Commit 41bff486 authored by George Hotz's avatar George Hotz

add lib merkle trie

parent eac31b29
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/**
* @title Lib_BytesUtils
*/
library Lib_BytesUtils {
/**********************
* Internal Functions *
**********************/
function concat(
bytes memory _preBytes,
bytes memory _postBytes
)
internal
pure
returns (bytes memory)
{
bytes memory tempBytes;
assembly {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// Store the length of the first bytes array at the beginning of
// the memory for tempBytes.
let length := mload(_preBytes)
mstore(tempBytes, length)
// Maintain a memory counter for the current write location in the
// temp bytes array by adding the 32 bytes for the array length to
// the starting location.
let mc := add(tempBytes, 0x20)
// Stop copying when the memory counter reaches the length of the
// first bytes array.
let end := add(mc, length)
for {
// Initialize a copy counter to the start of the _preBytes data,
// 32 bytes into its memory.
let cc := add(_preBytes, 0x20)
} lt(mc, end) {
// Increase both counters by 32 bytes each iteration.
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
// Write the _preBytes data into the tempBytes memory 32 bytes
// at a time.
mstore(mc, mload(cc))
}
// Add the length of _postBytes to the current length of tempBytes
// and store it as the new length in the first 32 bytes of the
// tempBytes memory.
length := mload(_postBytes)
mstore(tempBytes, add(length, mload(tempBytes)))
// Move the memory counter back from a multiple of 0x20 to the
// actual end of the _preBytes data.
mc := end
// Stop copying when the memory counter reaches the new combined
// length of the arrays.
end := add(mc, length)
for {
let cc := add(_postBytes, 0x20)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
// Update the free-memory pointer by padding our last write location
// to 32 bytes: add 31 bytes to the end of tempBytes to move to the
// next 32 byte block, then round down to the nearest multiple of
// 32. If the sum of the length of the two arrays is zero then add
// one before rounding down to leave a blank 32 bytes (the length block with 0).
mstore(0x40, and(
add(add(end, iszero(add(length, mload(_preBytes)))), 31),
not(31) // Round down to the nearest 32 bytes.
))
}
return tempBytes;
}
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
)
internal
pure
returns (bytes memory)
{
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function slice(
bytes memory _bytes,
uint256 _start
)
internal
pure
returns (bytes memory)
{
if (_bytes.length - _start == 0) {
return bytes('');
}
return slice(_bytes, _start, _bytes.length - _start);
}
function toBytes32PadLeft(
bytes memory _bytes
)
internal
pure
returns (bytes32)
{
bytes32 ret;
uint256 len = _bytes.length <= 32 ? _bytes.length : 32;
assembly {
ret := shr(mul(sub(32, len), 8), mload(add(_bytes, 32)))
}
return ret;
}
function toBytes32(
bytes memory _bytes
)
internal
pure
returns (bytes32)
{
if (_bytes.length < 32) {
bytes32 ret;
assembly {
ret := mload(add(_bytes, 32))
}
return ret;
}
return abi.decode(_bytes,(bytes32)); // will truncate if input length > 32 bytes
}
function toUint256(
bytes memory _bytes
)
internal
pure
returns (uint256)
{
return uint256(toBytes32(_bytes));
}
function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
require(_start + 3 >= _start, "toUint24_overflow");
require(_bytes.length >= _start + 3 , "toUint24_outOfBounds");
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
require(_start + 1 >= _start, "toUint8_overflow");
require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
uint8 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x1), _start))
}
return tempUint;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, "toAddress_overflow");
require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toNibbles(
bytes memory _bytes
)
internal
pure
returns (bytes memory)
{
bytes memory nibbles = new bytes(_bytes.length * 2);
for (uint256 i = 0; i < _bytes.length; i++) {
nibbles[i * 2] = _bytes[i] >> 4;
nibbles[i * 2 + 1] = bytes1(uint8(_bytes[i]) % 16);
}
return nibbles;
}
function fromNibbles(
bytes memory _bytes
)
internal
pure
returns (bytes memory)
{
bytes memory ret = new bytes(_bytes.length / 2);
for (uint256 i = 0; i < ret.length; i++) {
ret[i] = (_bytes[i * 2] << 4) | (_bytes[i * 2 + 1]);
}
return ret;
}
function equal(
bytes memory _bytes,
bytes memory _other
)
internal
pure
returns (bool)
{
return keccak256(_bytes) == keccak256(_other);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
/* Library Imports */
import { Lib_BytesUtils } from "./Lib_BytesUtils.sol";
import { Lib_RLPReader } from "./Lib_RLPReader.sol";
import { Lib_RLPWriter } from "./Lib_RLPWriter.sol";
/**
* @title Lib_MerkleTrie
*/
library Lib_MerkleTrie {
/*******************
* Data Structures *
*******************/
enum NodeType {
BranchNode,
ExtensionNode,
LeafNode
}
struct TrieNode {
bytes encoded;
Lib_RLPReader.RLPItem[] decoded;
}
/**********************
* Contract Constants *
**********************/
// TREE_RADIX determines the number of elements per branch node.
