize.

| don't disagree with the points you listed, but | don't see it as an argument to
assign High Severity.

zobront

@EvertOx Just to make sure | understand your point: In a contest where the explicit
instructions were to assume that games could be broken, where any time a game is
broken it must be incremented by at least 1, you think it's a "extensive" limitation
that 256 games are reached?

I'm not valuing the fact that the hack is in the billions of dollars at all (which
obviously should be weighted), but just on the definition above, I'm not positive |
understand your disagreement?

guhu95
@EvertOx

| don't disagree with the points you listed, but | don't see it as an
argument to assign High Severity.

Thanks for recognizing my arguments. However, if you do agree with
that reasoning, it directly leads to these conclusions: 1) game types will definitely

be updated; 2) they definitely be updated such that the issue will happen after only
a handful of updates (between 1 and "a few"):

e Even if we assume that game type will be updated initially once a month.

e And the update increment is either +1 with 50%, or bump to new version With
50%.

It means that the probability of the bug is 50% after one month, 75% after two
months, ... 99.975% after one year. Such probabilities cannot be "extensive
limitations", and instead are "nearly certain".

One may choose a different P(jump) and different bumps-in-first-year , but with 1
- [1 - P(jump)]~ (bumps-in-first-year) it's very difficult to justify numbers that
will result in anything corresponding to "extensive limitation".

o5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2091870312

This not even considering that this can affect the OP stack (and not just Optimism),
so affects up to already 19 (!?) rollups in its first year (with ~19B TVL). This
multiplies the probability by the number of OP Stack rollups using this system.

nevillehuang
This is information from the op handbook

Off-chain monitoring can observe FaultDisputeGame contract
resolutions and trigger a fallback mechanism to pause the system and
update the respected game type if a game resolves incorrectly.

The issue here is highlighting a possible bypass in the off-chain monitoring
mentioned above because of a code comment highlighted of how it is presumably
supposed to work. But the contest details stated it is OOS.

Off-chain mechanisms exist as part of the system but are not in scope
for this competition.

My opinion is since there is still an issue arising from an inscope root cause that
results in incorrect resolution and thus finalization of withdrawals but off-chain
monitoring mechanism is assumed to be comprehensive and not be bypassed,
medium severity is appropriate since no airgap/safety mechanism is assumed to be
breached

zobront

@nevillehuang | would agree with this if the issue discovered was in the off chain
mechanisms (ie if the issue highlighted a fix that should be made to the offchain
mechanisms).

But that is not the case. The off chain piece behaves perfectly appropriately and
exactly as documented. | am pointing out no fault in that part of the system.

What | am pointing out is that as a result of this CORRECT behavior, the on chain
contract is highly vulnerable (airgap bypassed).

off-chain monitoring mechanism is assumed to be comprehensive

| don't think this is right. When a part of the system is marked as out of scope, it
means it is assumed to act correctly and according to its specifications. It doesn't
mean it is assumed to magically act in ways that it actually doesn't to save the day
when the in scope system has an error.

nevillehuang

@zobront How would the airgap be bypassed when the off-chain monitoring is
presumed to have caught the incorrect resolution, where like you mentioned it

23 @/ SHERLOCK

https://oplabs.notion.site/Public-OP-Stack-Fault-Proofs-Sherlock-Competition-Handbook-e4cfdf210a5c45c79230af19653163cc
https://l2beat.com/scaling/summary

means the off-chain monitoring mechanism is assumed to have acted correctly and
according to its specifications?

guhu95
The full scope quote is this (emphasis mine):

Assume that comprehensive monitoring exists that will detect MOST
OBVIOUSLY detectable malicious activity.

It's "specification" is not that it will catch anything and everything.

| this case, it will likely NOT be monitoring the games that are NO LONGER being
used, since this is obviously not needed. Proving a withdrawal using a game that is
no longer being used being the root cause of the issue here.

This is further supported by this code comment that assumes games that are not
currently being used are not being monitored.

/| The game must have been created after
respectedGameTypeUpdatedAt. This is to prevent users from creating //
invalid disputes against a deployed game type while the off-chain
challenge agents are not watching.

zobront

Its specification is that it accurately monitors the currently set game type and
catches all exploits in that game type.

It does that action correctly, so there is no issue with the off chain mechanism.

But because of the on chain issue discovered, the airgap will be bypassed
(because the off chain mechanism is not watching the other game type).

My point is that since the off chain mechanism is out of scope, we should NOT
reward issues in this mechanism. But this doesn’t mean we can assume it has
different behavior that magically solves all on chain issues.

To summarize: If we assume the off chain mechanism works exactly as specified
(which is reasonable since it's out of scope), then the on chain issue will bypass the
airgap, so that’s how it would be most fair to judge.

On Tue, May 7, 2024 at 3:58 PM Oxnevi @.***> wrote:

@zobront https://github.com/zobront How would the airgap be bypassed
when the off-chain monitoring is presumed to have caught the incorrect
resolution, where like you mentioned it means the off-chain monitoring
mechanism is assumed to have acted correctly and according to its
specifications?

— Reply to this email directly, view it on GitHub
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu

i @/ SHERLOCK

https://github.com/zobront
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989

es/84#issuecomment-2099299989, or unsubscribe
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MOS5GJ
TVSFCBFLZBEGATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV4
30SLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE . You are
receiving this because you were mentioned.Message ID: @.*** com>

trust1995

Discussing an airgap in an off-chain context is useless once those components
were defined as OOS. The only source of truth for airgap / not an airgap is the
on-chain state.

This discussion is orthogonal to the 256 game requirement, which by itself is an
extensive limitation.

guhu95
@nevillehuang

How would the airgap be bypassed when the off-chain monitoring is
presumed to have caught the incorrect resolution

The resolution of the OTHER game may be fully correct according to that game's
implementation. It is another game entirely, so:

e it could be an older version of the game that is vulnerable - which is why it's
no longer used. And this is also why this game won't be monitored - it makes
no sense to challange if it's buggy.

e it could be the permissioned version (as shown, the permissioned one is
added to the factory on deployment).

e it could be the alphabet testing game (which is added to the factory on
deployment). no reason to monitor this one

« it could be a game used by a different OP stack rollup, proving withdrawals for
it, that would allow fully correct resolutions of the game to be used to replay
withdrawal from that other rollup in Optimism.

The assumption that the OTHER game is possible to challange because it's
resolved incorrectly is not needed here. A just as likely scenario is that the OTHER
game is resolved correctly, but the bridge MUST NOT be using it.

EvertOx
Although for a different reason, | believe it's right to assign Medium as well.

High is reserved for unrestricted losses. Watsons were to assume that the game's
resolution logic was broken, not that game types were added regularly.

95 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84#issuecomment-2099299989
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE
https://github.com/notifications/unsubscribe-auth/ABL3ULAFT2MO5GJTVSFCBFLZBE6ATAVCNFSM6AAAAABFXP4F72VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJZGI4TSOJYHE

| still believe it's an extensive limitation for a new game type to get (created,
audited, and) deployed with a specific ID, as that's the trigger that can potentially
cause this catastrophic bug.

guhu95

Watsons were to assume that the game's resolution logic was broken,
not that game types were added regularly.

@EvertOx But a broken game is resolved by updating the game type. Doesn't the
assumption "the game's resolution logic is broken" unavoidably and directly
includes the assumption of updating the game type?

How can there be an extensive limitation if one thing directly causes the other?
EvertOx

Result: Medium Has Duplicates

@guhu95 assuming "the game's resolution logic is broken" and assuming "the team
will continuously deploy new game types" are two different things.

sherlock-admin4
Escalations have been resolved successfully!
Escalation status:
e zobront: rejected
guhu95
@EvertOx your response:

@guhu95 assuming "the game's resolution logic is broken" and assuming
"the team will continuously deploy new game types" are two different
things.

