Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
nebula
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
exchain
nebula
Commits
41bff486
Commit
41bff486
authored
Oct 11, 2021
by
George Hotz
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add lib merkle trie
parent
eac31b29
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1542 additions
and
0 deletions
+1542
-0
Lib_BytesUtils.sol
contracts/lib/Lib_BytesUtils.sol
+299
-0
Lib_MerkleTrie.sol
contracts/lib/Lib_MerkleTrie.sol
+960
-0
Lib_RLPWriter.sol
contracts/lib/Lib_RLPWriter.sol
+283
-0
No files found.
contracts/lib/Lib_BytesUtils.sol
0 → 100644
View file @
41bff486
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_BytesUtils
*/
library Lib_BytesUtils {
/**********************
* Internal Functions *
**********************/
function concat(
bytes memory _preBytes,
bytes memory _postBytes
)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(0x40, and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
))
}
return tempBytes;
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
internal
pure
returns (bytes memory)
{
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function slice(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (bytes memory)
{
if (_bytes.length - _start == 0) {
return bytes('');
}
return slice(_bytes, _start, _bytes.length - _start);
}
function toBytes32PadLeft(
bytes memory _bytes
)
internal
pure
returns (bytes32)
{
bytes32 ret;
uint256 len = _bytes.length <= 32 ? _bytes.length : 32;
assembly {
ret := shr(mul(sub(32, len), 8), mload(add(_bytes, 32)))
}
return ret;
}
function toBytes32(
bytes memory _bytes
)
internal
pure
returns (bytes32)
{
if (_bytes.length < 32) {
bytes32 ret;
assembly {
ret := mload(add(_bytes, 32))
}
return ret;
}
return abi.decode(_bytes,(bytes32)); // will truncate if input length > 32 bytes
}
function toUint256(
bytes memory _bytes
)
internal
pure
returns (uint256)
{
return uint256(toBytes32(_bytes));
}
function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
require(_start + 3 >= _start, "toUint24_overflow");
require(_bytes.length >= _start + 3 , "toUint24_outOfBounds");
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
require(_start + 1 >= _start, "toUint8_overflow");
require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, "toAddress_overflow");
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toNibbles(
bytes memory _bytes
)
internal
pure
returns (bytes memory)
{
bytes memory nibbles = new bytes(_bytes.length * 2);
for (uint256 i = 0; i < _bytes.length; i++) {
nibbles[i * 2] = _bytes[i] >> 4;
nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
}
return nibbles;
}
function fromNibbles(
bytes memory _bytes
)
internal
pure
returns (bytes memory)
{
bytes memory ret = new bytes(_bytes.length / 2);
for (uint256 i = 0; i < ret.length; i++) {
ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
}
return ret;
}
function equal(
bytes memory _bytes,
bytes memory _other
)
internal
pure
returns (bool)
{
return keccak256(_bytes) == keccak256(_other);
}
}
contracts/lib/Lib_MerkleTrie.sol
0 → 100644
View file @
41bff486
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_BytesUtils } from "./Lib_BytesUtils.sol";
import { Lib_RLPReader } from "./Lib_RLPReader.sol";
import { Lib_RLPWriter } from "./Lib_RLPWriter.sol";
/**
* @title Lib_MerkleTrie
*/
library Lib_MerkleTrie {
/*******************
* Data Structures *
*******************/
enum NodeType {
BranchNode,
ExtensionNode,
LeafNode
}
struct TrieNode {
bytes encoded;
Lib_RLPReader.RLPItem[] decoded;
}
/**********************
* Contract Constants *
**********************/
// TREE_RADIX determines the number of elements per branch node.
uint256 constant TREE_RADIX = 16;
// Branch nodes have TREE_RADIX elements plus an additional `value` slot.
uint256 constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
// Leaf nodes and extension nodes always have two elements, a `path` and a `value`.
uint256 constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
// Prefixes are prepended to the `path` within a leaf or extension node and
// allow us to differentiate between the two node types. `ODD` or `EVEN` is
// determined by the number of nibbles within the unprefixed `path`. If the
// number of nibbles if even, we need to insert an extra padding nibble so
// the resulting prefixed `path` has an even number of nibbles.