uint256 constant TREE_RADIX = 16;
// Branch nodes have TREE_RADIX elements plus an additional `value` slot.
uint256 constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
// Leaf nodes and extension nodes always have two elements, a `path` and a `value`.
uint256 constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
// Prefixes are prepended to the `path` within a leaf or extension node and
// allow us to differentiate between the two node types. `ODD` or `EVEN` is
// determined by the number of nibbles within the unprefixed `path`. If the
// number of nibbles if even, we need to insert an extra padding nibble so
// the resulting prefixed `path` has an even number of nibbles.
uint8 constant PREFIX_EXTENSION_EVEN = 0;
uint8 constant PREFIX_EXTENSION_ODD = 1;
uint8 constant PREFIX_LEAF_EVEN = 2;
uint8 constant PREFIX_LEAF_ODD = 3;
// Just a utility constant. RLP represents `NULL` as 0x80.
bytes1 constant RLP_NULL = bytes1(0x80);
bytes constant RLP_NULL_BYTES = hex'80';
bytes32 constant internal KECCAK256_RLP_NULL_BYTES = keccak256(RLP_NULL_BYTES);
/**********************
* Internal Functions *
**********************/
/**
* @notice Verifies a proof that a given key/value pair is present in the
* Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike
* traditional Merkle trees, this proof is executed top-down and consists
* of a list of RLP-encoded nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the k/v pair exists in the trie, `false` otherwise.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
(
bool exists,
bytes memory value
) = get(_key, _proof, _root);
return (
exists && Lib_BytesUtils.equal(_value, value)
);
}
/**
* @notice Verifies a proof that a given key is *not* present in
* the Merkle trie.
* @param _key Key of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _verified `true` if the key is absent in the trie, `false` otherwise.
*/
function verifyExclusionProof(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _verified
)
{
(
bool exists,
) = get(_key, _proof, _root);
return exists == false;
}
/**
* @notice Updates a Merkle trie and returns a new root hash.
* @param _key Key of the node to update, as a hex string.
* @param _value Value of the node to update, as a hex string.
* @param _proof Merkle trie inclusion proof for the node *nearest* the
* target node. If the key exists, we can simply update the value.
* Otherwise, we need to modify the trie to handle the new k/v pair.
* @param _root Known root of the Merkle trie. Used to verify that the
* included proof is correctly constructed.
* @return _updatedRoot Root hash of the newly constructed trie.
*/
function update(
bytes memory _key,
bytes memory _value,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
// Special case when inserting the very first node.
if (_root == KECCAK256_RLP_NULL_BYTES) {
return getSingleNodeRootHash(_key, _value);
}
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, ) = _walkNodePath(proof, _key, _root);
TrieNode[] memory newPath = _getNewPath(proof, pathLength, keyRemainder, _value);
return _getUpdatedTrieRoot(newPath, _key);
}
/**
* @notice Retrieves the value associated with a given key.
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
* @return _exists Whether or not the key exists.