Did not answer either of the specific questions I've asked.

Doesn't the assumption "the game's resolution logic is broken"
unavoidably and directly includes the assumption of updating the game

type?

How can there be an extensive limitation if one thing directly causes the
other?

| can see the escalation shows as resolved now, but https://github.com/sherlock-au

dit/2024-02-optimism-2024-judging/issues/201 was re-opened 3 days after
escalation resolution, so not sure how to interpret the resolution update.

26 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/84/#issuecomment-2073174916
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201

Source:
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90

Found by

Oxdeadbeef, GalloDaSballo, Trust, bin2chen, ctf_sec, fibonacci, haxatron, nirohgo,
obront, tallo, zigtur

Summary

All new games are proven against the most recent L2 block number in the
ANCHOR_STATE_REGISTRY. This includes requiring that the block number we are
intending to prove is greater than the latest proven block number in the registry.
Due to insufficient validations of the passed L2 block number, it is possible for a
user to set the latest block to type(uint256) .max, blocking all possible future games
from being initialized.

Vulnerability Detail

New games are created for a given root claim and L2 block number using the
factory, by cloning the implementation of the specified game type and passing
these values as immutable args (where _extraData is the L2 block number).

proxy_ = IDisputeGame(address(impl).clone(abi.encodePacked(_rootClaim,
— parentHash, _extraData)));
proxy_.initialize{ value: msg.value }();

As a part of the initialize function, we pull the latest confirmed root and
rootBlockNumber from the ANCHOR_STATE_REGISTRY. These will be used as the
"starting points" for our proof. In order to confirm they are valid starting points, we
require that the L2 block number we passed is greater than the last proven root
block number.

(Hash root, uint256 rootBlockNumber) = ANCHOR_STATE_REGISTRY.anchors(GAME_TYPE) ;

// Should only happen if this is a new game type that hasn't been set up yet.
if (root.raw() == bytes32(0)) revert AnchorRootNotFound() ;

// Set the starting output root.
startingOutputRoot = OutputRoot({ 12BlockNumber: rootBlockNumber, root: root });

o7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90

// Do not allow the game to be initialized if the root claim corresponds to a

— block at or before the

// configured starting block number.

if (12BlockNumber() <= rootBlockNumber) revert UnexpectedRootClaim(rootClaim());

However, the L2 block humber we pass does not appear to be sufficiently
validated. If we look at the Fault Dispute Game, we can see that disputed L2 block
number passed to the oracle is calculated using the _execLeafIdx and does not
make any reference to the L2 block humber passed via extraData:

uint256 12Number = startingOutputRoot.l2BlockNumber +
— disputedPos.traceIndex (SPLIT_DEPTH) + 1;

oracle.loadlLocalData(_ident, uuid.raw(), bytes32(12Number << 0xCO), 8,
<~ _partOffset);

This allows us to pass an L2 block number that is disconnected from the proof
being provided.

After the claim is resolved, we update the ANCHOR_STATE_REGISTRY to include our
new root by calling tryUpdateAnchorState ().

function tryUpdateAnchorState() external {
// Grab the game and game data.
IFaultDisputeGame game = IFaultDisputeGame (msg.sender) ;
(GameType gameType, Claim rootClaim, bytes memory extraData) =
< game.gameData() ;

// Grab the verified address of the game based on the game data.
// slither-disable-next-line unused-return
(IDisputeGame factoryRegisteredGame,) =
DISPUTE_GAME_FACTORY.games ({ _gameType: gameType, _rootClaim: rootClaim,
s _extraData: extraData });

// Must be a valid game.

require(
address(factoryRegisteredGame) == address(game),
"AnchorStateRegistry: fault dispute game not registered with factory"

)

// No need to update anything if the anchor state is already newer.
if (game.l2BlockNumber() <= anchors[gameType] .12BlockNumber) {
return;

}

// Must be a game that resolved in favor of the state.

28 @/ SHERLOCK

—

}

if (game.status() != GameStatus.DEFENDER_WINS) A{
return;

}

// Actually update the anchor state.
anchors [gameType] = OutputRoot({ 12BlockNumber: game.l2BlockNumber(), root:
Hash.wrap(game.rootClaim() .raw()) });

As long as the L2 block number we passed is greater than the last proven one, we
update it with our new root. This allows us to set the ANCHOR_STATE_REGISTRY to
contain an arbitrarily high blockRootNumber.

If we were to pass type(uint256) .max as this value, it would be set in the anchors
mapping, and would cause all other games to fail to initialize, because there is no
value they could pass for the L2 block number that would be greater, and would
therefore fail the check described above.

Proof of Concept

The following test can be dropped into DisputeGameFactory.t.sol to demonstrate
the vulnerability:

—

}

function testZach_DOSWithMaxBlockNumber (uint256 newBlockNum) public {

// propose a root with a block number of max uint256

bytes memory maxBlock = abi.encode(type(uint256) .max) ;
IDisputeGame game = disputeGameFactory.create(GameType.wrap(0),
Claim.wrap(bytes32(uint(1))), maxBlock);
assertEq(game.12BlockNumber (), type(uint256) .max) ;

// when the game passes, it's saved in the anchor registry
vm.warp(block.timestamp + 4 days);

game.resolveClaim(0) ;

game .resolve() ;

// now we can fuzz newly proposed block numbers, and all fail for the same
reason

bytes memory maxBlock2 = abi.encode(newBlockNum) ;

vm. expectRevert (abi.encodeWithSelector (UnexpectedRootClaim.selector, 1));
disputeGameFactory.create (GameType.wrap(0), Claim.wrap(bytes32(uint(1))),
maxBlock2) ;

29 @/ SHERLOCK

Impact

For no cost, the factory can be DOS'd from creating new games of a given type.

Code Snippet

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/p
ackages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/p
ackages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-1L87

Tool used

Manual Review

Recommendation

In order to ensure that ordering does not need to be preserved,
ANCHOR_STATE_REGISTRY should store a mapping of claims to booleans. This would
allow users to prove against any proven state, instead of being restricted to proving
against the latest state, which could be manipulated.

Discussion
smartcontracts

Factually valid although the impact here isn't different than having any game
resolve incorrectly which would poison the AnchorStateRegistry and require the
game type to be changed.

nevillehuang

Based on scoping details below, | believe this issue is valid and in-scope of the
contest, as the root cause stems from the lack of a sanity check within the dispute
game factory allowing large 12BlockNumber t0 be appended

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5z
BHAvBJBw/edit

The potential to block the entire fault proofs system entirely by preventing further
creation of new games is significant, so | believe it warrants high severity given the
potential to block withdrawals from an OP bridge. Although the admin can
temporarily resolve this by switching game type, | believe it is not a valid solution
given the attack can be easily repeated.

Oxjuaan

30 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L528-L539
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-L87
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/AnchorStateRegistry.sol#L59-L87
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit

just a thought @nevillehuang:
| believe it is not a valid solution given the attack can be easily repeated

Is this actually true? If they change the game type, the new FaultDisputeGame
implementation will be fixed and won't have this vulnerability so the attack can't be
repeated. Because of that, the sponsor's comment seems to make the most sense
and calling this a high severity issue is quite sus.