uint8 constant PREFIX_EXTENSION_EVEN = 0;
uint8 constant PREFIX_EXTENSION_ODD = 1;
uint8 constant PREFIX_LEAF_EVEN = 2;
uint8 constant PREFIX_LEAF_ODD = 3;
// Just a utility constant. RLP represents `NULL` as 0x80.
bytes1 constant RLP_NULL = bytes1(0x80);
bytes constant RLP_NULL_BYTES = hex'80';
bytes32 constant internal KECCAK256_RLP_NULL_BYTES = keccak256(RLP_NULL_BYTES);
/**********************
* Internal Functions *
**********************/
/**
* @notice Verifies a proof that a given key/value pair is present in the
* Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike
* traditional Merkle trees, this proof is executed top-down and consists
* of a list of RLP-encoded nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
(
bool exists,
bytes memory value
) = get(_key, _proof, _root);
return (
exists && Lib_BytesUtils.equal(_value, value)
);
}
/**
* @notice Verifies a proof that a given key is *not* present in
* the Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the key is absent in the trie, `false` otherwise.
*/
function verifyExclusionProof(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
(
bool exists,
) = get(_key, _proof, _root);
return exists == false;
}
/**
* @notice Updates a Merkle trie and returns a new root hash.
* @param _key Key of the node to update, as a hex string.
* @param _value Value of the node to update, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node. If the key exists, we can simply update the value.
* Otherwise, we need to modify the trie to handle the new k/v pair.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _updatedRoot Root hash of the newly constructed trie.
*/
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
// Special case when inserting the very first node.
if (_root == KECCAK256_RLP_NULL_BYTES) {
return getSingleNodeRootHash(_key, _value);
}
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, ) = _walkNodePath(proof, _key, _root);
TrieNode[] memory newPath = _getNewPath(proof, pathLength, keyRemainder, _value);
return _getUpdatedTrieRoot(newPath, _key);
}
/**
* @notice Retrieves the value associated with a given key.
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
* @return _exists Whether or not the key exists.
* @return _value Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _exists,
bytes memory _value
)
{
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, bool isFinalNode) = _walkNodePath(proof, _key, _root);
bool exists = keyRemainder.length == 0;
require(
exists || isFinalNode,
"Provided proof is invalid."
);
bytes memory value = exists ? _getNodeValue(proof[pathLength - 1]) : bytes('');
return (
exists,
value
);
}
/**
* Computes the root hash for a trie with a single node.
* @param _key Key for the single node.
* @param _value Value for the single node.
* @return _updatedRoot Hash of the trie.
*/
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
return keccak256(_makeLeafNode(
Lib_BytesUtils.toNibbles(_key),
_value
).encoded);
}
/*********************
* Private Functions *
*********************/
/**
* @notice Walks through a proof using a provided key.
* @param _proof Inclusion proof to walk through.
* @param _key Key to use for the walk.
* @param _root Known root of the trie.
* @return _pathLength Length of the final path
* @return _keyRemainder Portion of the key remaining after the walk.
* @return _isFinalNode Whether or not we've hit a dead end.
*/
function _walkNodePath(
TrieNode[] memory _proof,
bytes memory _key,
bytes32 _root
)
private
pure
returns (
uint256 _pathLength,
bytes memory _keyRemainder,
bool _isFinalNode
)
{
uint256 pathLength = 0;
bytes memory key = Lib_BytesUtils.toNibbles(_key);
bytes32 currentNodeID = _root;
uint256 currentKeyIndex = 0;
uint256 currentKeyIncrement = 0;
TrieNode memory currentNode;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < _proof.length; i++) {
currentNode = _proof[i];
currentKeyIndex += currentKeyIncrement;
// Keep track of the proof elements we actually need.
// It's expensive to resize arrays, so this simply reduces gas costs.
pathLength += 1;
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid large internal hash"
);
} else {
// Nodes smaller than 31 bytes aren't hashed.
require(
Lib_BytesUtils.toBytes32(currentNode.encoded) == currentNodeID,
"Invalid internal node hash"
);
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// We've hit the end of the key, meaning the value should be within this branch node.
break;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
Lib_RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIncrement = 1;
continue;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - prefix % 2;
bytes memory pathRemainder = Lib_BytesUtils.slice(path, offset);
bytes memory keyRemainder = Lib_BytesUtils.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
if (
pathRemainder.length == sharedNibbleLength &&
keyRemainder.length == sharedNibbleLength
) {
// The key within this leaf matches our key exactly.
// Increment the key index to reflect that we have no remainder.
currentKeyIndex += sharedNibbleLength;
}
// We've hit a leaf node, so our next node should be NULL.
currentNodeID = bytes32(RLP_NULL);
break;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
if (sharedNibbleLength == 0) {
// Our extension node doesn't share any part of our key.
// We've hit the end of this path, updates will need to modify this extension.
currentNodeID = bytes32(RLP_NULL);
break;
} else {
// Our extension shares some nibbles.
// Carry on to the next node.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIncrement = sharedNibbleLength;
continue;
}
} else {
revert("Received a node with an unknown prefix");
}
} else {
revert("Received an unparseable node.");
}
}
// If our node ID is NULL, then we're at a dead end.
bool isFinalNode = currentNodeID == bytes32(RLP_NULL);
return (pathLength, Lib_BytesUtils.slice(key, currentKeyIndex), isFinalNode);
}
/**
* @notice Creates new nodes to support a k/v pair insertion into a given
* Merkle trie path.
* @param _path Path to the node nearest the k/v pair.
* @param _pathLength Length of the path. Necessary because the provided
* path may include additional nodes (e.g., it comes directly from a proof)
* and we can't resize in-memory arrays without costly duplication.
* @param _keyRemainder Portion of the initial key that must be inserted
* into the trie.
* @param _value Value to insert at the given key.
* @return _newPath A new path with the inserted k/v pair and extra supporting nodes.
*/
function _getNewPath(
TrieNode[] memory _path,
uint256 _pathLength,
bytes memory _keyRemainder,
bytes memory _value
)
private
pure
returns (
TrieNode[] memory _newPath
)
{
bytes memory keyRemainder = _keyRemainder;
// Most of our logic depends on the status of the last node in the path.
TrieNode memory lastNode = _path[_pathLength - 1];
NodeType lastNodeType = _getNodeType(lastNode);
// Create an array for newly created nodes.
// We need up to three new nodes, depending on the contents of the last node.
// Since array resizing is expensive, we'll keep track of the size manually.
// We're using an explicit `totalNewNodes += 1` after insertions for clarity.
TrieNode[] memory newNodes = new TrieNode[](3);
uint256 totalNewNodes = 0;
if (keyRemainder.length == 0 && lastNodeType == NodeType.LeafNode) {
// We've found a leaf node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _makeLeafNode(_getNodeKey(lastNode), _value);
totalNewNodes += 1;
} else if (lastNodeType == NodeType.BranchNode) {
if (keyRemainder.length == 0) {
// We've found a branch node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _editBranchValue(lastNode, _value);
totalNewNodes += 1;
} else {
// We've found a branch node, but it doesn't contain our key.
// Reinsert the old branch for now.
newNodes[totalNewNodes] = lastNode;
totalNewNodes += 1;
// Create a new leaf node, slicing our remainder since the first byte points
// to our branch node.
newNodes[totalNewNodes] = _makeLeafNode(Lib_BytesUtils.slice(keyRemainder, 1), _value);
totalNewNodes += 1;
}
} else {
// Our last node is either an extension node or a leaf node with a different key.
bytes memory lastNodeKey = _getNodeKey(lastNode);
uint256 sharedNibbleLength = _getSharedNibbleLength(lastNodeKey, keyRemainder);
if (sharedNibbleLength != 0) {
// We've got some shared nibbles between the last node and our key remainder.
// We'll need to insert an extension node that covers these shared nibbles.
bytes memory nextNodeKey = Lib_BytesUtils.slice(lastNodeKey, 0, sharedNibbleLength);
newNodes[totalNewNodes] = _makeExtensionNode(nextNodeKey, _getNodeHash(_value));
totalNewNodes += 1;
// Cut down the keys since we've just covered these shared nibbles.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, sharedNibbleLength);
keyRemainder = Lib_BytesUtils.slice(keyRemainder, sharedNibbleLength);
}
// Create an empty branch to fill in.
TrieNode memory newBranch = _makeEmptyBranchNode();
if (lastNodeKey.length == 0) {
// Key remainder was larger than the key for our last node.
// The value within our last node is therefore going to be shifted into
// a branch value slot.
newBranch = _editBranchValue(newBranch, _getNodeValue(lastNode));
} else {
// Last node key was larger than the key remainder.
// We're going to modify some index of our branch.
uint8 branchKey = uint8(lastNodeKey[0]);
// Move on to the next nibble.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, 1);
if (lastNodeType == NodeType.LeafNode) {
// We're dealing with a leaf node.
// We'll modify the key and insert the old leaf node into the branch index.
TrieNode memory modifiedLastNode = _makeLeafNode(lastNodeKey, _getNodeValue(lastNode));
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded));
} else if (lastNodeKey.length != 0) {
// We're dealing with a shrinking extension node.
// We need to modify the node to decrease the size of the key.
TrieNode memory modifiedLastNode = _makeExtensionNode(lastNodeKey, _getNodeValue(lastNode));
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded));
} else {
// We're dealing with an unnecessary extension node.
// We're going to delete the node entirely.
// Simply insert its current value into the branch index.
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeValue(lastNode));
}
}
if (keyRemainder.length == 0) {
// We've got nothing left in the key remainder.
// Simply insert the value into the branch value slot.
newBranch = _editBranchValue(newBranch, _value);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
} else {
// We've got some key remainder to work with.
// We'll be inserting a leaf node into the trie.
// First, move on to the next nibble.
keyRemainder = Lib_BytesUtils.slice(keyRemainder, 1);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
// Push a new leaf node for our k/v pair.
newNodes[totalNewNodes] = _makeLeafNode(keyRemainder, _value);
totalNewNodes += 1;
}
}
// Finally, join the old path with our newly created nodes.
// Since we're overwriting the last node in the path, we use `_pathLength - 1`.
return _joinNodeArrays(_path, _pathLength - 1, newNodes, totalNewNodes);
}
/**
* @notice Computes the trie root from a given path.
* @param _nodes Path to some k/v pair.
* @param _key Key for the k/v pair.
* @return _updatedRoot Root hash for the updated trie.
*/
function _getUpdatedTrieRoot(
TrieNode[] memory _nodes,
bytes memory _key
)
private
pure
returns (
bytes32 _updatedRoot
)
{
bytes memory key = Lib_BytesUtils.toNibbles(_key);
// Some variables to keep track of during iteration.
TrieNode memory currentNode;
NodeType currentNodeType;
bytes memory previousNodeHash;
// Run through the path backwards to rebuild our root hash.
for (uint256 i = _nodes.length; i > 0; i--) {
// Pick out the current node.
currentNode = _nodes[i - 1];
currentNodeType = _getNodeType(currentNode);
if (currentNodeType == NodeType.LeafNode) {
// Leaf nodes are already correctly encoded.
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
} else if (currentNodeType == NodeType.ExtensionNode) {
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
currentNode = _makeExtensionNode(nodeKey, previousNodeHash);
}
} else if (currentNodeType == NodeType.BranchNode) {
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
uint8 branchKey = uint8(key[key.length - 1]);
key = Lib_BytesUtils.slice(key, 0, key.length - 1);
currentNode = _editBranchIndex(currentNode, branchKey, previousNodeHash);
}
}
// Compute the node hash for the next iteration.
previousNodeHash = _getNodeHash(currentNode.encoded);
}
// Current node should be the root at this point.
// Simply return the hash of its encoding.
return keccak256(currentNode.encoded);
}
/**
* @notice Parses an RLP-encoded proof into something more useful.
* @param _proof RLP-encoded proof to parse.
* @return _parsed Proof parsed into easily accessible structs.
*/
function _parseProof(
bytes memory _proof
)
private
pure
returns (
TrieNode[] memory _parsed
)
{
Lib_RLPReader.RLPItem[] memory nodes = Lib_RLPReader.readList(_proof);
TrieNode[] memory proof = new TrieNode[](nodes.length);
for (uint256 i = 0; i < nodes.length; i++) {
bytes memory encoded = Lib_RLPReader.readBytes(nodes[i]);
proof[i] = TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
return proof;
}
/**
* @notice Picks out the ID for a node. Node ID is referred to as the
* "hash" within the specification, but nodes < 32 bytes are not actually
* hashed.
* @param _node Node to pull an ID for.
* @return _nodeID ID for the node, depending on the size of its contents.
*/
function _getNodeID(
Lib_RLPReader.RLPItem memory _node
)
private
pure
returns (
bytes32 _nodeID
)
{
bytes memory nodeID;
if (_node.length < 32) {
// Nodes smaller than 32 bytes are RLP encoded.
nodeID = Lib_RLPReader.readRawBytes(_node);
} else {
// Nodes 32 bytes or larger are hashed.
nodeID = Lib_RLPReader.readBytes(_node);
}
return Lib_BytesUtils.toBytes32(nodeID);
}
/**
* @notice Gets the path for a leaf or extension node.
* @param _node Node to get a path for.
* @return _path Node path, converted to an array of nibbles.
*/
function _getNodePath(
TrieNode memory _node
)
private
pure
returns (
bytes memory _path
)
{
return Lib_BytesUtils.toNibbles(Lib_RLPReader.readBytes(_node.decoded[0]));
}
/**
* @notice Gets the key for a leaf or extension node. Keys are essentially
* just paths without any prefix.
* @param _node Node to get a key for.
* @return _key Node key, converted to an array of nibbles.
*/
function _getNodeKey(
TrieNode memory _node
)
private
pure
returns (
bytes memory _key
)
{
return _removeHexPrefix(_getNodePath(_node));
}
/**
* @notice Gets the path for a node.
* @param _node Node to get a value for.
* @return _value Node value, as hex bytes.
*/
function _getNodeValue(
TrieNode memory _node
)
private
pure
returns (
bytes memory _value
)
{
return Lib_RLPReader.readBytes(_node.decoded[_node.decoded.length - 1]);
}
/**
* @notice Computes the node hash for an encoded node. Nodes < 32 bytes
* are not hashed, all others are keccak256 hashed.
* @param _encoded Encoded node to hash.
* @return _hash Hash of the encoded node. Simply the input if < 32 bytes.
*/
function _getNodeHash(
bytes memory _encoded
)
private
pure
returns (
bytes memory _hash
)
{
if (_encoded.length < 32) {
return _encoded;
} else {
return abi.encodePacked(keccak256(_encoded));
}
}
/**
* @notice Determines the type for a given node.
* @param _node Node to determine a type for.
* @return _type Type of the node; BranchNode/ExtensionNode/LeafNode.
*/
function _getNodeType(
TrieNode memory _node
)
private
pure
returns (
NodeType _type
)
{
if (_node.decoded.length == BRANCH_NODE_LENGTH) {
return NodeType.BranchNode;
} else if (_node.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(_node);
uint8 prefix = uint8(path[0]);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
return NodeType.LeafNode;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
return NodeType.ExtensionNode;
}
}
revert("Invalid node type");
}
/**
* @notice Utility; determines the number of nibbles shared between two
* nibble arrays.
* @param _a First nibble array.
* @param _b Second nibble array.
* @return _shared Number of shared nibbles.
*/
function _getSharedNibbleLength(
bytes memory _a,
bytes memory _b
)
private
pure
returns (
uint256 _shared
)
{
uint256 i = 0;
while (_a.length > i && _b.length > i && _a[i] == _b[i]) {
i++;
}
return i;
}
/**
* @notice Utility; converts an RLP-encoded node into our nice struct.
* @param _raw RLP-encoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
bytes[] memory _raw
)
private
pure
returns (
TrieNode memory _node
)
{
bytes memory encoded = Lib_RLPWriter.writeList(_raw);
return TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
/**
* @notice Utility; converts an RLP-decoded node into our nice struct.
* @param _items RLP-decoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
Lib_RLPReader.RLPItem[] memory _items
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](_items.length);
for (uint256 i = 0; i < _items.length; i++) {
raw[i] = Lib_RLPReader.readRawBytes(_items[i]);
}
return _makeNode(raw);
}
/**
* @notice Creates a new extension node.
* @param _key Key for the extension node, unprefixed.
* @param _value Value for the extension node.
* @return _node New extension node with the given k/v pair.
*/
function _makeExtensionNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, false);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* @notice Creates a new leaf node.
* @dev This function is essentially identical to `_makeExtensionNode`.
* Although we could route both to a single method with a flag, it's
* more gas efficient to keep them separate and duplicate the logic.
* @param _key Key for the leaf node, unprefixed.
* @param _value Value for the leaf node.
* @return _node New leaf node with the given k/v pair.
*/
function _makeLeafNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, true);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* @notice Creates an empty branch node.
* @return _node Empty branch node as a TrieNode struct.
*/
function _makeEmptyBranchNode()
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](BRANCH_NODE_LENGTH);
for (uint256 i = 0; i < raw.length; i++) {
raw[i] = RLP_NULL_BYTES;
}
return _makeNode(raw);
}
/**
* @notice Modifies the value slot for a given branch.
* @param _branch Branch node to modify.
* @param _value Value to insert into the branch.
* @return _updatedNode Modified branch node.
*/
function _editBranchValue(
TrieNode memory _branch,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_branch.decoded.length - 1] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Modifies a slot at an index for a given branch.
* @param _branch Branch node to modify.
* @param _index Slot index to modify.
* @param _value Value to insert into the slot.
* @return _updatedNode Modified branch node.
*/
function _editBranchIndex(
TrieNode memory _branch,
uint8 _index,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = _value.length < 32 ? _value : Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_index] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Utility; adds a prefix to a key.
* @param _key Key to prefix.
* @param _isLeaf Whether or not the key belongs to a leaf.
* @return _prefixedKey Prefixed key.
*/
function _addHexPrefix(
bytes memory _key,
bool _isLeaf
)
private
pure
returns (
bytes memory _prefixedKey
)
{
uint8 prefix = _isLeaf ? uint8(0x02) : uint8(0x00);
uint8 offset = uint8(_key.length % 2);
bytes memory prefixed = new bytes(2 - offset);
prefixed[0] = bytes1(prefix + offset);
return Lib_BytesUtils.concat(prefixed, _key);
}
/**
* @notice Utility; removes a prefix from a path.
* @param _path Path to remove the prefix from.
* @return _unprefixedKey Unprefixed key.
*/
function _removeHexPrefix(
bytes memory _path
)
private
pure
returns (
bytes memory _unprefixedKey
)
{
if (uint8(_path[0]) % 2 == 0) {
return Lib_BytesUtils.slice(_path, 2);
} else {
return Lib_BytesUtils.slice(_path, 1);
}
}
/**
* @notice Utility; combines two node arrays. Array lengths are required
* because the actual lengths may be longer than the filled lengths.
* Array resizing is extremely costly and should be avoided.
* @param _a First array to join.
* @param _aLength Length of the first array.
* @param _b Second array to join.
* @param _bLength Length of the second array.
* @return _joined Combined node array.