* @return _value Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes memory _proof,
bytes32 _root
)
internal
pure
returns (
bool _exists,
bytes memory _value
)
{
TrieNode[] memory proof = _parseProof(_proof);
(uint256 pathLength, bytes memory keyRemainder, bool isFinalNode) = _walkNodePath(proof, _key, _root);
bool exists = keyRemainder.length == 0;
require(
exists || isFinalNode,
"Provided proof is invalid."
);
bytes memory value = exists ? _getNodeValue(proof[pathLength - 1]) : bytes('');
return (
exists,
value
);
}
/**
* Computes the root hash for a trie with a single node.
* @param _key Key for the single node.
* @param _value Value for the single node.
* @return _updatedRoot Hash of the trie.
*/
function getSingleNodeRootHash(
bytes memory _key,
bytes memory _value
)
internal
pure
returns (
bytes32 _updatedRoot
)
{
return keccak256(_makeLeafNode(
Lib_BytesUtils.toNibbles(_key),
_value
).encoded);
}
/*********************
* Private Functions *
*********************/
/**
* @notice Walks through a proof using a provided key.
* @param _proof Inclusion proof to walk through.
* @param _key Key to use for the walk.
* @param _root Known root of the trie.
* @return _pathLength Length of the final path
* @return _keyRemainder Portion of the key remaining after the walk.
* @return _isFinalNode Whether or not we've hit a dead end.
*/
function _walkNodePath(
TrieNode[] memory _proof,
bytes memory _key,
bytes32 _root
)
private
pure
returns (
uint256 _pathLength,
bytes memory _keyRemainder,
bool _isFinalNode
)
{
uint256 pathLength = 0;
bytes memory key = Lib_BytesUtils.toNibbles(_key);
bytes32 currentNodeID = _root;
uint256 currentKeyIndex = 0;
uint256 currentKeyIncrement = 0;
TrieNode memory currentNode;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < _proof.length; i++) {
currentNode = _proof[i];
currentKeyIndex += currentKeyIncrement;
// Keep track of the proof elements we actually need.
// It's expensive to resize arrays, so this simply reduces gas costs.
pathLength += 1;
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
keccak256(currentNode.encoded) == currentNodeID,
"Invalid large internal hash"
);
} else {
// Nodes smaller than 31 bytes aren't hashed.
require(
Lib_BytesUtils.toBytes32(currentNode.encoded) == currentNodeID,
"Invalid internal node hash"
);
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// We've hit the end of the key, meaning the value should be within this branch node.
break;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
Lib_RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIncrement = 1;
continue;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - prefix % 2;
bytes memory pathRemainder = Lib_BytesUtils.slice(path, offset);
bytes memory keyRemainder = Lib_BytesUtils.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
if (
pathRemainder.length == sharedNibbleLength &&
keyRemainder.length == sharedNibbleLength
) {
// The key within this leaf matches our key exactly.
// Increment the key index to reflect that we have no remainder.
currentKeyIndex += sharedNibbleLength;
}
// We've hit a leaf node, so our next node should be NULL.
currentNodeID = bytes32(RLP_NULL);
break;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
if (sharedNibbleLength == 0) {
// Our extension node doesn't share any part of our key.
// We've hit the end of this path, updates will need to modify this extension.
currentNodeID = bytes32(RLP_NULL);
break;
} else {
// Our extension shares some nibbles.
// Carry on to the next node.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIncrement = sharedNibbleLength;
continue;
}
} else {
revert("Received a node with an unknown prefix");
}
} else {
revert("Received an unparseable node.");
}
}
// If our node ID is NULL, then we're at a dead end.
bool isFinalNode = currentNodeID == bytes32(RLP_NULL);
return (pathLength, Lib_BytesUtils.slice(key, currentKeyIndex), isFinalNode);
}
/**
* @notice Creates new nodes to support a k/v pair insertion into a given
* Merkle trie path.
* @param _path Path to the node nearest the k/v pair.
* @param _pathLength Length of the path. Necessary because the provided
* path may include additional nodes (e.g., it comes directly from a proof)
* and we can't resize in-memory arrays without costly duplication.