EvertOx

Forwarding a comment from the protocol team

This issue isn't valid because the decoupling of the L2 block number that's
determined during output bisection and the one on the root claim is intentional.
They claim that you can propose an output belonging to block n (so, right hash),
but for the wrong block number in the future (i.e. n + 1). The challenger would be
able to challenge this, as they would see that the output at the claimed block is
wrong (or that the block just doesn't exist) The program, once ran, can either show:

o The output at the given block number isn't correct (i.e. the proposed block
number is part of the safe chain captured by the data available on L1 at the L1
head hash persisted when the game starts)

e The given block number cannot be derived with the data available on L1 (i.e.
the block number is super far in the future, and doesn't even exist)

Essentially a proposal of this form would be invalidated by the current fault proof
system so the bug itself wouldn't be possible

Haxatron

This bug operates under assumption that the FP system can cause a invalid game
to be resolved as valid, and there were multiple ways to do this in the contest (see
#8). If this can occur then no more dispute games can be created for the same
game type which will lead to DoS. Only possible solution is to update game type as
pointed out by comments above.

JeffCX

In this case, one single invalid game resolution with very large block number DOS
the whole game type,

update game type does not seems to be a long term solution, there are not many
game type to update.

The fix is still add proper validation for block number or the fix in this report can be
used as well

31 @/ SHERLOCK

In order to ensure that ordering does not need to be preserved,
ANCHOR_STATE_REGISTRY should store a mapping of claims to
booleans. This would allow users to prove against any proven state,
instead of being restricted to proving against the latest state, which
could be manipulated.

lemonmon1984

For no cost, the factory can be DOS'd from creating new games of a
given type.

| want to note that the attacker is risking the bonds. They will likely to lose it if any
honest party challenges them.

JeffCX
Whether the attacker get challenged or not is not in-scope,

the audit and report is under the assumption that the game can be resolved
incorrectly

FaultDisputeGame resolution logic is not included in the scope of this
contest. Participants should assume that the FaultDisputeGame can
resolve incorrectly (i.e.g, can resolve to DEFENDER_WINS when it should
resolve to CHALLENGER_WINS or vice versa).

and in case the game resolved incorrectly, massive DOS for game type occurs as
outlined in the report.

zobront
To share my perspective here:

TLDR: This is a difficult case, because the issue should be in scope, but the
outcome that it causes is no worse than the manual fixes that would happen when
the safeguards work properly.

Severity: As much as I'd like to, | can't see a justification for High. The outcome
does not seem bad enough.

Scope: This does seem to meet the definitions laid out in the scope document. The
issue is in the in scope contracts, and the outcome (DOS of game type) should be
sufficient for a Medium. However, it is a weird dynamic because when safeguards
are used, it also causes a DOS of game type, so it seems strange that the same
outcome could be a valid issue.

Conclusion: My assessment is that this should remain as a valid Medium, because
the contest rules didn't rule out all game type DOS, only those caused by game
contract logic. That being said, | recognize this is difficult to judge and respect
whatever decision the judge makes.

32 @/ SHERLOCK

JeffCX
as the original well-written report highlights

As long as the L2 block number we passed is greater than the last
proven one, we update it with our new root. This allows us to set the
ANCHOR_STATE_REGISTRY to contain an arbitrarily high
blockRootNumber.

If we were to pass type(uint256).max as this value, it would be set in the
anchors mapping, and would cause all other games to fail to initialize,
because there is no value they could pass for the L2 block number that
would be greater, and would therefore fail the check described above.

the impact of DOS game creation and game type means no user can finalize their
withdraw transaction / execution 12 -> I1 message, which is a leads to clearly loss
of fund and lock of fund as multiple duplicates highlight such as #206

nevillehuang

This issue seems invalid per sponsor comments here.

Any reasons addressing sponsor comments why this should be a valid issue?
@zobront @JeffCX @Haxatron

Haxatron

Hi,

Already given my reasoning above.

| will defer to @zobront and @JeffCX for any additional comments
Acknowledge this one is quite tricky to judge.

zobront

| explained my assessment based on that sponsor comment here:
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#iss
uecomment-2090639437

On Fri, May 3, 2024 at 4:02 PM Haxatron @.***> wrote:
Hi,
Already given my reasoning above.

| will defer to @zobront https://github.com/zobront and @JeffCX
https://github.com/JeffCX for any additional comments

Acknowledge this one is quite tricky to judge.

33 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2090639437
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2090639437
https://github.com/zobront
https://github.com/JeffCX

— Reply to this email directly, view it on GitHub
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu
es/90#issuecomment-2093758255, or unsubscribe
https://github.com/notifications/unsubscribe-auth/ABL3ULAQOEIBLV2L6E
NQS5SL3ZAP30PAVCNFSM6AAAAABFXPS5JESVHI2DSMVQWIX3LMV430
SLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU . You are
receiving this because you were mentioned.Message ID: @.*** com>

JeffCX

Forwarding a comment from the protocol team

This issue isn't valid because the decoupling of the L2 block number
that's determined during output bisection and the one on the root claim
is intentional. They claim that you can propose an output belonging to
block n (so, right hash), but for the wrong block number in the future (i.e.
n + 1). The challenger would be able to challenge this, as they would see
that the output at the claimed block is wrong (or that the block just
doesn't exist) The program, once ran, can either show:

» The output at the given block number isn't correct (i.e. the proposed
block number is part of the safe chain captured by the data available
on L1 at the L1 head hash persisted when the game starts)

» The given block number cannot be derived with the data available
on L1 (i.e. the block number is super far in the future, and doesn't
even exist)

Essentially a proposal of this form would be invalidated by the current
fault proof system so the bug itself wouldn't be possible

Emm seems like this is saying that the game cannot be resolved incorrectly....

but during judging, we mark the game resolution logic out of scope and use the
argument to invalid many issue

It is contradictory to use the argument "incorrect game resolution out of scope" to
invalid many other issue.

while use the argument "game cannot be resolved incorrectly"” to invalid this issue.
the comments strongly contradicts the readme as well:
from read me

Participants should assume that the FaultDisputeGame can resolve
incorrectly (i.e.g, can resolve to DEFENDER_WINS when it should resolve
to CHALLENGER_WINS or vice versa).

34 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2093758255
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2093758255
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU
https://github.com/notifications/unsubscribe-auth/ABL3ULAOEIBLV2L6ENQ5SL3ZAP3OPAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJTG42TQMRVGU

the report is perfect derivation from the statement above without worrying about
the game dispute logic...

Participants should assume that the FaultDisputeGame can resolve
incorrectly (i.e.g, can resolve to DEFENDER_WINS when it should resolve
to CHALLENGER_WINS or vice versa).

then | think the original judging decision still stands.
guhu95

| actually don't understand why the sponsor’s claim is correct. If it does make sense
to anyone else, can someone please explain?

What | understand they're saying is that the game can't resolve correctly in this
way. But | don't understand how that is possible if the extraData's 12Blocknumber iS
never actually used by the proof system? The only user of that value is
AnchorStateRegistry and it doesn't validate it.

There is no check | can see that checks that extraData's 12Blocknumber is actually
in the rootClaim in any way.

From the point of view of the proof system, the block number it is using is unrelated
to the one later being passed to AnchorStateRegistry.

If so, isn't it the case that anyone can always frontrun the legitimate proposals and
use the legitimate data, but pass in type (uint) .max as 12BlockNumber? Isn't that a
perpetual DoS of the system?

What am | missing here?
Haxatron

If | am not wrong, it will be used in VM.step() after adding the block humber into the
preimage oracle via addLocalData()

On Sun, 5 May 2024, 10:04 Guhu, @.***> wrote:

| actually don't understand why the sponsor's claim
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu
es/90#issuecomment-2076645104 is correct. If it does make sense to
anyone else, can someone please explain?

What | understand they're saying is that the game can't resolve correctly
in this way. But | don't understand how that is possible if the extraData's
I2Blocknumber is never actually used by the proof system? The only user
of that value is AnchorStateRegistry and it doesn't validate it.