*/
function _joinNodeArrays(
TrieNode[] memory _a,
uint256 _aLength,
TrieNode[] memory _b,
uint256 _bLength
)
private
pure
returns (
TrieNode[] memory _joined
)
{
TrieNode[] memory ret = new TrieNode[](_aLength + _bLength);
// Copy elements from the first array.
for (uint256 i = 0; i < _aLength; i++) {
ret[i] = _a[i];
}
// Copy elements from the second array.
for (uint256 i = 0; i < _bLength; i++) {
ret[i + _aLength] = _b[i];
}
return ret;
}
}
contracts/lib/Lib_RLPWriter.sol
0 → 100644
View file @
41bff486
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_BytesUtils } from "./Lib_BytesUtils.sol";
/**
* @title Lib_RLPWriter
* @author Bakaoh (with modifications)
*/
library Lib_RLPWriter {
/**********************
* Internal Functions *
**********************/
/**
* RLP encodes a byte string.
* @param _in The byte string to encode.
* @return _out The RLP encoded string in bytes.
*/
function writeBytes(
bytes memory _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory encoded;
if (_in.length == 1 && uint8(_in[0]) < 128) {
encoded = _in;
} else {
encoded = Lib_BytesUtils.concat(_writeLength(_in.length, 128), _in);
}
return encoded;
}
/**
* RLP encodes a list of RLP encoded byte byte strings.
* @param _in The list of RLP encoded byte strings.
* @return _out The RLP encoded list of items in bytes.
*/
function writeList(
bytes[] memory _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory list = _flatten(_in);
return Lib_BytesUtils.concat(_writeLength(list.length, 192), list);
}
/**
* RLP encodes a string.
* @param _in The string to encode.
* @return _out The RLP encoded string in bytes.
*/
function writeString(
string memory _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(bytes(_in));
}
/**
* RLP encodes an address.
* @param _in The address to encode.
* @return _out The RLP encoded address in bytes.
*/
function writeAddress(
address _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(abi.encodePacked(_in));
}
/**
* RLP encodes a uint.
* @param _in The uint256 to encode.
* @return _out The RLP encoded uint256 in bytes.
*/
function writeUint(
uint256 _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(_toBinary(_in));
}
/**
* RLP encodes a bool.
* @param _in The bool to encode.
* @return _out The RLP encoded bool in bytes.
*/
function writeBool(
bool _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory encoded = new bytes(1);
encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
return encoded;
}
/*********************
* Private Functions *
*********************/
/**
* Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
* @param _len The length of the string or the payload.
* @param _offset 128 if item is string, 192 if item is list.
* @return _encoded RLP encoded bytes.
*/
function _writeLength(
uint256 _len,
uint256 _offset
)
private
pure
returns (
bytes memory _encoded
)
{
bytes memory encoded;
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = byte(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
encoded = new bytes(lenLen + 1);
encoded[0] = byte(uint8(lenLen) + uint8(_offset) + 55);
for(i = 1; i <= lenLen; i++) {
encoded[i] = byte(uint8((_len / (256**(lenLen-i))) % 256));
}
}
return encoded;
}
/**
* Encode integer in big endian binary form with no leading zeroes.
* @notice TODO: This should be optimized with assembly to save gas costs.
* @param _x The integer to encode.
* @return _binary RLP encoded bytes.
*/
function _toBinary(
uint256 _x
)
private
pure
returns (
bytes memory _binary
)
{
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
bytes memory res = new bytes(32 - i);
for (uint256 j = 0; j < res.length; j++) {
res[j] = b[i++];
}
return res;
}
/**
* Copies a piece of memory to another location.
* @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
* @param _dest Destination location.
* @param _src Source location.
* @param _len Length of memory to copy.
*/
function _memcpy(
uint256 _dest,
uint256 _src,
uint256 _len
)
private
pure
{
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/**
* Flattens a list of byte strings into one byte string.
* @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
* @param _list List of byte strings to flatten.
* @return _flattened The flattened byte string.
*/
function _flatten(
bytes[] memory _list
)
private
pure
returns (
bytes memory _flattened
)
{
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
bytes memory flattened = new bytes(len);
uint256 flattenedPtr;
assembly { flattenedPtr := add(flattened, 0x20) }
for(i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly { listPtr := add(item, 0x20)}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
return flattened;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment