
OP Labs

Optimism Bedrock
Security Assessment Report

Version: 1.0

August, 2022

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Panic When Unmarshalling Untrusted SSZ Data From P2P . 7Lack of Buffer Size Checks Before Using FillBytes() Function 8Lack of Size Checks in UnmarshalText() Function . 9Unsafe Casting Leads to Integer Overflow . 10Insecure Order of Events in Verifying Unsafe L2 Blocks . 11Unsafe Use of Nonce to Identify Deposit Transactions . 12Private Key Stored Without Encryption . 14JWT Secret Stored Without Encryption . 15Unsafe Casting Used Throughout the Codebase . 16No Checks for Deposit Transaction Type When Calling L1InfoDepositTxData() 17Inconsistent Handling of Deposit Transactions in Older Hard-Forks 18Handling of Failed Deposit Transactions Could Lock ETH . 20Suboptimal Addition of JWT Authentication Header . 21Miscellaneous General Comments . 22
A Test Suite 25

B Vulnerability Severity Classification 28

1

Optimism Bedrock Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Optimism’s Rollup Nodeand Reference Optimistic Geth implementations, components of Optimism’s Bedrock rollup architecture.
The review focused solely on the security aspects of the Golang implementation of the solution, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Optimism’s Rollup Node and Reference Opti-mistic Geth code contained within the scope of the security review. These programs are henceforth abbreviatedto op-node and op-geth respectively.
A summary followed by a detailed review of the discovered vulnerabilities is then given which assigns eachvulnerability a severity rating (see Appendix: Vulnerability Severity Classification), an open/closed/resolved statusand a recommendation.
Additionally, findings which do not have direct security implications (but are potentially of interest) are markedas informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite). The associated test code was provided alongside this report.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitiesidentified within Optimism’s Rollup Node and Reference Optimistic Geth.

Overview

Optimism is a Layer 2 (L2) Optimistic Rollup network designed to utilise the strong security guarantees ofEthereum while reducing its cost and latency.
The Optimism Bedrock architecture constitutes a significant redesign of the underlying rollup architecture.1 Theop-node and op-geth programs are key components of the Bedrock design.
Optimism’s rollup node op-node is the component responsible for deriving the L2 chain from Layer 1 (L1) blocks(and their associated receipts). It functions as a L2 consensus-layer to the L2 execution layer, similar to how abeacon node (e.g. Prysm) utilises a L1 execution engine (e.g. Geth). The canonical chain of inputs is derived fromL1 data, and rollup node drives an execution engine to extend the L2 chain with these inputs. Sequencers canalso add their own inputs, to be submitted back to L1.

1Refer to https://dev.optimism.io/introducing-optimism-bedrock/ for more information.

Page | 2

https://github.com/ethereum-optimism/optimism/tree/develop/op-node
https://dev.optimism.io/introducing-optimism-bedrock/

Optimism Bedrock Overview

Optimism’s fork of Go Ethereum reference-optimistic-geth (a.k.a. op-geth) provides the layer 2 execution en-gine. It has the core goal of being minimally different from the upstream Geth. The primary difference in Opti-mism’s fork is introduction of the Deposit Transaction type, which is the mechanism for executing a transactionon L2 based on events and data taken from L1.
The op-geth block-building code is used by both the sequencer and verifier (a.k.a. validator) entities. When usedto reconstruct blocks entirely based on L1 data, an extension to the regular Engine API fields is used to insertthe right transactions and ignore the transaction pool.

Page | 3

https://github.com/ethereum-optimism/reference-optimistic-geth
https://github.com/ethereum-optimism/optimism/blob/develop/specs/glossary.md#sequencer
https://github.com/ethereum-optimism/optimism/blob/develop/specs/glossary.md#validator

Optimism Bedrock Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the optimism and reference-optimistic-geth repositories, andwere assessed at commits:
• optimism : b708721, restricted to files within the op-node directory.
• reference-optimistic-geth (op-geth): 70b0248.

Note: native Go and Go Ethereum libraries and dependencies were excluded from the primary focus of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-atedwith the business logic implementation of the components in scope. This includes their internal interactions,intended functionality and correct implementationwith respect to the underlying functionality of the Go runtimeand Ethereum protocol.
To support this review, the testing team used the following automated testing tools:

• golangci-lint: https://github.com/golangci/golangci-lint
• semgrep-go: https://github.com/dgryski/semgrep-go
• native go fuzzing: https://go.dev/doc/fuzz/

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 14 issues during this assessment. Categorized by their severity:
• Critical: 1 issue.
• High: 2 issues.
• Medium: 7 issues.
• Low: 1 issue.
• Informational: 3 issues.

Page | 4

https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/reference-optimistic-geth
https://github.com/ethereum-optimism/optimism/tree/b70872149d98f9b14e2b15f74f9d08de75bb8b6e
https://github.com/ethereum-optimism/reference-optimistic-geth/tree/70b02481016d091626187d61764c2b3e07c80dc3
https://github.com/golangci/golangci-lint
https://github.com/dgryski/semgrep-go
https://go.dev/doc/fuzz/

Optimism Bedrock Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Optimism’s Rollup Nodeand Reference Optimistic Geth implementations.
Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
OPB-01 Panic When Unmarshalling Untrusted SSZ Data From P2P Critical Open

OPB-02 Lack of Buffer Size Checks Before Using FillBytes() Function High Open

OPB-03 Lack of Size Checks in UnmarshalText() Function High Open

OPB-04 Unsafe Casting Leads to Integer Overflow Medium Open

OPB-05 Insecure Order of Events in Verifying Unsafe L2 Blocks Medium Open

OPB-06 Unsafe Use of Nonce to Identify Deposit Transactions Medium Open

OPB-07 Private Key Stored Without Encryption Medium Open

OPB-08 JWT Secret Stored Without Encryption Medium Open

OPB-09 Unsafe Casting Used Throughout the Codebase Medium Open

OPB-10 No Checks for Deposit Transaction Type When Calling
L1InfoDepositTxData() Medium Open

OPB-11 Inconsistent Handling of Deposit Transactions in Older Hard-Forks Low Resolved

OPB-12 Handling of Failed Deposit Transactions Could Lock ETH Informational Open

OPB-13 Suboptimal Addition of JWT Authentication Header Informational Open

OPB-14 Miscellaneous General Comments Informational Open

6

Optimism Bedrock Detailed Findings

OPB-01 Panic When Unmarshalling Untrusted SSZ Data From P2P
Asset op-node:eth/ssz.go

Status Open

Rating Severity: Critical Impact: High Likelihood: High

Description

(*ExectionPayload).UnmarshalSSZ() fails to properly validate the transactionsOffset and extraDataOffset values,allowing a malicious actor to crash multiple op-nodes by gossiping a P2P message containing a specially crafted SSZ
ExecutionPayload .
The function is missing checks to ensure that transactionsOffset is larger than extraDataOffset .
Consider the following (*ExecutionPayload).UnmarshalSSZ() function snippet below:

176 extraDataSize := transactionsOffset - extraDataOffset
payload.ExtraData = make(BytesMax32, extraDataSize)

178 copy(payload.ExtraData, buf[extraDataOffset:transactionsOffset])

When extraDataOffset > transactionsOffset (which previous checks do not prevent), an unhandled “slice boundsout of range” panic is raised in the slicing operation at line [178].
The uint32 extraDataSize value also experiences a negative overflow, making it possible to allocate up to 4 GiB atline [177] and exhaust the memory of some systems.
(*ExecutionPayload).UnmarshalSSZ() is executed on externally-accessible, untrusted data obtained from the P2P net-
work at p2p/gossip.go:221 . Amalicious actor can trivially broadcast P2Pmessages that contain an eth.ExecutionPayload
with its transactionsOffset smaller than extraDataOffset , triggering unhandled panics in multiple op-nodes whenthey unmarshal the data.
Note: this vulnerability would be triggered before validation that the execution payload had the Sequencer’s validsignature, therefore allowing anyone to submit the malicious payload and trigger the crash — see OPB-05.
Refer to Appendix A for outputs from relevant proof-of-concept testing.

Recommendations

Implement checks to ensure transactionsOffset is larger than extraDataOffset before using these variables to createa slice.

Page | 7

Optimism Bedrock Detailed Findings

OPB-02 Lack of Buffer Size Checks Before Using FillBytes() Function
Asset op-node:p2p/signer.go, op-node:rollup/derive/l1_block_info.go,

op-node:rollup/derive/deposit_log.go

Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

There are no buffer size checks implemented before using FillBytes() function of math/big library.
According to https://pkg.go.dev/math/big#Int.FillBytes of big.Int and its FilledBytes() function - "FillBytes()
panics if the absolute value of X doesn’t fit in buffer".
The FillBytes() is used on the following variables without sufficient validation of the buffer size, potentially causingunhandled panics if large absolute values are used:

• chainID in op-node:p2p/signer.go

• info.BaseFee in op-node:rollup/derive/l1_block_info.go

• deposit.Mint and deposit.Value in op-node:rollup/derive/deposit_log.go

Refer to Appendix A for outputs from relevant proof-of-concept testing.

Recommendations

Implement additional checks before using FillBytes() function to ensure the provided buffer is sufficiently large tofit required value.

Page | 8

https://pkg.go.dev/math/big#Int.FillBytes

Optimism Bedrock Detailed Findings

OPB-03 Lack of Size Checks in UnmarshalText() Function
Asset op-node:rollup/derive/params.go

Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

There are no size checks implemented in UnmarshalText() function to verify if text string being processed is of suffi-cient size.
if c := text[ChannelIDDataSize*2]; c != ':' {

return fmt.Errorf("expected : separator in channel ID, but got %d", c)
}

If text is smaller than ChannelIDDataSize*2 , the above code will trigger unhandled panic.

Recommendations

Implement checks to ensure supplied text string is of sufficient size to perform any data manipulation / extraction on.

Page | 9

Optimism Bedrock Detailed Findings

OPB-04 Unsafe Casting Leads to Integer Overflow
Asset op-node:eth/ssz.go

Status Open

Rating Severity: Medium Impact: High Likelihood: Low

Description

Unsafe casting of payload.ExtraData length to uint32 in MarshalSSZ() function may result in integer overflow,leading to unhandled panic.
On line [102] the following casting occurs in copy() function call:
copy(buf[offset:offset+uint32(len(payload.ExtraData))], payload.ExtraData[:])

Based on the snippet below from op-node:eth/types.go , type of payload.ExtraData is []byte and, as such, its length
can be bigger than uint32 :
type BytesMax32 []byte
ExtraData BytesMax32 `json:"extraData"`

When casting len((payload.ExtraData)) to uint32 , with sufficiently large payload.ExtraData , the result of
offset+uint32(len(payload.ExtraData)) will overflow. The final result will be "wrapped around", producing a smaller
value than expected and subsequently triggering panic in the copy() function due to incorrect slice bounds.
Refer to Appendix A for outputs from relevant proof-of-concept testing.

Recommendations

Implement size checks before type casting to ensure the result will not overflow. Consider using safecast functionsinstead.
Verify values of variables before using them to create a slice.

Page | 10

Optimism Bedrock Detailed Findings

OPB-05 Insecure Order of Events in Verifying Unsafe L2 Blocks
Asset op-node:p2p/gossip.go

Status Open

Rating Severity: Medium Impact: Medium Likelihood: Medium
.

Description

Sequencer’s signature verifification is currently implemented as one of the last steps in the unsafe L2 block verificationprocess.
Although computationally expensive, signature verification should be performed before unmarshalling execution pay-loads, which could be originating from untrusted and potentially malicious endpoints.

Recommendations

Ensure signature is verified before unmarshalling data to filter out potentially malicious payloads originating from un-trusted endpoints.

Page | 11

Optimism Bedrock Detailed Findings

OPB-06 Unsafe Use of Nonce to Identify Deposit Transactions
Asset op-geth:core/state_transition.go & core/types/deposit_tx.go

Status Open

Rating Severity: Medium Impact: High Likelihood: Low

Description

Op-geth uses a “magic” transaction nonce value to identify deposit transactions within the state transition code. Thereare no validation steps preventing “normal” L2 transactions from having this nonce. As such, transactions originatingfrom L2 that contain this nonce will be treated as deposit transactions within the state execution code.
Senders of these affected transactions do not have to pay gas fees, and other checks are bypassed that might result inproblematic state execution.
The testing team did not identify any validation performedwithin op-geth or op-node that would prohibit non-deposittransactions from using this nonce value.
However, exploitation is only feasible when malicious sequencers or batch submitters are considered (with a non-standard transaction pool implementation); Hence the currently low likelihood rating.
Details

The Go Ethereum state transition code is executed on objects implementing the Message interface,2 rather than a
types.Transaction .3 This is to allow state execution with input other than signed transactions, like to implement
the eth_call and eth_estimateGas RPC endpoints. Because the Message interface abstracts away any underlying
transaction type, tx.Type() == DepositTxType cannot be used to identify deposit transaction messages.
The op-geth design treats deposit transactions specially, as their gas was instead paid for on L1. To identify thesedeposit transaction messages, their nonce is reported as a large value that individual accounts are unlikely to reach.
const DepositsNonce uint64 = 0xffff_ffff_ffff_fffd

This magic value is then used to identify deposit transactions within the StateTransition code, like below:
func (st *StateTransition) preCheck() error {

if st.msg.Nonce() == types.DepositsNonce {
// No fee fields to check, no nonce to check, and no need to check if EOA (L1 already verified it for us)
// Gas is free, but no refunds!
st.initialGas = st.msg.Gas()
st.gas += st.msg.Gas() // Add gas here in order to be able to execute calls.
return nil

}
// ...

Because nonce validation is performed by the state transition code (at lines [240-251]) and bypassed for “deposit trans-actions”, there is no need for the sender’s nonce to actually equal DepositsNonce . Provided their transactions are includedin a batch, a single sending account could repeatedly exploit this issue.
2Defined at core/state_transition.go:67 .
3Defined at core/types/transaction.go:53 .

Page | 12

Optimism Bedrock Detailed Findings

Fortunately, the transaction pool (TxPool) implementation (used in op-geth for sequencer block production) appears toensure only valid, incrementally increasing nonces are included in blocks. As such, a non-malicious sequencer wouldonly include problematic transactions when the sending account actually has a current nonce of DepositsNonce .

Recommendations

Ensure deposit transactions can be uniquely identified within the StateTransition object’s methods, to ensure gasand state logic specific to the DepositTx transactions is only applied to those transactions. Prefer to avoid relying ona trusted sequencer that proposes blocks containing transactions with valid nonces.
Add relevant tests to confirm expected behaviour.
Possible solutions appear to fall broadly into the following categories:
Explicitly Pass Type Information

One solution could involve adding anothermethod to the Message interface, like Type() uint64 or IsDeposit() bool(the latter appears more explicit).
As a caveat, changes to the interface may affect compatibility with third-party tools that would use op-geth as a librarydependency. However, as op-geth already adds the Mint() and RollupDataGas() methods, this does not appear topose any additional problems.
Nonce Validation

An alternative remediation could involve performing sufficient validation steps, to prohibit non-deposit transactionsfrom using the DepositsNonce value. However, the testing team believe this to be a sub-optimal fix and may easily
lead to other issues in the future; it does not resolve the underlying misuse of the Nonce() for other than its intendedpurpose. It also slightly breaks equivalence with the L1 EVM.
If the DepositsNonce mechanism were to be retained, it may also be necessary to implement a similar validation step
in the op-node . At the least, care should be taken to ensure any validation in the TxPool (performed by the sequencer)should match the validation of batched transactions, to protect against the sequencer proposing invalid blocks.

Page | 13

Optimism Bedrock Detailed Findings

OPB-07 Private Key Stored Without Encryption
Asset op-node:p2p/signer.go

Status Open

Rating Severity: Medium Impact: High Likelihood: Low

Description

The batch submitter’s private key is stored in cleartext.
The LoadSignerSetup() function uses github.com/ethereum/go-ethereum/crypto library and its LoadECDSA() , whichloads private key from a file. There is no functionality decrypting key after loading it, suggesting that the batch submit-ter’s private key is stored in cleartext.
Note: the testing team acknowledges this issue is known by the Optimism team and assumes there are plans to fix it, based
on this comment found in the code ‘// TODO: load from encrypted keystore

Recommendations

Do not store sensitive information, such as private keys, in cleartext. Implement encryption for sensitive data at rest.

Page | 14

Optimism Bedrock Detailed Findings

OPB-08 JWT Secret Stored Without Encryption
Asset op-node:service.go

Status Open

Rating Severity: Medium Impact: High Likelihood: Low

Description

The JWT secret is stored in cleartext file.
There are no encryption mechanisms implemented in NewL2EndpointConfig() when saving secret to a file, and nodecryption is in place when reading the file.

Recommendations

Do not store sensitive information, such as secret phrases or private keys, in cleartext. Implement encryption forsensitive data at rest.

Page | 15

Optimism Bedrock Detailed Findings

OPB-09 Unsafe Casting Used Throughout the Codebase
Asset op-node:*

Status Open

Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

Unsafe type casting, such as uint32() or uint64() , is used throughout the codebase of the project.
Casting without bounds checking can cause integer overflows or underflows, leading to unexpected behaviour orunhandled crashes.

Recommendations

Implement bounds checks for all casting used in the project. Consider using the go-safecast library instead.

Page | 16

Optimism Bedrock Detailed Findings

OPB-10 No Checks for Deposit Transaction Type When Calling L1InfoDepositTxData()

Asset op-node:rollup/derive/channel_out.go

Status Open

Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

It is assumed that the first transaction in the block is a deposit transaction, however, there are no checks implementedto verify it before calling L1InfoDepositTxData() function:
l1InfoTx := block.Transactions()[0]
l1Info, err := L1InfoDepositTxData(l1InfoTx.Data())

Usage of invalid data could lead to unexpected behaviour or unhandled panic.

Recommendations

Verify the type of block transaction before using it in the L1InfoDepositTxData() function, for example:
if l1InfoTx.Type() == types.DepositTxType {

l1Info, err := L1InfoDepositTxData(l1InfoTx.Data())
}

Page | 17

Optimism Bedrock Detailed Findings

OPB-11 Inconsistent Handling of Deposit Transactions in Older Hard-Forks
Asset op-geth:core/types/transaction_signing.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The transaction signers, responsible for validating and processing transaction signatures, handle deposit transactions(of DepositTxType) inconsistently. If signers other than londonSigner are ever used, they may cause unexpectedbehaviour and incorrectly validate deposit transactions.
Each implementation of the Signer interface performs transaction signature processing according to rules introduced
by a particular Ethereum protocol upgrade.4
As these signers are not directly used as part of operating a node with the current devnet configuration, which has the
londonSigner enabled from genesis,5, this poses no identified risk to the Bedrock node software or the network.
Problems may otherwise occur if op-geth were used for processing transactions directly received from wallets, whichcan make use of the older signers. Any such contrived attack would be limited to impacting a user’s own node.

Details

Op-geth introduces changes to the londonSigner to handle deposit transactions, which are not signed and do not
have a signing hash. Other signers, which have not been modified, handle a transaction of DepositTxType differently.
When passed the same transaction of DepositTxType , each signer behaves as follows:
londonSigner :

• SignatureValues() — returns error "deposits do not have a signature" .
• Hash() — panics.

EIP2930Signer :

• SignatureValues() — returns error ErrTxTypeNotSupported .
• Hash() — returns empty hash.

EIP155Signer :

• SignatureValues() — returns error ErrTxTypeNotSupported .
• Hash() — returns a non-empty hash (with a chainId input).

4A protocol upgrade, refer to https://ethereum.org/en/history/ for further explanation.For example, the EIP155Signer validates transactions that were accepted on Ethereum mainnet as of the Spurious Dragon update when EIP155
was introduced.5Refer to the hardhat task at optimism:packages/contracts-bedrock/tasks/genesis-l2.ts , which sets londonBlock: 0 at line [278].

Page | 18

https://ethereum.org/en/history/
https://ethereum.org/en/history/#spurious-dragon

Optimism Bedrock Detailed Findings

HomesteadSigner :

• SignatureValues() — returns error ErrTxTypeNotSupported .
• Hash() — returns a different non-empty hash without error (with no chainId input).

FrontierSigner :
Same as HomesteadSigner .

Recommendations

Confirm whether an Optimism Bedrock chain could have a valid configuration where the London hard–fork is notimmediately active at genesis.
If so, ensure consistent handling of DepositTxType transactions explicitly in the other signer implementations.
If the London hard-fork is required, consider explicitly enforcing this during configuration processing.

Resolution

The development team have confirmed that the design intends the London hard–fork to be enabled at genesis.

Page | 19

Optimism Bedrock Detailed Findings

OPB-12 Handling of Failed Deposit Transactions Could Lock ETH
Asset op-geth:core/state_transition.go

Status Open

Rating Informational

Description

The current handling of deposit transactions may result in locked ETH when the transaction fails to execute and theL1 sender was a contract.
When a deposit transaction fails to execute, the sender’s account balance is still credited with the mint value. This isan understandable design decision, to protect against ETH being indefinitely locked in the L1 deposit contract.
However, when the deposit’s L1 sender is a contract, the sender on L2 (CALLER) is an alias. This alias will receive themint funds but the sending contract may not be equipped to access or recover these funds (outside of a successfultransaction).

Recommendations

Consider an alternative mechanism, in which failing deposit transactions initiate a withdrawal back to L1 (to allowrecovery).
Alternatively, ensure documentation clearly warns bridge and contract developers to treat the deposit transactionswith a non-zero mint value as effectively two independent state changes (where the transaction content may revertbut the mint always succeeds).
So contracts interacting with the Optimism deposit bridge should be designed to recover any extra balance held by itsL2 account alias.

Page | 20

Optimism Bedrock Detailed Findings

OPB-13 Suboptimal Addition of JWT Authentication Header
Asset op-geth:rpc/auth.go

Status Open

Rating Informational

Description

(*JWTAuthProvider).AddAuthHeader() does not correctly handle a scenario where the provided header already con-
tains an entry with a key of "Authorization" . In this case, the function produces a malformed http.Header withoutreturning an error.
(*http.Header).Add() , used at line [66], appends to any existing value associated with that key, resulting in an invalid
"Authorization" header.
No other RPC client code currently sets an "Authorization" header. As such, this is not currently problematic and isdeemed of informational severity.

Recommendations

Consider modifying (*JWTAuthProvider).AddAuthHeader() to appropriately handle the edge case where the provided
header argument already contains an entry Authorization. This could involve either:
a) Returning an error if an "Authorization" entry already exists and has a non-empty value, or
b) Using (*http.Header).Set() to override the existing entry.

Add to the godoc comment describing this behaviour.

Page | 21

Optimism Bedrock Detailed Findings

OPB-14 Miscellaneous General Comments
Asset op-node:* & op-geth:*

Status Open

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Hardcoded Gas value of 150_000 in op-node:rollup/derive/l1_block_info.go :
Verify if the hardocded gas value is correct or could it be further optimised or calculated dynamically.

2. MaxReorgDepth value hardcoded to 500 in op-node:rollup/sync/start.go :
Verify if the hardcoded value is sufficient, 500 appears to be a narrow window of time considering fixed L2 blocktime of 2 seconds.

3. Existence of L1TrustRPC flag:
Whilst we understand potential performance improvements of setting L1TrustRPC to true , no external RPCendpoints should be blindly trusted and verification should always be performed. Consider removal.
Note, the default value is false .

4. Unknown “magic” numbers:

• At op-geth:core/types/transaction.go:345 , (*Transaction).RollupDataGas() contains the following un-explained number literal.
onesGas := (ones + 68) * params.TxDataNonZeroGasEIP2028

One can infer that this corresponds to some fixed, per-tx cost or profit fee but the reason for that specificnumber is unclear.
Consider replacing the literal with a descriptively named const or config value, and include a commentexplaining some reasoning for its use and value. This may also be worthwhile explaining in user-facingdocumentation.

5. Numerous TODO comments to address:
We have observed numerous TODO comments throughout the code outlining outstanding design decisions andfeature implementation.
Go through all TODO comments to ensure all key design decisions have been made, verified and there are nooutstanding items that could be considered critical.

6. Misleading or incorrect comments:At miner/worker.go:1104 , we observe the following comment:
// We use the eip155 signer regardless of the current hf.
from, _ := types.Sender(work.signer, tx)

However, this is incorrect and misleading. The signer used is instead chosen based on the current fork in
(*worker).makeEnv() at line [769].

7. Missing or insufficient godoc comments:

Page | 22

Optimism Bedrock Detailed Findings

• At op-geth:rpc/client.go:189 , the godoc comment for DialWithAuth() is missing. It is preferable to clar-ify in the comment that no authentication is implemented for the stdio and IPC transports. This could oth-erwise lead to confusion.
• At core/types/transaction_signing.go:226 , we recommend adding to the existing godoc comment for

(londonSigner).Hash() to indicate that it panics if passed a DepositTxType (if this behaviour remains).
8. Minor optimisations and style nitpicks:

• Prefer the %w format flag to %v when using fmt.Errorf() to construct errors containing other error con-tent. This allows errors to be wrapped with extra information while still making it possible to match theunderlying error with errors.Is() .6
Relevant in scope instances are as follows:
– op-geth:eth/catalyst/api.go:204

– op-node:eth/ssz.go:181

– op-node:eth/types.go:178

– op-node:l1/receipts.go:36

– op-node:l1/types.go:140,46,59,86,108,121,189

– op-node:l2/util.go:51,59,75,105,113

– op-node:node/node.go:115

– op-node:p2p/config.go:159,164,168,172,196,200,213,217,223,246,257,307,325,349,375,393,397
401,405,412

– op-node:p2p/discovery.go:114,119,150,157,161

– op-node:p2p/gossip.go:192,325,331,354,358,362,374

– op-node:p2p/host.go:54,59,63,66,71,76,81,87,149

– op-node:p2p/node.go:59,74,79,91,132,137

– op-node:p2p/rpc_server.go:359

– op-node:p2p/signer.go:91

– op-node:rollup/derive/attributes_queue.go:61

– op-node:rollup/derive/batch_queue.go:71

– op-node:rollup/derive/batches.go:19

– op-node:rollup/derive/channel_bank.go:204

– op-node:rollup/derive/channel_in_reader.go:111

– op-node:rollup/derive/channel_out.go:136,147

– op-node:rollup/derive/l1_block_info.go:123,128

– op-node:rollup/derive/l1_retrieval.go:79,82

– op-node:rollup/derive/params.go:56,63

– op-node:rollup/derive/payload_util.go:28,35

– op-node:rollup/derive/pipeline.go:142,158

– op-node:rollup/driver/state.go:346

– op-node:rollup/driver/step.go:50,53

– op-node:service.go:39,44,49,54,104,129,135

These can be detected using the errorlint linter via golangci-lint.
6Refer to the errors package documentation for more info.

Page | 23

https://golangci-lint.run/usage/linters/#errorlint
https://golangci-lint.run/usage/linters/
https://pkg.go.dev/errors

Optimism Bedrock Detailed Findings

• At op-geth:rpc/websocket.go:241 , in the statement err = auth.AddAuthHeader(&dialHeader) , err isan existing variable that is assigned. In this instance, err is captured as a closure from the sur-rounding scope and might complicate its garbage collection. Prefer creating a new variable with
err := auth.AddAuthHeader(&dialHeader) .

9. List of identified typos:
• op-geth:core/beacon/types.go:39 — “the” should be “then”.
• op-geth:miner/worker.go:1109 — “reply” should be “replay”. This appears copied from upstream at line[889], which also contains the same typo.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 24

Optimism Bedrock Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and were provided along with this document.The following were run from the optimism/op-node directory and output is given below.

The following output is associated with OPB-01.
$ go test -run=TestUnmarshalSSZ ./eth
--- FAIL: TestUnmarshalSSZ (0.03s)
panic: runtime error: slice bounds out of range [508:11] [recovered]
panic: runtime error: slice bounds out of range [508:11]

goroutine 6 [running]:
testing.tRunner.func1.2({0x7d1540, 0xc0000a0000})
/usr/local/go/src/testing/testing.go:1389 +0x24e
testing.tRunner.func1()
/usr/local/go/src/testing/testing.go:1392 +0x39f
panic({0x7d1540, 0xc0000a0000})
/usr/local/go/src/runtime/panic.go:838 +0x207
github.com/ethereum-optimism/optimism/op-node/eth.(*ExecutionPayload).UnmarshalSSZ(0xc00005bd38, 0x1fc, {0x888900, 0xc00018af90})
<optimism_root>/op-node/eth/ssz.go:178 +0x8af
github.com/ethereum-optimism/optimism/op-node/eth.TestUnmarshalSSZ(0x0?)
<optimism_root>/op-node/eth/sigp_ssz_test.go:79 +0xdf
testing.tRunner(0xc000115ba0, 0x824820)
/usr/local/go/src/testing/testing.go:1439 +0x102
created by testing.(*T).Run
/usr/local/go/src/testing/testing.go:1486 +0x35f
exit status 2
FAIL github.com/ethereum-optimism/optimism/op-node/eth 0.040s

The following output is associated with OPB-04.
$ go test -run TestMarshalSSZ ./eth
--- FAIL: TestMarshalSSZ (0.03s)
panic: runtime error: slice bounds out of range [508:4] [recovered]

panic: runtime error: slice bounds out of range [508:4]

goroutine 6 [running]:
testing.tRunner.func1.2({0x7ca160, 0xc0000182b8})

/usr/local/go/src/testing/testing.go:1389 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1392 +0x39f
panic({0x7ca160, 0xc0000182b8})

/usr/local/go/src/runtime/panic.go:838 +0x207
github.com/ethereum-optimism/optimism/op-node/eth.(*ExecutionPayload).MarshalSSZ(0xc000059d38, {0x880220, 0xc10019c030})

<optimism_root>/op-node/eth/ssz.go:102 +0x705
github.com/ethereum-optimism/optimism/op-node/eth.TestMarshalSSZ(0xc000095a00)

<optimism_root>/op-node/eth/sigp_ssz_test.go:53 +0x3c5
testing.tRunner(0xc000095a00, 0x81cb48)

/usr/local/go/src/testing/testing.go:1439 +0x102
created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x35f
exit status 2
FAIL github.com/ethereum-optimism/optimism/op-node/eth 0.047s

Page | 25

Optimism Bedrock Test Suite

The following output is associated with OPB-02.
$ go test -run=TestSigningHash ./p2p
--- FAIL: TestSigningHash (0.00s)
panic: math/big: buffer too small to fit value [recovered]

panic: math/big: buffer too small to fit value

goroutine 29 [running]:
testing.tRunner.func1.2({0xecd960, 0x145d770})

/usr/local/go/src/testing/testing.go:1389 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1392 +0x39f
panic({0xecd960, 0x145d770})

/usr/local/go/src/runtime/panic.go:838 +0x207
math/big.nat.bytes(...)

/usr/local/go/src/math/big/nat.go:1166
math/big.(*Int).FillBytes(0xc000074f00, {0xc000164320, 0x20, 0x40})

/usr/local/go/src/math/big/int.go:466 +0xf8
github.com/ethereum-optimism/optimism/op-node/p2p.SigningHash({0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, ...}, ...)

<optimism_root>/op-node/p2p/signer.go:30 +0xa7
github.com/ethereum-optimism/optimism/op-node/p2p.TestSigningHash(0x409c99?)

<optimism_root>/op-node/p2p/signer_test.go:16 +0x11b
testing.tRunner(0xc000103040, 0x13488a8)

/usr/local/go/src/testing/testing.go:1439 +0x102
created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x35f
exit status 2
FAIL github.com/ethereum-optimism/optimism/op-node/p2p 0.021s

The following output is associated with OPB-02.
$ go test -run=TestMarshalBinary ./rollup/derive
--- FAIL: TestMarshalBinary (0.00s)
panic: math/big: buffer too small to fit value [recovered]

panic: math/big: buffer too small to fit value

goroutine 16 [running]:
testing.tRunner.func1.2({0x909ee0, 0xaa9440})

/usr/local/go/src/testing/testing.go:1389 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1392 +0x39f
panic({0x909ee0, 0xaa9440})

/usr/local/go/src/runtime/panic.go:838 +0x207
math/big.nat.bytes(...)

/usr/local/go/src/math/big/nat.go:1166
math/big.(*Int).FillBytes(0xc000067ec0, {0xc0001961a4, 0x20, 0x60})

/usr/local/go/src/math/big/int.go:466 +0xf8
github.com/ethereum-optimism/optimism/op-node/rollup/derive.(*L1BlockInfo).MarshalBinary(0xc0000c7f20)

<optimism_root>/op-node/rollup/derive/l1_block_info.go:44 +0x94
github.com/ethereum-optimism/optimism/op-node/rollup/derive.TestMarshalBinary(0x0?)

<optimism_root>/op-node/rollup/derive/derive_test.go:25 +0x13c
testing.tRunner(0xc0001e1860, 0xa189a0)

/usr/local/go/src/testing/testing.go:1439 +0x102
created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x35f
exit status 2
FAIL github.com/ethereum-optimism/optimism/op-node/rollup/derive 0.013s

Page | 26

Optimism Bedrock Test Suite

The following output is associated with OPB-02.
$ go test -run=TestMarshalDepositLogEvent ./rollup/derive
--- FAIL: TestMarshalDepositLogEvent (0.00s)
panic: math/big: buffer too small to fit value [recovered]

panic: math/big: buffer too small to fit value

goroutine 16 [running]:
testing.tRunner.func1.2({0x909ee0, 0xaa9520})

/usr/local/go/src/testing/testing.go:1389 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1392 +0x39f
panic({0x909ee0, 0xaa9520})

/usr/local/go/src/runtime/panic.go:838 +0x207
math/big.nat.bytes(...)

/usr/local/go/src/math/big/nat.go:1166
math/big.(*Int).FillBytes(0xc0001ca6a0, {0xc0002e8600, 0x20, 0x25e1})

/usr/local/go/src/math/big/int.go:466 +0xf8
github.com/ethereum-optimism/optimism/op-node/rollup/derive.marshalDepositVersion0(0xc0001b75e0)

<optimism_root>/op-node/rollup/derive/deposit_log.go:191 +0x7a
github.com/ethereum-optimism/optimism/op-node/rollup/derive.MarshalDepositLogEvent({0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,

0xde, 0xad, ...}, ...)↪→
<optimism_root>/op-node/rollup/derive/deposit_log.go:157 +0x1af

github.com/ethereum-optimism/optimism/op-node/rollup/derive.TestMarshalDepositLogEvent(0x0?)
<optimism_root>/op-node/rollup/derive/derive_test.go:44 +0x24b

testing.tRunner(0xc0001e16c0, 0xa189c8)
/usr/local/go/src/testing/testing.go:1439 +0x102

created by testing.(*T).Run
/usr/local/go/src/testing/testing.go:1486 +0x35f

exit status 2
FAIL github.com/ethereum-optimism/optimism/op-node/rollup/derive 0.013s

Page | 27

Optimism Bedrock Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

Page | 28

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Panic When Unmarshalling Untrusted SSZ Data From P2P
	Lack of Buffer Size Checks Before Using FillBytes() Function
	Lack of Size Checks in UnmarshalText() Function
	Unsafe Casting Leads to Integer Overflow
	Insecure Order of Events in Verifying Unsafe L2 Blocks
	Unsafe Use of Nonce to Identify Deposit Transactions
	Private Key Stored Without Encryption
	JWT Secret Stored Without Encryption
	Unsafe Casting Used Throughout the Codebase
	No Checks for Deposit Transaction Type When Calling L1InfoDepositTxData()
	Inconsistent Handling of Deposit Transactions in Older Hard-Forks
	Handling of Failed Deposit Transactions Could Lock ETH
	Suboptimal Addition of JWT Authentication Header
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