There is no check | can see that checks that extraData's [2Blocknumber
is actually in the rootClaim in any way.

35 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2076645104

From the point of view of the proof system, the block number it is using
is unrelated to the one later being passed to AnchorStateRegistry.

If so, isn't it the case that anyone can always frontrun the legitimate
proposals and use the legitimate data, but pass in type(uint).max as
I2BlockNumber? Isn't that a perpetual DoS of the system?

What am | missing here?

— Reply to this email directly, view it on GitHub
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issu
es/90#issuecomment-2094551960, or unsubscribe
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDW
W7ZS5YTZAWHSBAVCNFSM6AAAAABFXPSJESVHI2DSMVQWIX3LMV4
30SLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA . You are
receiving this because you were mentioned.Message ID: @.*** com>

guhu95

@Haxatron here?. It doesn't seem to be using the I2number value from extraData
here (or anywhere else in the game itself).

It does use the 11head () from extraData above but not the L2 number.
Haxatron

Apologies, you are correct, the L2 block number referenced on that line is the
anchor root block number rather than the 12 block number passed via the
extraData. Perhaps, this requires more clarification from protocol team...

guhu95

@EvertOx @nevillehuang it looks like the sponsor's argument for this being invalid
is not well understood. The finding is also marked "won't fix", so if it is valid, it is not
mitigated. It would appear that a mitigation would be needed at both game level
and at the registry level, as fixing one without the other would leave the other
vulnerable.

Can @smartcontracts maybe have another look at this, and possibly address the
questions in https://github.com/sherlock-audit/2024-02-optimism-2024-judging/is
sues/90#issuecomment-20945519607?

EvertOx

After a discussion with the protocol it's clear that this issue should be a valid
Medium

trust1995

So permissionless shutdown of withdrawals/messaging until redeploy (Freeze of
Funds of 2 weeks) is considered a Medium on Sherlock? Was the magnitude of

36 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/notifications/unsubscribe-auth/ASHOYPIERRIR4LDWW7ZS5YTZAWHSBAVCNFSM6AAAAABFXP5JESVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAOJUGU2TCOJWGA
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L355
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/main/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L342C54-L342C62
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/90#issuecomment-2094551960

effect this would have on the Optimism ecosystem considered?

A 1-hour shutdown of Blast was the most talked about incident for months, how
would a 2-week FoF be interpreted?

guhu95

In addition to the prolonged DoS, the DoS appears to be repeatable, and require
changes to the registry and portal, and not just updating the game.

In order for the DoS to NOT be repeatable, the fix must be possible at the game
level, such that updating the game type is sufficient. But it doesn't appear to be the
case:

Please see these (new) fix PRs in OP dealing with this issue:
https://github.com/ethereum-optimism/optimism/pull/10431/files,

https://github.com/ethereum-optimism/optimism/pull/10434/files.

They add extensive changes to both the ASR and the Portal to deal with the
I2BlockNumber issue. The changes to the game are minimal, and it appears that
this issue is NOT fixable by just updating the game implementation.

[l suspect this is because in the game, the I12blocknumber is PART of disputed L2
output state, so is not a mutually agreed on external input, unlike the L1 number,
which comes directly from the L1 block.number itself. The dispute is about the
rootClaim output state, not about the input 12blocknumber and something about
the proving setup prevents it from being used this way (or from the game being
able to distinguish which one of these inputs is incorrect). But this is just my limited
and possibly wrong understanding]

Summary: because the issue is not fixable by updating ONLY the game, and an
upgrade of the ASR and Portal are needed, the safety measures are inadequate
and the DoS WITHOUT the full fix is repeatable.

spearfish5609
most talked about incident for months

this incident has not even happened 2 months ago and people cared about it for a
few days at most

nirohgo

After a discussion with the protocol it's clear that this issue should be a
valid Medium

@EvertOx can you elaborate why? (for those of us who weren't on that discussion)
EvertOx

The justification for Medium severity is as follows

37 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/10431/files
https://github.com/ethereum-optimism/optimism/pull/10434/files

The Proxy Admin Owner is a TRUSTED role that can:
o Upgrade all smart contracts that sit behind a Proxy contract.

o Set the implementation contract for any dispute game type within
the DisputeGameFactory.

» Modify the initial bond cost for any dispute game type within the
DisputeGameFactory.

e Remove ETH from the DelayedWETH contract.

The Proxy Admin Owner is assumed to be honest and responsive with an
SLA of 72 hours.

As stated in the README, part of the security model is a honest and responsive
admin that can recover from a DoS within 72 hours.

Are there any off-chain mechanisms or off-chain procedures for the
protocol (keeper bots, arbitrage bots, etc.)?

Off-chain mechanisms exist as part of the system but are not in scope
for this competition. Assume that comprehensive monitoring exists that
will detect most obviously detectable malicious activity.

The supplied block being higher than the actual block number in the EVM is
obviously detectable malicious activity.

In conclusion, once the proposal is detected, the Proxy Admin Owner is trusted to
be responsive within 72 hours and is able to switch the game type to a
permissioned implementation within a new AnchorStateRegistry to mitigate the
DoS.

Note: It's important to note that there’s a difference between switching the game
type (which invalidates all withdrawals with that game type) and switching the
implementation (which does not invalidate withdrawals).

guhu95

@EvertOx but can switching to a permissioned implementation be considered final
“recovery"?

If assumed permanent - it permanently breaks core functionality (no fraud proofs
from that point).

If assumed temporary - it only postpones the switch of the game type and the
withdrawals DoS.

trust1995

This downplayed take is plagued with intellectual dishonesty.

38 @/ SHERLOCK

The supplied block being higher than the actual block number in the EVM
is obviously detectable malicious activity.

If it was obvious as something to look for, Opt would have validated the
I2BlockNumber is the same as the VM block number. Detection is highly
unprobable. Please provide the defender off-chain code to show awareness of this
vulnerability. Once again the benefit of the doubt is given to an opaque statement
by the sponsor and against honest Watsons. For fairness of discussion, it must be
assumed Opt is aware only at the moment games cannot be created.

able to switch the game type to a permissioned implementation within a
new AnchorStateRegistry to mitigate the DoS.

For the past month where Optimism had access to the repo, their suggested fix
was moving to a new game type, confirming the 2 week DOS. Only couple of days
ago came the idea of overriding the same game type to avoid the DOS. Using this
to reduce severity is unacceptable. It essentially extended their 3 day SLA to 1
month, letting them theorize over best response over a tremendously long time and
then argue the optimized response would be what they would be rolling with on
day 1. Clear intellectual dishonesty.

Additionally, from an air-gap perspective (up to High according to the README),
the resolution and updating of the anchor state registry is instantaneous, making
new withdrawals impossible from day O and bypassing intended airgaps. A
combination of FoF impact (High impact) + airgap bypass (High focus of contest) +
permissionless attacker (High likelihood) makes it verry clear high severity is in
order.

| will also state that over the past week Optimism has catapulted a variety of
arguments against the submission which were technically proven wrong, showing
they have no problem misrepresenting an issue or its characteristics in order to
reduce its severity.

spearfish5609

| dont know why the optimism team is trying to find some weird loopholes to argue
for downgrade if they could just use official sherlock docs to justify it:

according to https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-
a-medium-issue : Breaks core contract functionality, rendering the contract
useless or leading to loss of funds. is a medium

about DOS: https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standar
ds requires both

1. The issue causes locking of funds for users for more than a week
2. The issue impacts the availability of time-sensitive functions

to be high severity

39 @/ SHERLOCK

https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://docs.sherlock.xyz/audits/judging/judging#v.-how-to-identify-a-medium-issue
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards
https://docs.sherlock.xyz/audits/judging/judging#iii.-sherlocks-standards

1is true and 2 is questionable if we assume that admin deploys a new game type in
time so funds can be recovered and users can just make new game instance, where
these functions are available again.

| dont see any air-gap bypass unless we use different definitions. My
understanding is that the air-gap is the delay before withdraw of funds can happen
and its not possible for users to withdraw early

EvertOx

@guhu95 It's not a final recovery, but safety mechanisms are put in place first to
mitigate the DoS and, secondly, to remove the DoS factor.

EvertOx

@trust1995 Forwarding from the protocol team the detection code for this case.

So in a nutshell the monitoring service is here:
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5all
8b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87

This service calls out to a forecasting function which checks the L2 block number
and the claim provided against the real output root for that block number:
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5all
8b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69

Claimed L2 block number and output are pulled from the game’s metadata:
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5al1
8b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54

So in the case of that bug, the service would try to get the block number for the
future block that doesn't exist yet, get the following error, disagree, and raise an
alert: https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f
0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40

EvertOx

@spearfish5609 | don't think I'm using weird loopholes to decide on the severity of
this issue.

It's not always clear if the DoS should be judged as indefinite just because the
admin can recover from it. However, in this case, the language in the README
makes it clear.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/ethereum-optimism/optimism/pull/10438

40 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/monitor.go#L87
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/forecast.go#L69
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/extract/extractor.go#L54
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40
https://github.com/ethereum-optimism/optimism/blob/5137f3b74c6ebcac4f0f5a118b0f4909df03aec6/op-dispute-mon/mon/validator.go#L40
https://github.com/ethereum-optimism/optimism/pull/10438

Source:
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194

Found by
GalloDaSballo, Trust

Summary

Proposal of output roots through the DisputeGameFactory from Smart Wallets is
vulnerable to frontrunning attacks which will steal the initial bond of the proposer.

Vulnerability Detail

A fault dispute game is built from the factory, which initializes the first claim in the
array below:

claimData.push(
ClaimData ({
parentIndex: type(uint32) .max,
counteredBy: address(0),
claimant: tx.origin,
bond: uint128(msg.value),
claim: rootClaim(),
position: ROOT_POSITION,
clock: LibClock.wrap(Duration.wrap(0),
— Timestamp.wrap(uint64(block.timestamp)))
b
)3

The sender passes a msg.value Which equals the required bond amount, and the
registered claimant iS tx.origin. At the end of the game, if the claim is honest, the
funds will be returned to the claimant.

Smart Wallets are extremely popular ways of holding funds and are used by all
types of entities for additional security properties and/or flexibility. A typical smart
wallet will receive some execute () call with parameters, verify it's authenticity via
signature / multiple signatures, and perform the requested external call. That is
how the highly popular Gnosis Safe operates among many others. Smart Wallets
are agnostic to whoever actually called the execute () function, as long as the data
is authenticated.

ac @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194

These properties as well as the use of tx.origin in the FaultDisputeGame make it
easy to steal the bonds of honest proposals:

e Scan the mempool for calls to Gnosis execTransaction() or any other variants.

Copy the TX content and call it from the attacker's EOA.

The Smart Wallet will accept the call and send the msg.value to the
DisputeGameFactory.

The claimant Will now be the attacker.

Upon resolution of the root claim, the attacker will receive the initial bond.

Impact

Theft of funds from an honest victim who did not interact with the system in any
wrong way.

Code Snippet

claimData.push(
ClaimData({
parentIndex: type(uint32) .max,
counteredBy: address(0),
claimant: tx.origin,
bond: uint128(msg.value),
claim: rootClaim(),
position: ROOT_POSITION,
clock: LibClock.wrap(Duration.wrap(0),
— Timestamp.wrap(uint64(block.timestamp)))
b
)

Tool used

\YERTEIRREVIEY

Recommendation

The Factory needs to pass down the real msg.sender to the FaultDisputeGame.

Discussion

smartcontracts

i @/ SHERLOCK

https://github.com/safe-global/safe-smart-account/blob/1cd7568769128717c1a6862d22fe34873d7c79c8/contracts/Safe.sol#L104

This report is not entirely correct. It is not possible to "steal" funds from a wallet.
Instead, it is the case that the user creating the FaultDisputeGame would not receive
their bonds at the end of the game. Although this behavior was intentional as the
contracts are meant to be used by EOAs directly and not smart contract wallets, we
believe this is a valid low-severity issue and we will fix it.

trust1995

This report is not entirely correct. It is not possible to "steal" funds from
a wallet. Instead, it is the case that the user creating the
FaultDisputeGame would not receive their bonds at the end of the game.

What you described is essentially stealing - an honest user's bond will be claimed
by the attacker.

Although this behavior was intentional as the contracts are meant to be
used by EOAs directly and not smart contract wallets, we believe this is a
valid low-severity issue and we will fix it.

« If the behavior is intentional, then why fix it?

» Also, no mention anywhere of the assumption that disputers (which are
permissionless) should be EOAs, therefore we can't view that as reducing
severity or OOS in any capacity.

smartcontracts

| think the implied contract is relatively clear, the user who creates the game is the
tx.origin and not the msg.sender. Smart contract wallets weren't an intended user
of the contracts. Either way impact is relatively limited (smallest bond size is at the
initialization level). | think it's a pretty clear footgun though and should be fixed to
prevent issues down the line.

smartcontracts

So actual stance here is that this is valid but low-likelihood and low-impact in
practice.

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/ethereum-optimism/optimism/pull/10149

nevillehuang

Based on scope details below, any issue with root cause of the issue stemming
from FDG contract will be considered OOS of this contest if airgap and/or delayed
WETH mechanism implemented for off-chain review of game results and bond
distribution is not shown to be bypassed

43 @/ SHERLOCK

https://github.com/ethereum-optimism/optimism/pull/10149

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5z
BHAvBJBw/edit

trust1995

@nevillehuang The root cause is clearly in the factory contract using an unusafe
tx.origin parameter, as demonstrated in the submission. The finding is in scope.

trust1995

Escalate

The issue is in scope, because:

e The bug's origin is certainly not in the FDG's initialize() function - without any
changes to the factory there is NO actual way to determine who the correct
claimant should be. The FDG does not have the neceesary context, and the
root cause is lack of sending the msg.sender of the factory as a parameter.
This is further evidenced by the fact the fix changed the Factory's call

e The impact is clearly high

» Based on the following ruling, the submission must be treated as in-scope:
Issues with a root cause in the non-game contracts are IN SCOPE

sherlock-admin2
Escalate
The issue is in scope, because:

o The bug's origin is certainly not in the FDG's initialize() function -
without any changes to the factory there is NO actual way to
determine who the correct claimant should be. The FDG does not
have the neceesary context, and the root cause is lack of sending
the msg.sender of the factory as a parameter. This is further
evidenced by the fact the fix changed the Factory's call

e The impact is clearly high

» Based on the following ruling, the submission must be treated as
in-scope: Issues with a root cause in the non-game contracts
are IN SCOPE

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

i @/ SHERLOCK

https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
https://docs.google.com/document/d/1xjvPwAzD2Zxtx8-P6UE69TuoBwtZPbpwf5zBHAvBJBw/edit
packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol
packages/contracts-bedrock/src/dispute/DisputeGameFactory.sol

Agree that this issue is valid, given the root cause can be seen as stemming from
the factory contract. Additionally, there is no mention whether only an EOA is
allowed to interact with the contracts. Based on agreed upon scope and line drawn,
| believe medium severity to be appropriate since no safety mechanisms
(DelyayedWETH) is bypassed.

MightyFox3

Firstly, it's important to clarify that funds cannot be "stolen" from a wallet in the
manner described. The scenario involves the user who initiates the
FaultDisputeGame; they would not receive their bonds back at the conclusion of
the game, which differs significantly from the notion of funds being stolen.

Regarding the vulnerabilities outlined in the original report, it seems there are
misconceptions about the ease of exploiting these issues. The steps provided
suggest that an attacker can simply scan the mempool, copy transaction content,
and execute it from their own externally owned account (EOA). However, this
overlooks critical security measures inherent in the system:

e The Gnosis smart contract requires signatures from its owners, Alice and Bob,
to authorize any execution of the execTransaction() function. This means
copying the transaction content and executing it from an attacker's EOA is not
feasible unless there is a flaw in how signatures are validated, which is not
typical for smart contract wallets, including the Gnosis Safe Wallet.

e Furthermore, even if Alice and Bob authorize a transaction, the claim that
funds are lost is incorrect. If Alice is the transaction originator and her EOA
executes the transaction, she (tx.origin) retains the ability to claim the bond.
Therefore, there is no actual loss of funds.

Given these clarifications, it would be more accurate to assess the severity of the
issue as low, rather than medium.

trust1995

@MightyFox3 you seem to have completely missed the meat of the exploit, so
allow me to re-iterate:

Firstly, it's important to clarify that funds cannot be "stolen" from a wallet
in the manner described. The scenario involves the user who initiates the
FaultDisputeGame; they would not receive their bonds back at the
conclusion of the game, which differs significantly from the notion of
funds being stolen.

Respectfully, when an attacker can receive a bond deposited by a victim's account
without proofing their claim was invalid, it is considered a theft of funds.

o The Gnosis smart contract requires signatures from its owners, Alice
and Bob, to authorize any execution of the execTransaction()

45 @/ SHERLOCK

function. This means copying the transaction content and executing
it from an attacker's EOA is not feasible unless there is a flaw in how
signatures are validated, which is not typical for smart contract
wallets, including the Gnosis Safe Wallet.

Of course it requires signatures, this is the part of the original submission: Copy the
TX content and call it from the attacker's EOA. The attacker requires a
proposer who is using smart wallet, like the title says. That is not a side exploit or
any actual blocking limitation, since we assume the functionality is a valid way of
interaction (not otherwise noted).

Furthermore, even if Alice and Bob authorize a transaction, the claim that
funds are lost is incorrect. If Alice is the transaction originator and her
EOA executes the transaction, she (tx.origin) retains the ability to claim
the bond. Therefore, there is no actual loss of funds.

Honestly don't understand the argument - is this saying that if the exploit is
botched (doesn't frontrun like it should), it fails? It is shown in the submission that a
malicious frontrunner will be registered as the claimant, and receive the bond at the
end of the dispute.

MightyFox3
Thank you for clarifying the situation further.

Alice and Bob, who own the smart contract wallet, need to agree and sign off on
any transactions that initiate the claim. If Alice submits the transaction and there's
no frontrunning interference, she should be the one to claim the bond.

However, if Bob were to submit his own claim before Alice’s is processed—a
practice known as frontrunning—he would then be eligible to claim the bond. This
could be unfair to Alice, especially if Bob does this deliberately. But such a situation
is quite rare since both parties need to agree to initiate the transaction.

This makes the potential problem less severe, as it relies heavily on one party
acting against the agreed-upon terms.

54710adk341
You can't just 'front-run' any given smart wallet.
Safe.sol#L141-L161

{
if (guard != address(0)) {
Guard (guard) . checkTransaction(
// Transaction info
to,
value,
data,

46 @/ SHERLOCK

https://github.com/safe-global/safe-smart-account/blob/8340a4e6e898755aaca8b285f164c20e41891691/contracts/Safe.sol#L141-L161

operation,
safeTxGas,

// Payment info
baseGas,
gasPrice,
gasToken,
refundReceiver,
// Signature info
signatures,
msg.sender

Smart wallets have guards in place, they check against the msg. sender.
Front-running would make execTransaction() fail since the msg.sender would be
different.

trust1995
Thank you for clarifying the situation further.

Alice and Bob, who own the smart contract wallet, need to agree and
sign off on any transactions that initiate the claim. If Alice submits the
transaction and there's no frontrunning interference, she should be the
one to claim the bond.

However, if Bob were to submit his own claim before Alice’s is
processed—a practice known as frontrunning—he would then be eligible
to claim the bond. This could be unfair to Alice, especially if Bob does
this deliberately. But such a situation is quite rare since both parties
need to agree to initiate the transaction.

This makes the potential problem less severe, as it relies heavily on one
party acting against the agreed-upon terms.

No, that's the point. Charlie, an unprivileged attacker who observes the TX Alice
sent to the mempool, copies the contents and sends it from his EOA. They frontrun
the origin TX and steal the bond.

trust1995
You can't just 'front-run' any given smart wallet.
Safe.sol#L141-L161

\
| 1

‘ if (guard != address(0)) {

‘ Guard (guard) . checkTransaction(

e @/ SHERLOCK

https://github.com/safe-global/safe-smart-account/blob/8340a4e6e898755aaca8b285f164c20e41891691/contracts/Safe.sol#L141-L161

// Transaction info
to,

value,

data,

operation,
safeTxGas,

// Payment info
baseGas,
gasPrice,
gasToken,
refundReceiver,
// Signature info
signatures,
msg.sender

Smart wallets have guards in place, they check against the msg. sender.
Front-running would make execTransaction() fail since the msg.sender
would be different.

That's a wildly incorrect statement. The design of smart wallets is exactly with
account abstraction in mind - The TX contents, gas, calldata etc are all signed by
the multisig and then anyone can transmit the TX to the blockchain. A TX should be
perfectly secure regardless of who is initiating the smart wallet execution call.

The contestant is referring to the optional guard feature, which can perform any
type of filtering at the discretion of the multisig. The only two multisigs I've
checked, the Chainlink MS and the Optimism MS, don't use any guards. Itis,
broadly speaking, a mostly unused feature used to perform arbitrary custom
validation, and has no relevance to the submission.

lemonmon1984

But at the end, the optimism team can utilize DelayedWETH to address the
situation. There is no airgap bypass, and based on the security measures such as
DelayedWETH, the funds are secure.

bemic

Signatures of Safe owners for a specific transaction are crafted off-chain and
passed into the function as input parameters. Once there are enough signatures to
pass the threshold, the Safe transaction will be executed. Who is the one who calls
the Execute function? It does not matter.

This is the known problem of Safe multisig wallet. There are Guards made
specifically to avoid this situation, and they let only one of the owners call the

48 @/ SHERLOCK

https://etherscan.io/address/0x4a87ecE3eFffCb012fbE491AA028032e07B6F6cF
https://etherscan.io/address/0x5a0Aae59D09fccBdDb6C6CcEB07B7279367C3d2A#readProxyContract

actual execution. However, they are not set up by default. | see this as a known and
real problem of Safe. But other protocols like optimism are not forced to be
compatible (although they probably should).

EvertOx

This issue is either invalid as it flags a design recommendation to mitigate an attack
vector. From the perspective of the smart contract it's functioning as normal, it's
just that the user didn't take the necessary measures to profit from this.

Or it's valid and Medium as the loss requires specific conditions (smart wallet) and
it's constrained as it only applies to the initial bond.

Will revisit this issue
trust1995

From the perspective of the smart contract it's functioning as normal, it's
just that the user didn't take the necessary measures to profit from this.

The rationale above can be said about any smart contract exploit, from the
perspective of the smart contract, everything is functioning as normal. It's not a
design recommendation, because Optimism did not limit interaction with the
contracts to only EOAs, and any usage without using a private mempool (extremely
likely) is vulnerable.

Or it's valid and Medium as the loss requires specific conditions (smart
wallet)

As a C4 Supreme Court judge, that's not the type of conditions that merit lowering
a severity. Consider as a thought experiment, a bug that results in loss of funds,
only if the first byte of an address is OxFF. Would that condition reduce severity to
Med? Absolutely not, because we realize that over time and considering enough
users, it is extremely likely there will be affected users. It is incorrect to look at the
single-victim level when the bug is affecting all potential victims.

it's constrained as it only applies to the initial bond.

This argument could also be used if the initial bond is $100000000. Would that
make such billion dollar exploits Med? Just to show that saying it is constrained
does not cap severities, what matters it the potential concrete impact. There is no
respectable judge on the planet that would rule impact of loss of 0.08 ETH = $240
as lower than high.

EvertOx

The rationale above can be said about any smart contract exploit, from
the perspective of the smart contract, everything is functioning as
normal. It's not a design recommendation, because Optimism did not

49 @/ SHERLOCK

limit interaction with the contracts to only EOAs, and any usage without
using a private mempool (extremely likely) is vulnerable.

From the perspective of the protocol's mechanisms it doesn't matter if Alice or Bob
executes this transaction. The functionality works as intended as the person
executing the transaction will receive the bond. Of course this can't be said about
every exploit.

nevillehuang

Bonds should belong to the person(s) creating the games that is signing the
transaction to create a claim. However, given the permisionless nature of
transaction execution for smart wallets as seen here, someone can fron-run and
copy the transaction, bypass the transaction checks and act as the tx.origin of
that initial proposal of the FDG, receiving that initial bond after resolution. | don't
think it should be high severity given the DelayedWETH safety mechanism is not
bypassed, so | believe medium severity is appropriate here.

darkbitO

Hey @nevillehuang, Clearly the issue exists in the FaultDisputeGame contract.
tx.origin has been used in FaultDisputeGame which its issues were out of scope
(unless it bypasses the air-gap). Just because one fix is involving changing the
Factory's code doesn't mean the issue exists in out of FaultDisputeGame's code.

Also if any smart wallet allows attackers to front-run its txs, then those smart
wallets have vulnerability and the real root cause of this issue is in those smart
wallet's code which weren't in the scope of this contest. Users who uses those
smart wallets accepted their risk and they also have options to protect their txs and
avoid front-runners (by using private mempools or using Guard feature of smart
wallet or using smart wallet without front-run issue). There were a lot of similar
situations in that past contests that 3rd party systems bugs could effect the
protocol and there were fixes for those issues in in-scope Contracts (adding more
checks or ...) but those issues were considered as OOS.

trust1995

@darkbitO It is considered very poor contest etiquette to repeat arguments already
discussed. It is showing lack of respect for Watsons and judge's time, and in my
opinion should even be punished.

Hey @nevillehuang, Clearly the issue exists in the FaultDisputeGame
contract. tx.origin has been used in FaultDisputeGame which its issues
were out of scope (unless it bypasses the air-gap). Just because one fix
is involving changing the Factory's code doesn't mean the issue exists in
out of FaultDisputeGame's code.

Was argued above, and neville's response was:

50 @/ SHERLOCK

https://github.com/safe-global/safe-smart-account/blob/5feb0d08f59cfbb44918be1ed5889d9bb634562a/contracts/Safe.sol#L108-L122
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L559
https://github.com/sherlock-audit/2024-02-optimism-2024/blob/f216b0d3ad08c1a0ead557ea74691aaefd5fd489/optimism/packages/contracts-bedrock/src/dispute/FaultDisputeGame.sol#L559

Agree that this issue is valid, given the root cause can be seen as
stemming from the factory contract. Additionally, there is no mention
whether only an EOA is allowed to interact with the contracts. Based on
agreed upon scope and line drawn, | believe medium severity to be
appropriate since no safety mechanisms (DelyayedWETH) is bypassed.

Then:

Also if any smart wallet allows attackers to front-run its txs, then those
smart wallets have vulnerability and the real root cause of this issue is in
those smart wallet's code which weren't in the scope of this contest.
Users who uses those smart wallets accepted their risk and they also
have options to protect their txs and avoid front-runners (by using
private mempools or using Guard feature of smart wallet or using smart
wallet without front-run issue)

This was already explored in depth before your attempt to re-open the discussion.

That's a wildly incorrect statement. The design of smart wallets
is exactly with account abstraction in mind - The TX contents,
gas, calldata etc are all signed by the multisig and then anyone
can transmit the TX to the blockchain. A TX should be perfectly
secure regardless of who is initiating the smart wallet execution
call.

The contestant is referring to the optional guard feature, which can
perform any type of filtering at the discretion of the multisig. The only
two multisigs I've checked, the Chainlink MS and the Optimism MS, don't
use any guards. It is, broadly speaking, a mostly unused feature used to
perform arbitrary custom validation, and has no relevance to the
submission.

54710adk341

| think the implied contract is relatively clear, the user who creates the
game is the tx.origin and not the msg.sender. Smart contract wallets
weren't an intended user of the contracts. Either way impact is relatively
limited (smallest bond size is at the initialization level). | think it's a pretty
clear footgun though and should be fixed to prevent issues down the line.

This sums it up pretty well, this is a clear footgun, hence this is a valid Low. User
errors are not Medium under Sherlock rules.

EvertOx

This comment reflects my current stance on this issue https://github.com/sherlock-

audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840
EvertOx

51 @/ SHERLOCK

https://etherscan.io/address/0x4a87ecE3eFffCb012fbE491AA028032e07B6F6cF
https://etherscan.io/address/0x5a0Aae59D09fccBdDb6C6CcEB07B7279367C3d2A#readProxyContract
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194#issuecomment-2094911840

Result: Medium Has Duplicates
sherlock-admin2
Escalations have been resolved successfully!
Escalation status:
e trust1995: accepted
MightyFox3
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/15

@EvertOx @nevillehuang
trust1995

#15

@EvertOx @nevillehuang

??? Has nothing to do with this submission.

59 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/194/#issuecomment-2075476704
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/15

Source:
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201

Found by
MiloTruck, Trust

Summary

The move () function lacks proper identification of the target of the move, leading to
successful re-org attacks which can take the honest participant's funds.

Vulnerability Detail

Participants in the game can call attack(), defend() or move (), each accepting a
parentIndex Which corresponds to the claim being challenged, and a _claim
commitment.

When participants claim, they have a particular claim in mind which they wish to
challenge, and then pass on that claim's index. However, between the moment they
sent the TX and the moment that TX is executed, a block reorg can take place.
When it occurs, the challenge corresponding to that ID may change to another
challenge, which may be valid or invalid in a different way. Regardless, the
participant's commitment to that move () will be wrong, and they stand to lose their
bond amount.

Chain reorgs are very prevalent in Ethereum mainnet, where the contract is
deployed. You can check this index of reorged blocks on etherscan. It is incorrect
to assume the attacker will wait until it achieved finality, because there's no
warnings or documentation available for them to identify this as a threat.
Therefore, it remains a very valid concern with reasonable hypotheticals.

Note that in high depths, the bond amount is very large, leading to a large loss of
funds.

Possible flow:
o Attacker submits invalid claim hash

» Honest defenders rush to prove the claim wrong (note that only first defender
gets the bond, so they will rush to submit the TX. They would not be
concerned about waiting against reorgs without warning)

e A block re-org occurs

e The attacker replaces the invalid claim with a valid claim hash

53 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201
https://etherscan.io/blocks_forked

o Defender's TXs are applied on top of the valid claim.

o Attacker can scoop up all the defenders' bonds

Impact

Loss of bond value for honest participants of the dispute game.

Code Snippet

Tool used

\YERTEIRREVIEY

Recommendation

Every move needs to include the key parameters which it wishes to attack/defend -
the claim hash and the Position in the game tree.

Discussion
smartcontracts

This is the intended behavior of the contract so we have confirmed the factuality of
the report and marked as "won't fix". Challenger software can handle this case
offchain.

nevillehuang

| believe this is out of scope, given there is no network admins in mainnet and thus
doesn't satisfy the the requirements for the exception

Chain re-org and network liveness related issues are not considered
valid. Exception: If an issue concerns any kind of a network admin (e.g. a
sequencer), can be remedied by a smart contract modification, the
protocol team considers external admins restricted and the considered
network was explicitly mentioned in the contest README, it may be a
valid medium. It should be assumed that any such network issues will be
resolved within 7 days, if that may be possible.

trust1995
Escalate
The finding is in-scope as Medium severity for the following reasons:

e The impact is direct loss of bonds of an honest challenger, who did not make
EVANINELCH

54 @/ SHERLOCK

e There are no other preconditions except a re-org on the blockchain

e As shown in the report, there is more than sufficient likelihood for re-orgs on
ETH to render this a valuable concern that needs to be protected from

e Theissue is CLEARLY a smart contract issue, it is a lack of sufficient
identification of a claim and is fixed by adding one line of code. It does not
belong to the usual category of re-org issues which can be treated as
unavoidable risks of blockchain architecture. The impact and circumstances
are concrete and likely.

e The challenge game is presented as a race where the first challenger picks up
the bond - it is only natural that challengers will pop up as quickly as possible
to challenge a honeypot claim. There are zero warnings or ways where a
challenger can foresee such an attack is possible - unless we assume
challengers are coding gurus which would audit the code and identify this
re-org attack could steal their bonds. To be clear, a simple warning saying
challengers should wait until the claim block is finalized would be sufficient to
close the issue as a user-error, but that's not the case.

sherlock-admin2
Escalate
The finding is in-scope as Medium severity for the following reasons:

» The impact is direct loss of bonds of an honest challenger, who did
not make any mistakes

» There are no other preconditions except a re-org on the blockchain

» As shown in the report, there is more than sufficient likelihood for
re-orgs on ETH to render this a valuable concern that needs to be
protected from

e Theissue is CLEARLY a smart contract issue, it is a lack of sufficient
identification of a claim and is fixed by adding one line of code. It
does not belong to the usual category of re-org issues which can be
treated as unavoidable risks of blockchain architecture. The impact
and circumstances are concrete and likely.

» The challenge game is presented as a race where the first
challenger picks up the bond - it is only natural that challengers will
pop up as quickly as possible to challenge a honeypot claim. There
are zero warnings or ways where a challenger can foresee such an
attack is possible - unless we assume challengers are coding gurus
which would audit the code and identify this re-org attack could
steal their bonds. To be clear, a simple warning saying challengers

55 @/ SHERLOCK

should wait until the claim block is finalized would be sufficient to
close the issue as a user-error, but that's not the case.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

Based on sherlock rules, | believe this is still invalid based on comments here.
EvertOx

The following rule applies

Chain re-org and network liveness related issues are not considered
valid.

Planning to reject escalation and keep issue state as is
trust1995

@nevillehuang The rationale for the scoping rules on Sherlock excluding re-org
attacks is the assumption that a TX sender is responsible for waiting for finality
(stated by Judge on discord). However, due to Optimism-specific circumstances
detailed in depth by the dup submission by MiloTruck, it is proven that an honest
party cannot afford to wait for finality (the so called chess-clock mechanism). For
this reason, and the fact that re-orgs on L1 are proven to be highly likely, it is only
common sense to see that the issue is a valid risk of loss of funds for Medium
severity.

nevillehuang

Hi @EvertOx although | believe this issue could still be possibly out of scope due to
it being related to resolution logic, | think @trust1995 has a point here. Re-orgs are
often times out of the control of a user, and in optimisms case, this directly leads to
a serious inconsistency where user would dispute a claim incorrectly (although
there are safeguards).

| believe that re-org issues exception could be re-considered for sherlock's scope
in the future, possibly a proposal could be put up to address this per discussed,
especially so when a fund loss impact is involved.

EvertOx

| understand that re-org attacks are possibly more interesting to L1's or L2's than
the average protocol. However, using the same judging rules as every Watson used

56 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201#issuecomment-2061664567
https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201#issuecomment-2085970350
https://discord.com/channels/812037309376495636/881726370370158592/1233391162556026891

during the contest, it would only be fair to invalidate it. As the language is clear

Chain re-org and network liveness related issues are not considered
valid.

trust1995

@EvertOx The language is clear, but guidelines always have exceptions. It is up to
the judge to apply common sense and the contest-specific context to every
verdict. Blindly following every rule will lead to injustice and counterexamples
where an impact is clearly real and valuable, but is not rewarded. That is well
understood in the Sherlock rulebook:

Note: Despite these rules, we must understand that because of the
complexity & subjective nature of smart contract security, there may
be issues that are judged beyond the purview of this guide. However,
for the vast majority of cases, this guide should suffice. Sherlock's
internal judges continue to have the last word on considering any
issue as valid or not.

The chain re-org and liveness rule already has an exception.

Exception: If an issue concerns any kind of a network admin (e.g. a
sequencer), can be remedied by a smart contract modification, the
protocol team considers external admins restricted and the considered
network was explicitly mentioned in the contest README, it may be a
valid medium. It should be assumed that any such network issues will be
resolved within 7 days, if that may be possible.

The submission abides by all the criteria for that exception except the network
(mainnet) does not have an admin. The intention around that criteria is that
because there's no admin, we can assume actors can wait for finality before
submitting a transaction, and they could not get attacked. However in the
Optimism codebase, we have shown the game clock forces honest parties to
respond before blocks are finalized, re-opening the vector.

It is very clear that the combination of the impact, simple code fix, execution before
finality, and ease of exploit make an extremely sound case for Medium severity.

Judging is not clerk work, it requires making nuanced decisions and not
continuously falling back on previous decisions, which were made with different
contexts. Apply common sense, and determine if the submission is worthy of H/M.

EvertOx

Result: Invalid Has Duplicates

57 @/ SHERLOCK

The judges have the last of opinion but objectivity is held to a high regard. As the
language is so clear, | believe it's the correct judgment

sherlock-admin2
Escalations have been resolved successfully!
Escalation status:
e trust1995: rejected
EvertOx

This was initially deemed invalid by a strict interpretation of our judging guidelines
("Chain re-org and network liveness related issues are not considered valid."). This
rule exists as the "blockchain is trusted" from the perspective of app builders.
However, a different trust level applies when building an L1/L2.

After a discussion with the lead judge and the protocol team I'm assigning Medium
severity.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/ethereum-optimism/optimism/pull/10520/files

58 @/ SHERLOCK

https://github.com/sherlock-audit/2024-02-optimism-2024-judging/issues/201/#issuecomment-2075436915
https://github.com/ethereum-optimism/optimism/pull/10520/files

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

59 @/ SHERLOCK

	Introduction
	Scope
	Findings
	Issues found
	Issues not fixed or acknowledged
	Security experts who found valid issues

	Issue M-1: Incorrect game type can be proven and finalized due to unsafe cast
	Found by
	Summary
	Vulnerability Detail
	Proof of Concept
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-2: Fault game factory can be manipulated to DOS game type using malicious l2BlockNumber
	Found by
	Summary
	Vulnerability Detail
	Proof of Concept
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-3: Theft of initial bonds from proposers who are using smart wallets
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-4: Loss of bond amounts on re-org attacks
	Found by
	Summary
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Disclaimers