* @param _keyRemainder Portion of the initial key that must be inserted
* into the trie.
* @param _value Value to insert at the given key.
* @return _newPath A new path with the inserted k/v pair and extra supporting nodes.
*/
function _getNewPath(
TrieNode[] memory _path,
uint256 _pathLength,
bytes memory _keyRemainder,
bytes memory _value
)
private
pure
returns (
TrieNode[] memory _newPath
)
{
bytes memory keyRemainder = _keyRemainder;
// Most of our logic depends on the status of the last node in the path.
TrieNode memory lastNode = _path[_pathLength - 1];
NodeType lastNodeType = _getNodeType(lastNode);
// Create an array for newly created nodes.
// We need up to three new nodes, depending on the contents of the last node.
// Since array resizing is expensive, we'll keep track of the size manually.
// We're using an explicit `totalNewNodes += 1` after insertions for clarity.
TrieNode[] memory newNodes = new TrieNode[](3);
uint256 totalNewNodes = 0;
if (keyRemainder.length == 0 && lastNodeType == NodeType.LeafNode) {
// We've found a leaf node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _makeLeafNode(_getNodeKey(lastNode), _value);
totalNewNodes += 1;
} else if (lastNodeType == NodeType.BranchNode) {
if (keyRemainder.length == 0) {
// We've found a branch node with the given key.
// Simply need to update the value of the node to match.
newNodes[totalNewNodes] = _editBranchValue(lastNode, _value);
totalNewNodes += 1;
} else {
// We've found a branch node, but it doesn't contain our key.
// Reinsert the old branch for now.
newNodes[totalNewNodes] = lastNode;
totalNewNodes += 1;
// Create a new leaf node, slicing our remainder since the first byte points
// to our branch node.
newNodes[totalNewNodes] = _makeLeafNode(Lib_BytesUtils.slice(keyRemainder, 1), _value);
totalNewNodes += 1;
}
} else {
// Our last node is either an extension node or a leaf node with a different key.
bytes memory lastNodeKey = _getNodeKey(lastNode);
uint256 sharedNibbleLength = _getSharedNibbleLength(lastNodeKey, keyRemainder);
if (sharedNibbleLength != 0) {
// We've got some shared nibbles between the last node and our key remainder.
// We'll need to insert an extension node that covers these shared nibbles.
bytes memory nextNodeKey = Lib_BytesUtils.slice(lastNodeKey, 0, sharedNibbleLength);
newNodes[totalNewNodes] = _makeExtensionNode(nextNodeKey, _getNodeHash(_value));
totalNewNodes += 1;
// Cut down the keys since we've just covered these shared nibbles.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, sharedNibbleLength);
keyRemainder = Lib_BytesUtils.slice(keyRemainder, sharedNibbleLength);
}
// Create an empty branch to fill in.
TrieNode memory newBranch = _makeEmptyBranchNode();
if (lastNodeKey.length == 0) {
// Key remainder was larger than the key for our last node.
// The value within our last node is therefore going to be shifted into
// a branch value slot.
newBranch = _editBranchValue(newBranch, _getNodeValue(lastNode));
} else {
// Last node key was larger than the key remainder.
// We're going to modify some index of our branch.
uint8 branchKey = uint8(lastNodeKey[0]);
// Move on to the next nibble.
lastNodeKey = Lib_BytesUtils.slice(lastNodeKey, 1);
if (lastNodeType == NodeType.LeafNode) {
// We're dealing with a leaf node.
// We'll modify the key and insert the old leaf node into the branch index.
TrieNode memory modifiedLastNode = _makeLeafNode(lastNodeKey, _getNodeValue(lastNode));
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded));
} else if (lastNodeKey.length != 0) {
// We're dealing with a shrinking extension node.
// We need to modify the node to decrease the size of the key.
TrieNode memory modifiedLastNode = _makeExtensionNode(lastNodeKey, _getNodeValue(lastNode));
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeHash(modifiedLastNode.encoded));
} else {
// We're dealing with an unnecessary extension node.
// We're going to delete the node entirely.
// Simply insert its current value into the branch index.
newBranch = _editBranchIndex(newBranch, branchKey, _getNodeValue(lastNode));
}
}
if (keyRemainder.length == 0) {
// We've got nothing left in the key remainder.
// Simply insert the value into the branch value slot.
newBranch = _editBranchValue(newBranch, _value);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
} else {
// We've got some key remainder to work with.
// We'll be inserting a leaf node into the trie.
// First, move on to the next nibble.
keyRemainder = Lib_BytesUtils.slice(keyRemainder, 1);
// Push the branch into the list of new nodes.
newNodes[totalNewNodes] = newBranch;
totalNewNodes += 1;
// Push a new leaf node for our k/v pair.
newNodes[totalNewNodes] = _makeLeafNode(keyRemainder, _value);
totalNewNodes += 1;
}
}
// Finally, join the old path with our newly created nodes.
// Since we're overwriting the last node in the path, we use `_pathLength - 1`.
return _joinNodeArrays(_path, _pathLength - 1, newNodes, totalNewNodes);
}
/**
* @notice Computes the trie root from a given path.
* @param _nodes Path to some k/v pair.
* @param _key Key for the k/v pair.
* @return _updatedRoot Root hash for the updated trie.
*/
function _getUpdatedTrieRoot(
TrieNode[] memory _nodes,
bytes memory _key
)
private
pure
returns (
bytes32 _updatedRoot
)
{
bytes memory key = Lib_BytesUtils.toNibbles(_key);
// Some variables to keep track of during iteration.
TrieNode memory currentNode;
NodeType currentNodeType;
bytes memory previousNodeHash;
// Run through the path backwards to rebuild our root hash.
for (uint256 i = _nodes.length; i > 0; i--) {
// Pick out the current node.
currentNode = _nodes[i - 1];
currentNodeType = _getNodeType(currentNode);
if (currentNodeType == NodeType.LeafNode) {
// Leaf nodes are already correctly encoded.
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
} else if (currentNodeType == NodeType.ExtensionNode) {
// Shift the key over to account for the nodes key.
bytes memory nodeKey = _getNodeKey(currentNode);
key = Lib_BytesUtils.slice(key, 0, key.length - nodeKey.length);
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
currentNode = _makeExtensionNode(nodeKey, previousNodeHash);
}
} else if (currentNodeType == NodeType.BranchNode) {
// If this node is the last element in the path, it'll be correctly encoded
// and we can skip this part.
if (previousNodeHash.length > 0) {
// Re-encode the node based on the previous node.
uint8 branchKey = uint8(key[key.length - 1]);
key = Lib_BytesUtils.slice(key, 0, key.length - 1);
currentNode = _editBranchIndex(currentNode, branchKey, previousNodeHash);
}
}
// Compute the node hash for the next iteration.
previousNodeHash = _getNodeHash(currentNode.encoded);
}
// Current node should be the root at this point.
// Simply return the hash of its encoding.
return keccak256(currentNode.encoded);
}
/**
* @notice Parses an RLP-encoded proof into something more useful.
* @param _proof RLP-encoded proof to parse.
* @return _parsed Proof parsed into easily accessible structs.
*/
function _parseProof(
bytes memory _proof
)
private
pure
returns (
TrieNode[] memory _parsed
)
{
Lib_RLPReader.RLPItem[] memory nodes = Lib_RLPReader.readList(_proof);
TrieNode[] memory proof = new TrieNode[](nodes.length);
for (uint256 i = 0; i < nodes.length; i++) {
bytes memory encoded = Lib_RLPReader.readBytes(nodes[i]);
proof[i] = TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
return proof;
}
/**
* @notice Picks out the ID for a node. Node ID is referred to as the
* "hash" within the specification, but nodes < 32 bytes are not actually
* hashed.
* @param _node Node to pull an ID for.
* @return _nodeID ID for the node, depending on the size of its contents.
*/
function _getNodeID(
Lib_RLPReader.RLPItem memory _node
)
private
pure
returns (
bytes32 _nodeID
)
{
bytes memory nodeID;
if (_node.length < 32) {
// Nodes smaller than 32 bytes are RLP encoded.
nodeID = Lib_RLPReader.readRawBytes(_node);
} else {
// Nodes 32 bytes or larger are hashed.
nodeID = Lib_RLPReader.readBytes(_node);
}
return Lib_BytesUtils.toBytes32(nodeID);
}
/**
* @notice Gets the path for a leaf or extension node.
* @param _node Node to get a path for.
* @return _path Node path, converted to an array of nibbles.
*/
function _getNodePath(
TrieNode memory _node
)
private
pure
returns (
bytes memory _path
)
{
return Lib_BytesUtils.toNibbles(Lib_RLPReader.readBytes(_node.decoded[0]));
}
/**
* @notice Gets the key for a leaf or extension node. Keys are essentially
* just paths without any prefix.
* @param _node Node to get a key for.
* @return _key Node key, converted to an array of nibbles.
*/
function _getNodeKey(
TrieNode memory _node
)
private
pure
returns (
bytes memory _key
)
{
return _removeHexPrefix(_getNodePath(_node));
}
/**
* @notice Gets the path for a node.
* @param _node Node to get a value for.
* @return _value Node value, as hex bytes.
*/
function _getNodeValue(
TrieNode memory _node
)
private
pure
returns (
bytes memory _value
)
{
return Lib_RLPReader.readBytes(_node.decoded[_node.decoded.length - 1]);
}
/**
* @notice Computes the node hash for an encoded node. Nodes < 32 bytes
* are not hashed, all others are keccak256 hashed.
* @param _encoded Encoded node to hash.
* @return _hash Hash of the encoded node. Simply the input if < 32 bytes.
*/
function _getNodeHash(
bytes memory _encoded
)
private
pure
returns (
bytes memory _hash
)
{
if (_encoded.length < 32) {
return _encoded;
} else {
return abi.encodePacked(keccak256(_encoded));
}
}
/**
* @notice Determines the type for a given node.
* @param _node Node to determine a type for.
* @return _type Type of the node; BranchNode/ExtensionNode/LeafNode.
*/
function _getNodeType(
TrieNode memory _node
)
private
pure
returns (
NodeType _type
)
{
if (_node.decoded.length == BRANCH_NODE_LENGTH) {
return NodeType.BranchNode;
} else if (_node.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(_node);
uint8 prefix = uint8(path[0]);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
return NodeType.LeafNode;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
return NodeType.ExtensionNode;
}
}
revert("Invalid node type");
}
/**
* @notice Utility; determines the number of nibbles shared between two
* nibble arrays.
* @param _a First nibble array.
* @param _b Second nibble array.
* @return _shared Number of shared nibbles.
*/
function _getSharedNibbleLength(
bytes memory _a,
bytes memory _b
)
private
pure
returns (
uint256 _shared
)
{
uint256 i = 0;
while (_a.length > i && _b.length > i && _a[i] == _b[i]) {
i++;
}
return i;
}
/**
* @notice Utility; converts an RLP-encoded node into our nice struct.
* @param _raw RLP-encoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
bytes[] memory _raw
)
private
pure
returns (
TrieNode memory _node
)
{
bytes memory encoded = Lib_RLPWriter.writeList(_raw);
return TrieNode({
encoded: encoded,
decoded: Lib_RLPReader.readList(encoded)
});
}
/**
* @notice Utility; converts an RLP-decoded node into our nice struct.
* @param _items RLP-decoded node to convert.
* @return _node Node as a TrieNode struct.
*/
function _makeNode(
Lib_RLPReader.RLPItem[] memory _items
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](_items.length);
for (uint256 i = 0; i < _items.length; i++) {
raw[i] = Lib_RLPReader.readRawBytes(_items[i]);
}
return _makeNode(raw);
}
/**
* @notice Creates a new extension node.
* @param _key Key for the extension node, unprefixed.
* @param _value Value for the extension node.
* @return _node New extension node with the given k/v pair.
*/
function _makeExtensionNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, false);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* @notice Creates a new leaf node.
* @dev This function is essentially identical to `_makeExtensionNode`.
* Although we could route both to a single method with a flag, it's
* more gas efficient to keep them separate and duplicate the logic.
* @param _key Key for the leaf node, unprefixed.
* @param _value Value for the leaf node.
* @return _node New leaf node with the given k/v pair.
*/
function _makeLeafNode(
bytes memory _key,
bytes memory _value
)
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](2);
bytes memory key = _addHexPrefix(_key, true);
raw[0] = Lib_RLPWriter.writeBytes(Lib_BytesUtils.fromNibbles(key));
raw[1] = Lib_RLPWriter.writeBytes(_value);
return _makeNode(raw);
}
/**
* @notice Creates an empty branch node.
* @return _node Empty branch node as a TrieNode struct.
*/
function _makeEmptyBranchNode()
private
pure
returns (
TrieNode memory _node
)
{
bytes[] memory raw = new bytes[](BRANCH_NODE_LENGTH);
for (uint256 i = 0; i < raw.length; i++) {
raw[i] = RLP_NULL_BYTES;
}
return _makeNode(raw);
}
/**
* @notice Modifies the value slot for a given branch.
* @param _branch Branch node to modify.
* @param _value Value to insert into the branch.
* @return _updatedNode Modified branch node.
*/
function _editBranchValue(
TrieNode memory _branch,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_branch.decoded.length - 1] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Modifies a slot at an index for a given branch.
* @param _branch Branch node to modify.
* @param _index Slot index to modify.
* @param _value Value to insert into the slot.
* @return _updatedNode Modified branch node.
*/
function _editBranchIndex(
TrieNode memory _branch,
uint8 _index,
bytes memory _value
)
private
pure
returns (
TrieNode memory _updatedNode
)
{
bytes memory encoded = _value.length < 32 ? _value : Lib_RLPWriter.writeBytes(_value);
_branch.decoded[_index] = Lib_RLPReader.toRLPItem(encoded);
return _makeNode(_branch.decoded);
}
/**
* @notice Utility; adds a prefix to a key.
* @param _key Key to prefix.
* @param _isLeaf Whether or not the key belongs to a leaf.
* @return _prefixedKey Prefixed key.
*/
function _addHexPrefix(
bytes memory _key,
bool _isLeaf
)
private
pure
returns (
bytes memory _prefixedKey
)
{
uint8 prefix = _isLeaf ? uint8(0x02) : uint8(0x00);
uint8 offset = uint8(_key.length % 2);
bytes memory prefixed = new bytes(2 - offset);
prefixed[0] = bytes1(prefix + offset);
return Lib_BytesUtils.concat(prefixed, _key);
}
/**
* @notice Utility; removes a prefix from a path.
* @param _path Path to remove the prefix from.
* @return _unprefixedKey Unprefixed key.
*/
function _removeHexPrefix(
bytes memory _path
)
private
pure
returns (
bytes memory _unprefixedKey
)
{
if (uint8(_path[0]) % 2 == 0) {
return Lib_BytesUtils.slice(_path, 2);
} else {
return Lib_BytesUtils.slice(_path, 1);
}
}
/**
* @notice Utility; combines two node arrays. Array lengths are required
* because the actual lengths may be longer than the filled lengths.
* Array resizing is extremely costly and should be avoided.
* @param _a First array to join.
* @param _aLength Length of the first array.
* @param _b Second array to join.
* @param _bLength Length of the second array.
* @return _joined Combined node array.
*/
function _joinNodeArrays(
TrieNode[] memory _a,
uint256 _aLength,
TrieNode[] memory _b,
uint256 _bLength
)
private
pure
returns (
TrieNode[] memory _joined
)
{
TrieNode[] memory ret = new TrieNode[](_aLength + _bLength);
// Copy elements from the first array.
for (uint256 i = 0; i < _aLength; i++) {
ret[i] = _a[i];
}
// Copy elements from the second array.
for (uint256 i = 0; i < _bLength; i++) {
ret[i + _aLength] = _b[i];
}
return ret;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >0.5.0 <0.8.0;
pragma experimental ABIEncoderV2;
/* Library Imports */
import { Lib_BytesUtils } from "./Lib_BytesUtils.sol";
/**
* @title Lib_RLPWriter
* @author Bakaoh (with modifications)
*/
library Lib_RLPWriter {
/**********************
* Internal Functions *
**********************/
/**
* RLP encodes a byte string.
* @param _in The byte string to encode.
* @return _out The RLP encoded string in bytes.
*/
function writeBytes(
bytes memory _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory encoded;
if (_in.length == 1 && uint8(_in[0]) < 128) {
encoded = _in;
} else {
encoded = Lib_BytesUtils.concat(_writeLength(_in.length, 128), _in);
}
return encoded;
}
/**
* RLP encodes a list of RLP encoded byte byte strings.
* @param _in The list of RLP encoded byte strings.
* @return _out The RLP encoded list of items in bytes.
*/
function writeList(
bytes[] memory _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory list = _flatten(_in);
return Lib_BytesUtils.concat(_writeLength(list.length, 192), list);
}
/**
* RLP encodes a string.
* @param _in The string to encode.
* @return _out The RLP encoded string in bytes.
*/
function writeString(
string memory _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(bytes(_in));
}
/**
* RLP encodes an address.
* @param _in The address to encode.
* @return _out The RLP encoded address in bytes.
*/
function writeAddress(
address _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(abi.encodePacked(_in));
}
/**
* RLP encodes a uint.
* @param _in The uint256 to encode.
* @return _out The RLP encoded uint256 in bytes.
*/
function writeUint(
uint256 _in
)
internal
pure
returns (
bytes memory _out
)
{
return writeBytes(_toBinary(_in));
}
/**
* RLP encodes a bool.
* @param _in The bool to encode.
* @return _out The RLP encoded bool in bytes.
*/
function writeBool(
bool _in
)
internal
pure
returns (
bytes memory _out
)
{
bytes memory encoded = new bytes(1);
encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
return encoded;
}
/*********************
* Private Functions *
*********************/
/**
* Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
* @param _len The length of the string or the payload.
* @param _offset 128 if item is string, 192 if item is list.
* @return _encoded RLP encoded bytes.
*/
function _writeLength(
uint256 _len,
uint256 _offset
)
private
pure
returns (
bytes memory _encoded
)
{
bytes memory encoded;
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = byte(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
encoded = new bytes(lenLen + 1);
encoded[0] = byte(uint8(lenLen) + uint8(_offset) + 55);
for(i = 1; i <= lenLen; i++) {
encoded[i] = byte(uint8((_len / (256**(lenLen-i))) % 256));
}
}
return encoded;
}
/**
* Encode integer in big endian binary form with no leading zeroes.
* @notice TODO: This should be optimized with assembly to save gas costs.
* @param _x The integer to encode.
* @return _binary RLP encoded bytes.
*/
function _toBinary(
uint256 _x
)
private
pure
returns (
bytes memory _binary
)
{
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
bytes memory res = new bytes(32 - i);
for (uint256 j = 0; j < res.length; j++) {
res[j] = b[i++];
}
return res;
}
/**
* Copies a piece of memory to another location.
* @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
* @param _dest Destination location.
* @param _src Source location.
* @param _len Length of memory to copy.
*/
function _memcpy(
uint256 _dest,
uint256 _src,
uint256 _len
)
private
pure
{
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/**
* Flattens a list of byte strings into one byte string.
* @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
* @param _list List of byte strings to flatten.
* @return _flattened The flattened byte string.
*/
function _flatten(
bytes[] memory _list
)
private
pure
returns (
bytes memory _flattened
)
{
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
bytes memory flattened = new bytes(len);
uint256 flattenedPtr;
assembly { flattenedPtr := add(flattened, 0x20) }
for(i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly { listPtr := add(item, 0x20)}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
return flattened;
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment