1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package clock
import (
"context"
"sync"
"time"
)
type action interface {
// Return true if the action is due to fire
isDue(time.Time) bool
// fire triggers the action. Returns true if the action needs to fire again in the future
fire(time.Time) bool
}
type task struct {
ch chan time.Time
due time.Time
}
func (t task) isDue(now time.Time) bool {
return !t.due.After(now)
}
func (t task) fire(now time.Time) bool {
t.ch <- now
close(t.ch)
return false
}
type timer struct {
f func()
ch chan time.Time
due time.Time
stopped bool
run bool
sync.Mutex
}
func (t *timer) isDue(now time.Time) bool {
t.Lock()
defer t.Unlock()
return !t.due.After(now)
}
func (t *timer) fire(now time.Time) bool {
t.Lock()
defer t.Unlock()
if !t.stopped {
t.f()
t.run = true
}
return false
}
func (t *timer) Ch() <-chan time.Time {
return t.ch
}
func (t *timer) Stop() bool {
t.Lock()
defer t.Unlock()
r := !t.stopped && !t.run
t.stopped = true
return r
}
type ticker struct {
c Clock
ch chan time.Time
nextDue time.Time
period time.Duration
stopped bool
sync.Mutex
}
func (t *ticker) Ch() <-chan time.Time {
return t.ch
}
func (t *ticker) Stop() {
t.Lock()
defer t.Unlock()
t.stopped = true
}
func (t *ticker) Reset(d time.Duration) {
if d <= 0 {
panic("Continuously firing tickers are a really bad idea")
}
t.Lock()
defer t.Unlock()
t.period = d
t.nextDue = t.c.Now().Add(d)
}
func (t *ticker) isDue(now time.Time) bool {
t.Lock()
defer t.Unlock()
return !t.nextDue.After(now)
}
func (t *ticker) fire(now time.Time) bool {
t.Lock()
defer t.Unlock()
if t.stopped {
return false
}
// Publish without blocking and only update due time if we publish successfully
select {
case t.ch <- now:
t.nextDue = now.Add(t.period)
default:
}
return true
}
type DeterministicClock struct {
now time.Time
pending []action
newPendingCh chan struct{}
lock sync.Mutex
}
// NewDeterministicClock creates a new clock where time only advances when the DeterministicClock.AdvanceTime method is called.
// This is intended for use in situations where a deterministic clock is required, such as testing or event driven systems.
func NewDeterministicClock(now time.Time) *DeterministicClock {
return &DeterministicClock{
now: now,
newPendingCh: make(chan struct{}, 1),
}
}
func (s *DeterministicClock) Now() time.Time {
s.lock.Lock()
defer s.lock.Unlock()
return s.now
}
func (s *DeterministicClock) After(d time.Duration) <-chan time.Time {
s.lock.Lock()
defer s.lock.Unlock()
ch := make(chan time.Time, 1)
if d.Nanoseconds() == 0 {
ch <- s.now
close(ch)
} else {
s.addPending(&task{ch: ch, due: s.now.Add(d)})
}
return ch
}
func (s *DeterministicClock) AfterFunc(d time.Duration, f func()) Timer {
s.lock.Lock()
defer s.lock.Unlock()
timer := &timer{f: f, due: s.now.Add(d)}
if d.Nanoseconds() == 0 {
timer.fire(s.now)
} else {
s.addPending(timer)
}
return timer
}
func (s *DeterministicClock) NewTicker(d time.Duration) Ticker {
if d <= 0 {
panic("Continuously firing tickers are a really bad idea")
}
s.lock.Lock()
defer s.lock.Unlock()
ch := make(chan time.Time, 1)
t := &ticker{
c: s,
ch: ch,
nextDue: s.now.Add(d),
period: d,
}
s.addPending(t)
return t
}
func (s *DeterministicClock) NewTimer(d time.Duration) Timer {
s.lock.Lock()
defer s.lock.Unlock()
ch := make(chan time.Time, 1)
t := &timer{
f: func() {
ch <- s.now
},
ch: ch,
due: s.now.Add(d),
}
s.addPending(t)
return t
}
func (s *DeterministicClock) addPending(t action) {
s.pending = append(s.pending, t)
select {
case s.newPendingCh <- struct{}{}:
default:
// Must already have a new pending task flagged, do nothing
}
}
func (s *DeterministicClock) WaitForNewPendingTaskWithTimeout(timeout time.Duration) bool {
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
return s.WaitForNewPendingTask(ctx)
}
// WaitForNewPendingTask blocks until a new task is scheduled since the last time this method was called.
// true is returned if a new task was scheduled, false if the context completed before a new task was added.
func (s *DeterministicClock) WaitForNewPendingTask(ctx context.Context) bool {
select {
case <-ctx.Done():
return false
case <-s.newPendingCh:
return true
}
}
// AdvanceTime moves the time forward by the specific duration
func (s *DeterministicClock) AdvanceTime(d time.Duration) {
s.lock.Lock()
defer s.lock.Unlock()
s.now = s.now.Add(d)
var remaining []action
for _, a := range s.pending {
if !a.isDue(s.now) || a.fire(s.now) {
remaining = append(remaining, a)
}
}
s.pending = remaining
}
var _ Clock = (*DeterministicClock)(nil)