Commit f193a1b2 authored by George Hotz's avatar George Hotz

importing vm

parent 515f04bd
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package math
import (
"fmt"
"math/bits"
"strconv"
)
// Integer limit values.
const (
MaxInt8 = 1<<7 - 1
MinInt8 = -1 << 7
MaxInt16 = 1<<15 - 1
MinInt16 = -1 << 15
MaxInt32 = 1<<31 - 1
MinInt32 = -1 << 31
MaxInt64 = 1<<63 - 1
MinInt64 = -1 << 63
MaxUint8 = 1<<8 - 1
MaxUint16 = 1<<16 - 1
MaxUint32 = 1<<32 - 1
MaxUint64 = 1<<64 - 1
)
// HexOrDecimal64 marshals uint64 as hex or decimal.
type HexOrDecimal64 uint64
// UnmarshalText implements encoding.TextUnmarshaler.
func (i *HexOrDecimal64) UnmarshalText(input []byte) error {
int, ok := ParseUint64(string(input))
if !ok {
return fmt.Errorf("invalid hex or decimal integer %q", input)
}
*i = HexOrDecimal64(int)
return nil
}
// MarshalText implements encoding.TextMarshaler.
func (i HexOrDecimal64) MarshalText() ([]byte, error) {
return []byte(fmt.Sprintf("%#x", uint64(i))), nil
}
// ParseUint64 parses s as an integer in decimal or hexadecimal syntax.
// Leading zeros are accepted. The empty string parses as zero.
func ParseUint64(s string) (uint64, bool) {
if s == "" {
return 0, true
}
if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
v, err := strconv.ParseUint(s[2:], 16, 64)
return v, err == nil
}
v, err := strconv.ParseUint(s, 10, 64)
return v, err == nil
}
// MustParseUint64 parses s as an integer and panics if the string is invalid.
func MustParseUint64(s string) uint64 {
v, ok := ParseUint64(s)
if !ok {
panic("invalid unsigned 64 bit integer: " + s)
}
return v
}
// SafeSub returns x-y and checks for overflow.
func SafeSub(x, y uint64) (uint64, bool) {
diff, borrowOut := bits.Sub64(x, y, 0)
return diff, borrowOut != 0
}
// SafeAdd returns x+y and checks for overflow.
func SafeAdd(x, y uint64) (uint64, bool) {
sum, carryOut := bits.Add64(x, y, 0)
return sum, carryOut != 0
}
// SafeMul returns x*y and checks for overflow.
func SafeMul(x, y uint64) (uint64, bool) {
hi, lo := bits.Mul64(x, y)
return lo, hi != 0
}
......@@ -17,7 +17,12 @@
package core
import (
"fmt"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/params"
/*"fmt"
"math/big"
......@@ -26,7 +31,6 @@ import (
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"*/)
......@@ -49,7 +53,6 @@ func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consen
}
}
/*
// Process processes the state changes according to the Ethereum rules by running
// the transaction messages using the statedb and applying any rewards to both
// the processor (coinbase) and any included uncles.
......@@ -93,7 +96,7 @@ func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg
return receipts, allLogs, *usedGas, nil
}
func applyTransaction(msg types.Message, config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM) (*types.Receipt, error) {
/*func applyTransaction(msg types.Message, config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM) (*types.Receipt, error) {
// Create a new context to be used in the EVM environment.
txContext := NewEVMTxContext(msg)
evm.Reset(txContext, statedb)
......
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
const (
set2BitsMask = uint16(0b1100_0000_0000_0000)
set3BitsMask = uint16(0b1110_0000_0000_0000)
set4BitsMask = uint16(0b1111_0000_0000_0000)
set5BitsMask = uint16(0b1111_1000_0000_0000)
set6BitsMask = uint16(0b1111_1100_0000_0000)
set7BitsMask = uint16(0b1111_1110_0000_0000)
)
// bitvec is a bit vector which maps bytes in a program.
// An unset bit means the byte is an opcode, a set bit means
// it's data (i.e. argument of PUSHxx).
type bitvec []byte
var lookup = [8]byte{
0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1,
}
func (bits bitvec) set1(pos uint64) {
bits[pos/8] |= lookup[pos%8]
}
func (bits bitvec) setN(flag uint16, pos uint64) {
a := flag >> (pos % 8)
bits[pos/8] |= byte(a >> 8)
if b := byte(a); b != 0 {
// If the bit-setting affects the neighbouring byte, we can assign - no need to OR it,
// since it's the first write to that byte
bits[pos/8+1] = b
}
}
func (bits bitvec) set8(pos uint64) {
a := byte(0xFF >> (pos % 8))
bits[pos/8] |= a
bits[pos/8+1] = ^a
}
func (bits bitvec) set16(pos uint64) {
a := byte(0xFF >> (pos % 8))
bits[pos/8] |= a
bits[pos/8+1] = 0xFF
bits[pos/8+2] = ^a
}
// codeSegment checks if the position is in a code segment.
func (bits *bitvec) codeSegment(pos uint64) bool {
return ((*bits)[pos/8] & (0x80 >> (pos % 8))) == 0
}
// codeBitmap collects data locations in code.
func codeBitmap(code []byte) bitvec {
// The bitmap is 4 bytes longer than necessary, in case the code
// ends with a PUSH32, the algorithm will push zeroes onto the
// bitvector outside the bounds of the actual code.
bits := make(bitvec, len(code)/8+1+4)
return codeBitmapInternal(code, bits)
}
// codeBitmapInternal is the internal implementation of codeBitmap.
// It exists for the purpose of being able to run benchmark tests
// without dynamic allocations affecting the results.
func codeBitmapInternal(code, bits bitvec) bitvec {
for pc := uint64(0); pc < uint64(len(code)); {
op := OpCode(code[pc])
pc++
if op < PUSH1 || op > PUSH32 {
continue
}
numbits := op - PUSH1 + 1
if numbits >= 8 {
for ; numbits >= 16; numbits -= 16 {
bits.set16(pc)
pc += 16
}
for ; numbits >= 8; numbits -= 8 {
bits.set8(pc)
pc += 8
}
}
switch numbits {
case 1:
bits.set1(pc)
pc += 1
case 2:
bits.setN(set2BitsMask, pc)
pc += 2
case 3:
bits.setN(set3BitsMask, pc)
pc += 3
case 4:
bits.setN(set4BitsMask, pc)
pc += 4
case 5:
bits.setN(set5BitsMask, pc)
pc += 5
case 6:
bits.setN(set6BitsMask, pc)
pc += 6
case 7:
bits.setN(set7BitsMask, pc)
pc += 7
}
}
return bits
}
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/holiman/uint256"
)
// calcMemSize64 calculates the required memory size, and returns
// the size and whether the result overflowed uint64
func calcMemSize64(off, l *uint256.Int) (uint64, bool) {
if !l.IsUint64() {
return 0, true
}
return calcMemSize64WithUint(off, l.Uint64())
}
// calcMemSize64WithUint calculates the required memory size, and returns
// the size and whether the result overflowed uint64
// Identical to calcMemSize64, but length is a uint64
func calcMemSize64WithUint(off *uint256.Int, length64 uint64) (uint64, bool) {
// if length is zero, memsize is always zero, regardless of offset
if length64 == 0 {
return 0, false
}
// Check that offset doesn't overflow
offset64, overflow := off.Uint64WithOverflow()
if overflow {
return 0, true
}
val := offset64 + length64
// if value < either of it's parts, then it overflowed
return val, val < offset64
}
// getData returns a slice from the data based on the start and size and pads
// up to size with zero's. This function is overflow safe.
func getData(data []byte, start uint64, size uint64) []byte {
length := uint64(len(data))
if start > length {
start = length
}
end := start + size
if end > length {
end = length
}
return common.RightPadBytes(data[start:end], int(size))
}
// toWordSize returns the ceiled word size required for memory expansion.
func toWordSize(size uint64) uint64 {
if size > math.MaxUint64-31 {
return math.MaxUint64/32 + 1
}
return (size + 31) / 32
}
func allZero(b []byte) bool {
for _, byte := range b {
if byte != 0 {
return false
}
}
return true
}
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/holiman/uint256"
)
// ContractRef is a reference to the contract's backing object
type ContractRef interface {
Address() common.Address
}
// AccountRef implements ContractRef.
//
// Account references are used during EVM initialisation and
// it's primary use is to fetch addresses. Removing this object
// proves difficult because of the cached jump destinations which
// are fetched from the parent contract (i.e. the caller), which
// is a ContractRef.
type AccountRef common.Address
// Address casts AccountRef to a Address
func (ar AccountRef) Address() common.Address { return (common.Address)(ar) }
// Contract represents an ethereum contract in the state database. It contains
// the contract code, calling arguments. Contract implements ContractRef
type Contract struct {
// CallerAddress is the result of the caller which initialised this
// contract. However when the "call method" is delegated this value
// needs to be initialised to that of the caller's caller.
CallerAddress common.Address
caller ContractRef
self ContractRef
jumpdests map[common.Hash]bitvec // Aggregated result of JUMPDEST analysis.
analysis bitvec // Locally cached result of JUMPDEST analysis
Code []byte
CodeHash common.Hash
CodeAddr *common.Address
Input []byte
Gas uint64
value *big.Int
}
// NewContract returns a new contract environment for the execution of EVM.
func NewContract(caller ContractRef, object ContractRef, value *big.Int, gas uint64) *Contract {
c := &Contract{CallerAddress: caller.Address(), caller: caller, self: object}
if parent, ok := caller.(*Contract); ok {
// Reuse JUMPDEST analysis from parent context if available.
c.jumpdests = parent.jumpdests
} else {
c.jumpdests = make(map[common.Hash]bitvec)
}
// Gas should be a pointer so it can safely be reduced through the run
// This pointer will be off the state transition
c.Gas = gas
// ensures a value is set
c.value = value
return c
}
func (c *Contract) validJumpdest(dest *uint256.Int) bool {
udest, overflow := dest.Uint64WithOverflow()
// PC cannot go beyond len(code) and certainly can't be bigger than 63bits.
// Don't bother checking for JUMPDEST in that case.
if overflow || udest >= uint64(len(c.Code)) {
return false
}
// Only JUMPDESTs allowed for destinations
if OpCode(c.Code[udest]) != JUMPDEST {
return false
}
return c.isCode(udest)
}
// isCode returns true if the provided PC location is an actual opcode, as
// opposed to a data-segment following a PUSHN operation.
func (c *Contract) isCode(udest uint64) bool {
// Do we already have an analysis laying around?
if c.analysis != nil {
return c.analysis.codeSegment(udest)
}
// Do we have a contract hash already?
// If we do have a hash, that means it's a 'regular' contract. For regular
// contracts ( not temporary initcode), we store the analysis in a map
if c.CodeHash != (common.Hash{}) {
// Does parent context have the analysis?
analysis, exist := c.jumpdests[c.CodeHash]
if !exist {
// Do the analysis and save in parent context
// We do not need to store it in c.analysis
analysis = codeBitmap(c.Code)
c.jumpdests[c.CodeHash] = analysis
}
// Also stash it in current contract for faster access
c.analysis = analysis
return analysis.codeSegment(udest)
}
// We don't have the code hash, most likely a piece of initcode not already
// in state trie. In that case, we do an analysis, and save it locally, so
// we don't have to recalculate it for every JUMP instruction in the execution
// However, we don't save it within the parent context
if c.analysis == nil {
c.analysis = codeBitmap(c.Code)
}
return c.analysis.codeSegment(udest)
}
// AsDelegate sets the contract to be a delegate call and returns the current
// contract (for chaining calls)
func (c *Contract) AsDelegate() *Contract {
// NOTE: caller must, at all times be a contract. It should never happen
// that caller is something other than a Contract.
parent := c.caller.(*Contract)
c.CallerAddress = parent.CallerAddress
c.value = parent.value
return c
}
// GetOp returns the n'th element in the contract's byte array
func (c *Contract) GetOp(n uint64) OpCode {
return OpCode(c.GetByte(n))
}
// GetByte returns the n'th byte in the contract's byte array
func (c *Contract) GetByte(n uint64) byte {
if n < uint64(len(c.Code)) {
return c.Code[n]
}
return 0
}
// Caller returns the caller of the contract.
//
// Caller will recursively call caller when the contract is a delegate
// call, including that of caller's caller.
func (c *Contract) Caller() common.Address {
return c.CallerAddress
}
// UseGas attempts the use gas and subtracts it and returns true on success
func (c *Contract) UseGas(gas uint64) (ok bool) {
if c.Gas < gas {
return false
}
c.Gas -= gas
return true
}
// Address returns the contracts address
func (c *Contract) Address() common.Address {
return c.self.Address()
}
// Value returns the contract's value (sent to it from it's caller)
func (c *Contract) Value() *big.Int {
return c.value
}
// SetCallCode sets the code of the contract and address of the backing data
// object
func (c *Contract) SetCallCode(addr *common.Address, hash common.Hash, code []byte) {
c.Code = code
c.CodeHash = hash
c.CodeAddr = addr
}
// SetCodeOptionalHash can be used to provide code, but it's optional to provide hash.
// In case hash is not provided, the jumpdest analysis will not be saved to the parent context
func (c *Contract) SetCodeOptionalHash(addr *common.Address, codeAndHash *codeAndHash) {
c.Code = codeAndHash.code
c.CodeHash = codeAndHash.hash
c.CodeAddr = addr
}
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"crypto/sha256"
"encoding/binary"
"errors"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto"
/*"github.com/ethereum/go-ethereum/crypto/blake2b"
"github.com/ethereum/go-ethereum/crypto/bls12381"*/
"github.com/ethereum/go-ethereum/crypto/bn256"
"github.com/ethereum/go-ethereum/params"
//lint:ignore SA1019 Needed for precompile
"golang.org/x/crypto/ripemd160"
)
// PrecompiledContract is the basic interface for native Go contracts. The implementation
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
}
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
}
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
}
// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
// contracts used in the Istanbul release.
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{9}): &blake2F{},
}
// PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
// contracts used in the Berlin release.
var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{9}): &blake2F{},
}
// PrecompiledContractsBLS contains the set of pre-compiled Ethereum
// contracts specified in EIP-2537. These are exported for testing purposes.
var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{10}): &bls12381G1Add{},
common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
common.BytesToAddress([]byte{13}): &bls12381G2Add{},
common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
common.BytesToAddress([]byte{16}): &bls12381Pairing{},
common.BytesToAddress([]byte{17}): &bls12381MapG1{},
common.BytesToAddress([]byte{18}): &bls12381MapG2{},
}
var (
PrecompiledAddressesBerlin []common.Address
PrecompiledAddressesIstanbul []common.Address
PrecompiledAddressesByzantium []common.Address
PrecompiledAddressesHomestead []common.Address
)
func init() {
for k := range PrecompiledContractsHomestead {
PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
}
for k := range PrecompiledContractsByzantium {
PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
}
for k := range PrecompiledContractsIstanbul {
PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
}
for k := range PrecompiledContractsBerlin {
PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
}
}
// ActivePrecompiles returns the precompiles enabled with the current configuration.
func ActivePrecompiles(rules params.Rules) []common.Address {
switch {
case rules.IsBerlin:
return PrecompiledAddressesBerlin
case rules.IsIstanbul:
return PrecompiledAddressesIstanbul
case rules.IsByzantium:
return PrecompiledAddressesByzantium
default:
return PrecompiledAddressesHomestead
}
}
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
// It returns
// - the returned bytes,
// - the _remaining_ gas,
// - any error that occurred
func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
gasCost := p.RequiredGas(input)
if suppliedGas < gasCost {
return nil, 0, ErrOutOfGas
}
suppliedGas -= gasCost
output, err := p.Run(input)
return output, suppliedGas, err
}
// ECRECOVER implemented as a native contract.
type ecrecover struct{}
func (c *ecrecover) RequiredGas(input []byte) uint64 {
return params.EcrecoverGas
}
func (c *ecrecover) Run(input []byte) ([]byte, error) {
const ecRecoverInputLength = 128
input = common.RightPadBytes(input, ecRecoverInputLength)
// "input" is (hash, v, r, s), each 32 bytes
// but for ecrecover we want (r, s, v)
r := new(big.Int).SetBytes(input[64:96])
s := new(big.Int).SetBytes(input[96:128])
v := input[63] - 27
// tighter sig s values input homestead only apply to tx sigs
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
return nil, nil
}
// We must make sure not to modify the 'input', so placing the 'v' along with
// the signature needs to be done on a new allocation
sig := make([]byte, 65)
copy(sig, input[64:128])
sig[64] = v
// v needs to be at the end for libsecp256k1
pubKey, err := crypto.Ecrecover(input[:32], sig)
// make sure the public key is a valid one
if err != nil {
return nil, nil
}
// the first byte of pubkey is bitcoin heritage
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
}
// SHA256 implemented as a native contract.
type sha256hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
}
func (c *sha256hash) Run(input []byte) ([]byte, error) {
h := sha256.Sum256(input)
return h[:], nil
}
// RIPEMD160 implemented as a native contract.
type ripemd160hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
}
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
ripemd := ripemd160.New()
ripemd.Write(input)
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
}
// data copy implemented as a native contract.
type dataCopy struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
}
func (c *dataCopy) Run(in []byte) ([]byte, error) {
return in, nil
}
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct {
eip2565 bool
}
var (
big0 = big.NewInt(0)
big1 = big.NewInt(1)
big3 = big.NewInt(3)
big4 = big.NewInt(4)
big7 = big.NewInt(7)
big8 = big.NewInt(8)
big16 = big.NewInt(16)
big20 = big.NewInt(20)
big32 = big.NewInt(32)
big64 = big.NewInt(64)
big96 = big.NewInt(96)
big480 = big.NewInt(480)
big1024 = big.NewInt(1024)
big3072 = big.NewInt(3072)
big199680 = big.NewInt(199680)
)
// modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
//
// def mult_complexity(x):
// if x <= 64: return x ** 2
// elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
// else: return x ** 2 // 16 + 480 * x - 199680
//
// where is x is max(length_of_MODULUS, length_of_BASE)
func modexpMultComplexity(x *big.Int) *big.Int {
switch {
case x.Cmp(big64) <= 0:
x.Mul(x, x) // x ** 2
case x.Cmp(big1024) <= 0:
// (x ** 2 // 4 ) + ( 96 * x - 3072)
x = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(x, x), big4),
new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
)
default:
// (x ** 2 // 16) + (480 * x - 199680)
x = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(x, x), big16),
new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
)
}
return x
}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bigModExp) RequiredGas(input []byte) uint64 {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
expLen = new(big.Int).SetBytes(getData(input, 32, 32))
modLen = new(big.Int).SetBytes(getData(input, 64, 32))
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Retrieve the head 32 bytes of exp for the adjusted exponent length
var expHead *big.Int
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
expHead = new(big.Int)
} else {
if expLen.Cmp(big32) > 0 {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
} else {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
}
}
// Calculate the adjusted exponent length
var msb int
if bitlen := expHead.BitLen(); bitlen > 0 {
msb = bitlen - 1
}
adjExpLen := new(big.Int)
if expLen.Cmp(big32) > 0 {
adjExpLen.Sub(expLen, big32)
adjExpLen.Mul(big8, adjExpLen)
}
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
// Calculate the gas cost of the operation
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
if c.eip2565 {
// EIP-2565 has three changes
// 1. Different multComplexity (inlined here)
// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
//
// def mult_complexity(x):
// ceiling(x/8)^2
//
//where is x is max(length_of_MODULUS, length_of_BASE)
gas = gas.Add(gas, big7)
gas = gas.Div(gas, big8)
gas.Mul(gas, gas)
gas.Mul(gas, math.BigMax(adjExpLen, big1))
// 2. Different divisor (`GQUADDIVISOR`) (3)
gas.Div(gas, big3)
if gas.BitLen() > 64 {
return math.MaxUint64
}
// 3. Minimum price of 200 gas
if gas.Uint64() < 200 {
return 200
}
return gas.Uint64()
}
gas = modexpMultComplexity(gas)
gas.Mul(gas, math.BigMax(adjExpLen, big1))
gas.Div(gas, big20)
if gas.BitLen() > 64 {
return math.MaxUint64
}
return gas.Uint64()
}
func (c *bigModExp) Run(input []byte) ([]byte, error) {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Handle a special case when both the base and mod length is zero
if baseLen == 0 && modLen == 0 {
return []byte{}, nil
}
// Retrieve the operands and execute the exponentiation
var (
base = new(big.Int).SetBytes(getData(input, 0, baseLen))
exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
)
if mod.BitLen() == 0 {
// Modulo 0 is undefined, return zero
return common.LeftPadBytes([]byte{}, int(modLen)), nil
}
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
}
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
p := new(bn256.G1)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
p := new(bn256.G2)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// runBn256Add implements the Bn256Add precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Add(input []byte) ([]byte, error) {
x, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
y, err := newCurvePoint(getData(input, 64, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.Add(x, y)
return res.Marshal(), nil
}
// bn256Add implements a native elliptic curve point addition conforming to
// Istanbul consensus rules.
type bn256AddIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256AddGasIstanbul
}
func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
return runBn256Add(input)
}
// bn256AddByzantium implements a native elliptic curve point addition
// conforming to Byzantium consensus rules.
type bn256AddByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256AddGasByzantium
}
func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
return runBn256Add(input)
}
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
// both Byzantium and Istanbul operations.
func runBn256ScalarMul(input []byte) ([]byte, error) {
p, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
return res.Marshal(), nil
}
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
// multiplication conforming to Istanbul consensus rules.
type bn256ScalarMulIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGasIstanbul
}
func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
return runBn256ScalarMul(input)
}
// bn256ScalarMulByzantium implements a native elliptic curve scalar
// multiplication conforming to Byzantium consensus rules.
type bn256ScalarMulByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGasByzantium
}
func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
return runBn256ScalarMul(input)
}
var (
// true32Byte is returned if the bn256 pairing check succeeds.
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
// false32Byte is returned if the bn256 pairing check fails.
false32Byte = make([]byte, 32)
// errBadPairingInput is returned if the bn256 pairing input is invalid.
errBadPairingInput = errors.New("bad elliptic curve pairing size")
)
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Pairing(input []byte) ([]byte, error) {
// Handle some corner cases cheaply
if len(input)%192 > 0 {
return nil, errBadPairingInput
}
// Convert the input into a set of coordinates
var (
cs []*bn256.G1
ts []*bn256.G2
)
for i := 0; i < len(input); i += 192 {
c, err := newCurvePoint(input[i : i+64])
if err != nil {
return nil, err
}
t, err := newTwistPoint(input[i+64 : i+192])
if err != nil {
return nil, err
}
cs = append(cs, c)
ts = append(ts, t)
}
// Execute the pairing checks and return the results
if bn256.PairingCheck(cs, ts) {
return true32Byte, nil
}
return false32Byte, nil
}
// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
// conforming to Istanbul consensus rules.
type bn256PairingIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
}
func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
return runBn256Pairing(input)
}
// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
// conforming to Byzantium consensus rules.
type bn256PairingByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
}
func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
return runBn256Pairing(input)
}
type blake2F struct{}
func (c *blake2F) RequiredGas(input []byte) uint64 {
// If the input is malformed, we can't calculate the gas, return 0 and let the
// actual call choke and fault.
if len(input) != blake2FInputLength {
return 0
}
return uint64(binary.BigEndian.Uint32(input[0:4]))
}
const (
blake2FInputLength = 213
blake2FFinalBlockBytes = byte(1)
blake2FNonFinalBlockBytes = byte(0)
)
var (
errBlake2FInvalidInputLength = errors.New("invalid input length")
errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
)
func (c *blake2F) Run(input []byte) ([]byte, error) {
// Make sure the input is valid (correct length and final flag)
if len(input) != blake2FInputLength {
return nil, errBlake2FInvalidInputLength
}
if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
return nil, errBlake2FInvalidFinalFlag
}
// Parse the input into the Blake2b call parameters
var (
rounds = binary.BigEndian.Uint32(input[0:4])
final = (input[212] == blake2FFinalBlockBytes)
h [8]uint64
m [16]uint64
t [2]uint64
)
for i := 0; i < 8; i++ {
offset := 4 + i*8
h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
}
for i := 0; i < 16; i++ {
offset := 68 + i*8
m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
}
t[0] = binary.LittleEndian.Uint64(input[196:204])
t[1] = binary.LittleEndian.Uint64(input[204:212])
// Execute the compression function, extract and return the result
blake2b.F(&h, m, t, final, rounds)
output := make([]byte, 64)
for i := 0; i < 8; i++ {
offset := i * 8
binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
}
return output, nil
}
var (
errBLS12381InvalidInputLength = errors.New("invalid input length")
errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup")
errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup")
)
// bls12381G1Add implements EIP-2537 G1Add precompile.
type bls12381G1Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
return params.Bls12381G1AddGas
}
func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1Add precompile.
// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
if len(input) != 256 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0, p1 *bls12381.PointG1
// Initialize G1
g := bls12381.NewG1()
// Decode G1 point p_0
if p0, err = g.DecodePoint(input[:128]); err != nil {
return nil, err
}
// Decode G1 point p_1
if p1, err = g.DecodePoint(input[128:]); err != nil {
return nil, err
}
// Compute r = p_0 + p_1
r := g.New()
g.Add(r, p0, p1)
// Encode the G1 point result into 128 bytes
return g.EncodePoint(r), nil
}
// bls12381G1Mul implements EIP-2537 G1Mul precompile.
type bls12381G1Mul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
return params.Bls12381G1MulGas
}
func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1Mul precompile.
// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
if len(input) != 160 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0 *bls12381.PointG1
// Initialize G1
g := bls12381.NewG1()
// Decode G1 point
if p0, err = g.DecodePoint(input[:128]); err != nil {
return nil, err
}
// Decode scalar value
e := new(big.Int).SetBytes(input[128:])
// Compute r = e * p_0
r := g.New()
g.MulScalar(r, p0, e)
// Encode the G1 point into 128 bytes
return g.EncodePoint(r), nil
}
// bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
type bls12381G1MultiExp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
// Calculate G1 point, scalar value pair length
k := len(input) / 160
if k == 0 {
// Return 0 gas for small input length
return 0
}
// Lookup discount value for G1 point, scalar value pair length
var discount uint64
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
discount = params.Bls12381MultiExpDiscountTable[k-1]
} else {
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
}
// Calculate gas and return the result
return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
}
func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1MultiExp precompile.
// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
k := len(input) / 160
if len(input) == 0 || len(input)%160 != 0 {
return nil, errBLS12381InvalidInputLength
}
var err error
points := make([]*bls12381.PointG1, k)
scalars := make([]*big.Int, k)
// Initialize G1
g := bls12381.NewG1()
// Decode point scalar pairs
for i := 0; i < k; i++ {
off := 160 * i
t0, t1, t2 := off, off+128, off+160
// Decode G1 point
if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
return nil, err
}
// Decode scalar value
scalars[i] = new(big.Int).SetBytes(input[t1:t2])
}
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
r := g.New()
g.MultiExp(r, points, scalars)
// Encode the G1 point to 128 bytes
return g.EncodePoint(r), nil
}
// bls12381G2Add implements EIP-2537 G2Add precompile.
type bls12381G2Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
return params.Bls12381G2AddGas
}
func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2Add precompile.
// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
if len(input) != 512 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0, p1 *bls12381.PointG2
// Initialize G2
g := bls12381.NewG2()
r := g.New()
// Decode G2 point p_0
if p0, err = g.DecodePoint(input[:256]); err != nil {
return nil, err
}
// Decode G2 point p_1
if p1, err = g.DecodePoint(input[256:]); err != nil {
return nil, err
}
// Compute r = p_0 + p_1
g.Add(r, p0, p1)
// Encode the G2 point into 256 bytes
return g.EncodePoint(r), nil
}
// bls12381G2Mul implements EIP-2537 G2Mul precompile.
type bls12381G2Mul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
return params.Bls12381G2MulGas
}
func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2MUL precompile logic.
// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
if len(input) != 288 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0 *bls12381.PointG2
// Initialize G2
g := bls12381.NewG2()
// Decode G2 point
if p0, err = g.DecodePoint(input[:256]); err != nil {
return nil, err
}
// Decode scalar value
e := new(big.Int).SetBytes(input[256:])
// Compute r = e * p_0
r := g.New()
g.MulScalar(r, p0, e)
// Encode the G2 point into 256 bytes
return g.EncodePoint(r), nil
}
// bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
type bls12381G2MultiExp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
// Calculate G2 point, scalar value pair length
k := len(input) / 288
if k == 0 {
// Return 0 gas for small input length
return 0
}
// Lookup discount value for G2 point, scalar value pair length
var discount uint64
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
discount = params.Bls12381MultiExpDiscountTable[k-1]
} else {
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
}
// Calculate gas and return the result
return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
}
func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2MultiExp precompile logic
// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
k := len(input) / 288
if len(input) == 0 || len(input)%288 != 0 {
return nil, errBLS12381InvalidInputLength
}
var err error
points := make([]*bls12381.PointG2, k)
scalars := make([]*big.Int, k)
// Initialize G2
g := bls12381.NewG2()
// Decode point scalar pairs
for i := 0; i < k; i++ {
off := 288 * i
t0, t1, t2 := off, off+256, off+288
// Decode G1 point
if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
return nil, err
}
// Decode scalar value
scalars[i] = new(big.Int).SetBytes(input[t1:t2])
}
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
r := g.New()
g.MultiExp(r, points, scalars)
// Encode the G2 point to 256 bytes.
return g.EncodePoint(r), nil
}
// bls12381Pairing implements EIP-2537 Pairing precompile.
type bls12381Pairing struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
}
func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Pairing precompile logic.
// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
// > - `128` bytes of G1 point encoding
// > - `256` bytes of G2 point encoding
// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
k := len(input) / 384
if len(input) == 0 || len(input)%384 != 0 {
return nil, errBLS12381InvalidInputLength
}
// Initialize BLS12-381 pairing engine
e := bls12381.NewPairingEngine()
g1, g2 := e.G1, e.G2
// Decode pairs
for i := 0; i < k; i++ {
off := 384 * i
t0, t1, t2 := off, off+128, off+384
// Decode G1 point
p1, err := g1.DecodePoint(input[t0:t1])
if err != nil {
return nil, err
}
// Decode G2 point
p2, err := g2.DecodePoint(input[t1:t2])
if err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !g1.InCorrectSubgroup(p1) {
return nil, errBLS12381G1PointSubgroup
}
if !g2.InCorrectSubgroup(p2) {
return nil, errBLS12381G2PointSubgroup
}
// Update pairing engine with G1 and G2 ponits
e.AddPair(p1, p2)
}
// Prepare 32 byte output
out := make([]byte, 32)
// Compute pairing and set the result
if e.Check() {
out[31] = 1
}
return out, nil
}
// decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
// Removes top 16 bytes of 64 byte input.
func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
if len(in) != 64 {
return nil, errors.New("invalid field element length")
}
// check top bytes
for i := 0; i < 16; i++ {
if in[i] != byte(0x00) {
return nil, errBLS12381InvalidFieldElementTopBytes
}
}
out := make([]byte, 48)
copy(out[:], in[16:])
return out, nil
}
// bls12381MapG1 implements EIP-2537 MapG1 precompile.
type bls12381MapG1 struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
return params.Bls12381MapG1Gas
}
func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Map_To_G1 precompile.
// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
if len(input) != 64 {
return nil, errBLS12381InvalidInputLength
}
// Decode input field element
fe, err := decodeBLS12381FieldElement(input)
if err != nil {
return nil, err
}
// Initialize G1
g := bls12381.NewG1()
// Compute mapping
r, err := g.MapToCurve(fe)
if err != nil {
return nil, err
}
// Encode the G1 point to 128 bytes
return g.EncodePoint(r), nil
}
// bls12381MapG2 implements EIP-2537 MapG2 precompile.
type bls12381MapG2 struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
return params.Bls12381MapG2Gas
}
func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
if len(input) != 128 {
return nil, errBLS12381InvalidInputLength
}
// Decode input field element
fe := make([]byte, 96)
c0, err := decodeBLS12381FieldElement(input[:64])
if err != nil {
return nil, err
}
copy(fe[48:], c0)
c1, err := decodeBLS12381FieldElement(input[64:])
if err != nil {
return nil, err
}
copy(fe[:48], c1)
// Initialize G2
g := bls12381.NewG2()
// Compute mapping
r, err := g.MapToCurve(fe)
if err != nil {
return nil, err
}
// Encode the G2 point to 256 bytes
return g.EncodePoint(r), nil
}
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"errors"
"fmt"
)
// List evm execution errors
var (
ErrOutOfGas = errors.New("out of gas")
ErrCodeStoreOutOfGas = errors.New("contract creation code storage out of gas")
ErrDepth = errors.New("max call depth exceeded")
ErrInsufficientBalance = errors.New("insufficient balance for transfer")
ErrContractAddressCollision = errors.New("contract address collision")
ErrExecutionReverted = errors.New("execution reverted")
ErrMaxCodeSizeExceeded = errors.New("max code size exceeded")
ErrInvalidJump = errors.New("invalid jump destination")
ErrWriteProtection = errors.New("write protection")
ErrReturnDataOutOfBounds = errors.New("return data out of bounds")
ErrGasUintOverflow = errors.New("gas uint64 overflow")
ErrInvalidCode = errors.New("invalid code: must not begin with 0xef")
)
// ErrStackUnderflow wraps an evm error when the items on the stack less
// than the minimal requirement.
type ErrStackUnderflow struct {
stackLen int
required int
}
func (e *ErrStackUnderflow) Error() string {
return fmt.Sprintf("stack underflow (%d <=> %d)", e.stackLen, e.required)
}
// ErrStackOverflow wraps an evm error when the items on the stack exceeds
// the maximum allowance.
type ErrStackOverflow struct {
stackLen int
limit int
}
func (e *ErrStackOverflow) Error() string {
return fmt.Sprintf("stack limit reached %d (%d)", e.stackLen, e.limit)
}
// ErrInvalidOpCode wraps an evm error when an invalid opcode is encountered.
type ErrInvalidOpCode struct {
opcode OpCode
}
func (e *ErrInvalidOpCode) Error() string { return fmt.Sprintf("invalid opcode: %s", e.opcode) }
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"math/big"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
// emptyCodeHash is used by create to ensure deployment is disallowed to already
// deployed contract addresses (relevant after the account abstraction).
var emptyCodeHash = crypto.Keccak256Hash(nil)
type (
// CanTransferFunc is the signature of a transfer guard function
CanTransferFunc func(StateDB, common.Address, *big.Int) bool
// TransferFunc is the signature of a transfer function
TransferFunc func(StateDB, common.Address, common.Address, *big.Int)
// GetHashFunc returns the n'th block hash in the blockchain
// and is used by the BLOCKHASH EVM op code.
GetHashFunc func(uint64) common.Hash
)
func (evm *EVM) precompile(addr common.Address) (PrecompiledContract, bool) {
var precompiles map[common.Address]PrecompiledContract
switch {
case evm.chainRules.IsBerlin:
precompiles = PrecompiledContractsBerlin
case evm.chainRules.IsIstanbul:
precompiles = PrecompiledContractsIstanbul
case evm.chainRules.IsByzantium:
precompiles = PrecompiledContractsByzantium
default:
precompiles = PrecompiledContractsHomestead
}
p, ok := precompiles[addr]
return p, ok
}
// BlockContext provides the EVM with auxiliary information. Once provided
// it shouldn't be modified.
type BlockContext struct {
// CanTransfer returns whether the account contains
// sufficient ether to transfer the value
CanTransfer CanTransferFunc
// Transfer transfers ether from one account to the other
Transfer TransferFunc
// GetHash returns the hash corresponding to n
GetHash GetHashFunc
// Block information
Coinbase common.Address // Provides information for COINBASE
GasLimit uint64 // Provides information for GASLIMIT
BlockNumber *big.Int // Provides information for NUMBER
Time *big.Int // Provides information for TIME
Difficulty *big.Int // Provides information for DIFFICULTY
BaseFee *big.Int // Provides information for BASEFEE
}
// TxContext provides the EVM with information about a transaction.
// All fields can change between transactions.
type TxContext struct {
// Message information
Origin common.Address // Provides information for ORIGIN
GasPrice *big.Int // Provides information for GASPRICE
}
// EVM is the Ethereum Virtual Machine base object and provides
// the necessary tools to run a contract on the given state with
// the provided context. It should be noted that any error
// generated through any of the calls should be considered a
// revert-state-and-consume-all-gas operation, no checks on
// specific errors should ever be performed. The interpreter makes
// sure that any errors generated are to be considered faulty code.
//
// The EVM should never be reused and is not thread safe.
type EVM struct {
// Context provides auxiliary blockchain related information
Context BlockContext
TxContext
// StateDB gives access to the underlying state
StateDB StateDB
// Depth is the current call stack
depth int
// chainConfig contains information about the current chain
chainConfig *params.ChainConfig
// chain rules contains the chain rules for the current epoch
chainRules params.Rules
// virtual machine configuration options used to initialise the
// evm.
Config Config
// global (to this context) ethereum virtual machine
// used throughout the execution of the tx.
interpreter *EVMInterpreter
// abort is used to abort the EVM calling operations
// NOTE: must be set atomically
abort int32
// callGasTemp holds the gas available for the current call. This is needed because the
// available gas is calculated in gasCall* according to the 63/64 rule and later
// applied in opCall*.
callGasTemp uint64
}
// NewEVM returns a new EVM. The returned EVM is not thread safe and should
// only ever be used *once*.
func NewEVM(blockCtx BlockContext, txCtx TxContext, statedb StateDB, chainConfig *params.ChainConfig, config Config) *EVM {
evm := &EVM{
Context: blockCtx,
TxContext: txCtx,
StateDB: statedb,
Config: config,
chainConfig: chainConfig,
chainRules: chainConfig.Rules(blockCtx.BlockNumber),
}
evm.interpreter = NewEVMInterpreter(evm, config)
return evm
}
// Reset resets the EVM with a new transaction context.Reset
// This is not threadsafe and should only be done very cautiously.
func (evm *EVM) Reset(txCtx TxContext, statedb StateDB) {
evm.TxContext = txCtx
evm.StateDB = statedb
}
// Cancel cancels any running EVM operation. This may be called concurrently and
// it's safe to be called multiple times.
func (evm *EVM) Cancel() {
atomic.StoreInt32(&evm.abort, 1)
}
// Cancelled returns true if Cancel has been called
func (evm *EVM) Cancelled() bool {
return atomic.LoadInt32(&evm.abort) == 1
}
// Interpreter returns the current interpreter
func (evm *EVM) Interpreter() *EVMInterpreter {
return evm.interpreter
}
// Call executes the contract associated with the addr with the given input as
// parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) {
if evm.Config.NoRecursion && evm.depth > 0 {
return nil, gas, nil
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
if value.Sign() != 0 && !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
snapshot := evm.StateDB.Snapshot()
p, isPrecompile := evm.precompile(addr)
if !evm.StateDB.Exist(addr) {
if !isPrecompile && evm.chainRules.IsEIP158 && value.Sign() == 0 {
// Calling a non existing account, don't do anything, but ping the tracer
if evm.Config.Debug && evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value)
evm.Config.Tracer.CaptureEnd(ret, 0, 0, nil)
}
return nil, gas, nil
}
evm.StateDB.CreateAccount(addr)
}
evm.Context.Transfer(evm.StateDB, caller.Address(), addr, value)
// Capture the tracer start/end events in debug mode
if evm.Config.Debug && evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), addr, false, input, gas, value)
defer func(startGas uint64, startTime time.Time) { // Lazy evaluation of the parameters
evm.Config.Tracer.CaptureEnd(ret, startGas-gas, time.Since(startTime), err)
}(gas, time.Now())
}
if isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
code := evm.StateDB.GetCode(addr)
if len(code) == 0 {
ret, err = nil, nil // gas is unchanged
} else {
addrCopy := addr
// If the account has no code, we can abort here
// The depth-check is already done, and precompiles handled above
contract := NewContract(caller, AccountRef(addrCopy), value, gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), code)
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in homestead this also counts for code storage gas errors.
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
// TODO: consider clearing up unused snapshots:
//} else {
// evm.StateDB.DiscardSnapshot(snapshot)
}
return ret, gas, err
}
// CallCode executes the contract associated with the addr with the given input
// as parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address'
// code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) {
if evm.Config.NoRecursion && evm.depth > 0 {
return nil, gas, nil
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
// Note although it's noop to transfer X ether to caller itself. But
// if caller doesn't have enough balance, it would be an error to allow
// over-charging itself. So the check here is necessary.
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
var snapshot = evm.StateDB.Snapshot()
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(caller.Address()), value, gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
// DelegateCall executes the contract associated with the addr with the given input
// as parameters. It reverses the state in case of an execution error.
//
// DelegateCall differs from CallCode in the sense that it executes the given address'
// code with the caller as context and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
if evm.Config.NoRecursion && evm.depth > 0 {
return nil, gas, nil
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
var snapshot = evm.StateDB.Snapshot()
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
addrCopy := addr
// Initialise a new contract and make initialise the delegate values
contract := NewContract(caller, AccountRef(caller.Address()), nil, gas).AsDelegate()
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
// StaticCall executes the contract associated with the addr with the given input
// as parameters while disallowing any modifications to the state during the call.
// Opcodes that attempt to perform such modifications will result in exceptions
// instead of performing the modifications.
func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
if evm.Config.NoRecursion && evm.depth > 0 {
return nil, gas, nil
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// We take a snapshot here. This is a bit counter-intuitive, and could probably be skipped.
// However, even a staticcall is considered a 'touch'. On mainnet, static calls were introduced
// after all empty accounts were deleted, so this is not required. However, if we omit this,
// then certain tests start failing; stRevertTest/RevertPrecompiledTouchExactOOG.json.
// We could change this, but for now it's left for legacy reasons
var snapshot = evm.StateDB.Snapshot()
// We do an AddBalance of zero here, just in order to trigger a touch.
// This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium,
// but is the correct thing to do and matters on other networks, in tests, and potential
// future scenarios
evm.StateDB.AddBalance(addr, big0)
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas)
} else {
// At this point, we use a copy of address. If we don't, the go compiler will
// leak the 'contract' to the outer scope, and make allocation for 'contract'
// even if the actual execution ends on RunPrecompiled above.
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(addrCopy), new(big.Int), gas)
contract.SetCallCode(&addrCopy, evm.StateDB.GetCodeHash(addrCopy), evm.StateDB.GetCode(addrCopy))
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in Homestead this also counts for code storage gas errors.
ret, err = evm.interpreter.Run(contract, input, true)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
gas = 0
}
}
return ret, gas, err
}
type codeAndHash struct {
code []byte
hash common.Hash
}
func (c *codeAndHash) Hash() common.Hash {
if c.hash == (common.Hash{}) {
c.hash = crypto.Keccak256Hash(c.code)
}
return c.hash
}
// create creates a new contract using code as deployment code.
func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *big.Int, address common.Address) ([]byte, common.Address, uint64, error) {
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth) {
return nil, common.Address{}, gas, ErrDepth
}
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, common.Address{}, gas, ErrInsufficientBalance
}
nonce := evm.StateDB.GetNonce(caller.Address())
evm.StateDB.SetNonce(caller.Address(), nonce+1)
// We add this to the access list _before_ taking a snapshot. Even if the creation fails,
// the access-list change should not be rolled back
if evm.chainRules.IsBerlin {
evm.StateDB.AddAddressToAccessList(address)
}
// Ensure there's no existing contract already at the designated address
contractHash := evm.StateDB.GetCodeHash(address)
if evm.StateDB.GetNonce(address) != 0 || (contractHash != (common.Hash{}) && contractHash != emptyCodeHash) {
return nil, common.Address{}, 0, ErrContractAddressCollision
}
// Create a new account on the state
snapshot := evm.StateDB.Snapshot()
evm.StateDB.CreateAccount(address)
if evm.chainRules.IsEIP158 {
evm.StateDB.SetNonce(address, 1)
}
evm.Context.Transfer(evm.StateDB, caller.Address(), address, value)
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(address), value, gas)
contract.SetCodeOptionalHash(&address, codeAndHash)
if evm.Config.NoRecursion && evm.depth > 0 {
return nil, address, gas, nil
}
if evm.Config.Debug && evm.depth == 0 {
evm.Config.Tracer.CaptureStart(evm, caller.Address(), address, true, codeAndHash.code, gas, value)
}
start := time.Now()
ret, err := evm.interpreter.Run(contract, nil, false)
// Check whether the max code size has been exceeded, assign err if the case.
if err == nil && evm.chainRules.IsEIP158 && len(ret) > params.MaxCodeSize {
err = ErrMaxCodeSizeExceeded
}
// Reject code starting with 0xEF if EIP-3541 is enabled.
if err == nil && len(ret) >= 1 && ret[0] == 0xEF && evm.chainRules.IsLondon {
err = ErrInvalidCode
}
// if the contract creation ran successfully and no errors were returned
// calculate the gas required to store the code. If the code could not
// be stored due to not enough gas set an error and let it be handled
// by the error checking condition below.
if err == nil {
createDataGas := uint64(len(ret)) * params.CreateDataGas
if contract.UseGas(createDataGas) {
evm.StateDB.SetCode(address, ret)
} else {
err = ErrCodeStoreOutOfGas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in homestead this also counts for code storage gas errors.
if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
contract.UseGas(contract.Gas)
}
}
if evm.Config.Debug && evm.depth == 0 {
evm.Config.Tracer.CaptureEnd(ret, gas-contract.Gas, time.Since(start), err)
}
return ret, address, contract.Gas, err
}
// Create creates a new contract using code as deployment code.
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *big.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address()))
return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr)
}
// Create2 creates a new contract using code as deployment code.
//
// The different between Create2 with Create is Create2 uses sha3(0xff ++ msg.sender ++ salt ++ sha3(init_code))[12:]
// instead of the usual sender-and-nonce-hash as the address where the contract is initialized at.
func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *big.Int, salt *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
codeAndHash := &codeAndHash{code: code}
contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes())
return evm.create(caller, codeAndHash, gas, endowment, contractAddr)
}
// ChainConfig returns the environment's chain configuration
func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig }
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
)
// StateDB is an EVM database for full state querying.
type StateDB interface {
CreateAccount(common.Address)
SubBalance(common.Address, *big.Int)
AddBalance(common.Address, *big.Int)
GetBalance(common.Address) *big.Int
GetNonce(common.Address) uint64
SetNonce(common.Address, uint64)
GetCodeHash(common.Address) common.Hash
GetCode(common.Address) []byte
SetCode(common.Address, []byte)
GetCodeSize(common.Address) int
AddRefund(uint64)
SubRefund(uint64)
GetRefund() uint64
GetCommittedState(common.Address, common.Hash) common.Hash
GetState(common.Address, common.Hash) common.Hash
SetState(common.Address, common.Hash, common.Hash)
Suicide(common.Address) bool
HasSuicided(common.Address) bool
// Exist reports whether the given account exists in state.
// Notably this should also return true for suicided accounts.
Exist(common.Address) bool
// Empty returns whether the given account is empty. Empty
// is defined according to EIP161 (balance = nonce = code = 0).
Empty(common.Address) bool
PrepareAccessList(sender common.Address, dest *common.Address, precompiles []common.Address, txAccesses types.AccessList)
AddressInAccessList(addr common.Address) bool
SlotInAccessList(addr common.Address, slot common.Hash) (addressOk bool, slotOk bool)
// AddAddressToAccessList adds the given address to the access list. This operation is safe to perform
// even if the feature/fork is not active yet
AddAddressToAccessList(addr common.Address)
// AddSlotToAccessList adds the given (address,slot) to the access list. This operation is safe to perform
// even if the feature/fork is not active yet
AddSlotToAccessList(addr common.Address, slot common.Hash)
RevertToSnapshot(int)
Snapshot() int
AddLog(*types.Log)
AddPreimage(common.Hash, []byte)
ForEachStorage(common.Address, func(common.Hash, common.Hash) bool) error
}
// CallContext provides a basic interface for the EVM calling conventions. The EVM
// depends on this context being implemented for doing subcalls and initialising new EVM contracts.
type CallContext interface {
// Call another contract
Call(env *EVM, me ContractRef, addr common.Address, data []byte, gas, value *big.Int) ([]byte, error)
// Take another's contract code and execute within our own context
CallCode(env *EVM, me ContractRef, addr common.Address, data []byte, gas, value *big.Int) ([]byte, error)
// Same as CallCode except sender and value is propagated from parent to child scope
DelegateCall(env *EVM, me ContractRef, addr common.Address, data []byte, gas *big.Int) ([]byte, error)
// Create a new contract
Create(env *EVM, me ContractRef, data []byte, gas, value *big.Int) ([]byte, common.Address, error)
}
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"hash"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
//"github.com/ethereum/go-ethereum/log"
)
// Config are the configuration options for the Interpreter
type Config struct {
Debug bool // Enables debugging
Tracer Tracer // Opcode logger
NoRecursion bool // Disables call, callcode, delegate call and create
NoBaseFee bool // Forces the EIP-1559 baseFee to 0 (needed for 0 price calls)
EnablePreimageRecording bool // Enables recording of SHA3/keccak preimages
JumpTable [256]*operation // EVM instruction table, automatically populated if unset
ExtraEips []int // Additional EIPS that are to be enabled
}
// ScopeContext contains the things that are per-call, such as stack and memory,
// but not transients like pc and gas
type ScopeContext struct {
Memory *Memory
Stack *Stack
Contract *Contract
}
// keccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
type keccakState interface {
hash.Hash
Read([]byte) (int, error)
}
// EVMInterpreter represents an EVM interpreter
type EVMInterpreter struct {
evm *EVM
cfg Config
hasher keccakState // Keccak256 hasher instance shared across opcodes
hasherBuf common.Hash // Keccak256 hasher result array shared aross opcodes
readOnly bool // Whether to throw on stateful modifications
returnData []byte // Last CALL's return data for subsequent reuse
}
// NewEVMInterpreter returns a new instance of the Interpreter.
func NewEVMInterpreter(evm *EVM, cfg Config) *EVMInterpreter {
// We use the STOP instruction whether to see
// the jump table was initialised. If it was not
// we'll set the default jump table.
if cfg.JumpTable[STOP] == nil {
var jt JumpTable
switch {
case evm.chainRules.IsLondon:
jt = londonInstructionSet
case evm.chainRules.IsBerlin:
jt = berlinInstructionSet
case evm.chainRules.IsIstanbul:
jt = istanbulInstructionSet
case evm.chainRules.IsConstantinople:
jt = constantinopleInstructionSet
case evm.chainRules.IsByzantium:
jt = byzantiumInstructionSet
case evm.chainRules.IsEIP158:
jt = spuriousDragonInstructionSet
case evm.chainRules.IsEIP150:
jt = tangerineWhistleInstructionSet
case evm.chainRules.IsHomestead:
jt = homesteadInstructionSet
default:
jt = frontierInstructionSet
}
for i, eip := range cfg.ExtraEips {
if err := EnableEIP(eip, &jt); err != nil {
// Disable it, so caller can check if it's activated or not
cfg.ExtraEips = append(cfg.ExtraEips[:i], cfg.ExtraEips[i+1:]...)
//log.Error("EIP activation failed", "eip", eip, "error", err)
}
}
cfg.JumpTable = jt
}
return &EVMInterpreter{
evm: evm,
cfg: cfg,
}
}
// Run loops and evaluates the contract's code with the given input data and returns
// the return byte-slice and an error if one occurred.
//
// It's important to note that any errors returned by the interpreter should be
// considered a revert-and-consume-all-gas operation except for
// ErrExecutionReverted which means revert-and-keep-gas-left.
func (in *EVMInterpreter) Run(contract *Contract, input []byte, readOnly bool) (ret []byte, err error) {
// Increment the call depth which is restricted to 1024
in.evm.depth++
defer func() { in.evm.depth-- }()
// Make sure the readOnly is only set if we aren't in readOnly yet.
// This also makes sure that the readOnly flag isn't removed for child calls.
if readOnly && !in.readOnly {
in.readOnly = true
defer func() { in.readOnly = false }()
}
// Reset the previous call's return data. It's unimportant to preserve the old buffer
// as every returning call will return new data anyway.
in.returnData = nil
// Don't bother with the execution if there's no code.
if len(contract.Code) == 0 {
return nil, nil
}
var (
op OpCode // current opcode
mem = NewMemory() // bound memory
stack = newstack() // local stack
callContext = &ScopeContext{
Memory: mem,
Stack: stack,
Contract: contract,
}
// For optimisation reason we're using uint64 as the program counter.
// It's theoretically possible to go above 2^64. The YP defines the PC
// to be uint256. Practically much less so feasible.
pc = uint64(0) // program counter
cost uint64
// copies used by tracer
pcCopy uint64 // needed for the deferred Tracer
gasCopy uint64 // for Tracer to log gas remaining before execution
logged bool // deferred Tracer should ignore already logged steps
res []byte // result of the opcode execution function
)
// Don't move this deferrred function, it's placed before the capturestate-deferred method,
// so that it get's executed _after_: the capturestate needs the stacks before
// they are returned to the pools
defer func() {
returnStack(stack)
}()
contract.Input = input
if in.cfg.Debug {
defer func() {
if err != nil {
if !logged {
in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, callContext, in.returnData, in.evm.depth, err)
} else {
in.cfg.Tracer.CaptureFault(in.evm, pcCopy, op, gasCopy, cost, callContext, in.evm.depth, err)
}
}
}()
}
// The Interpreter main run loop (contextual). This loop runs until either an
// explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during
// the execution of one of the operations or until the done flag is set by the
// parent context.
steps := 0
for {
steps++
if steps%1000 == 0 && atomic.LoadInt32(&in.evm.abort) != 0 {
break
}
if in.cfg.Debug {
// Capture pre-execution values for tracing.
logged, pcCopy, gasCopy = false, pc, contract.Gas
}
// Get the operation from the jump table and validate the stack to ensure there are
// enough stack items available to perform the operation.
op = contract.GetOp(pc)
operation := in.cfg.JumpTable[op]
if operation == nil {
return nil, &ErrInvalidOpCode{opcode: op}
}
// Validate stack
if sLen := stack.len(); sLen < operation.minStack {
return nil, &ErrStackUnderflow{stackLen: sLen, required: operation.minStack}
} else if sLen > operation.maxStack {
return nil, &ErrStackOverflow{stackLen: sLen, limit: operation.maxStack}
}
// If the operation is valid, enforce write restrictions
if in.readOnly && in.evm.chainRules.IsByzantium {
// If the interpreter is operating in readonly mode, make sure no
// state-modifying operation is performed. The 3rd stack item
// for a call operation is the value. Transferring value from one
// account to the others means the state is modified and should also
// return with an error.
if operation.writes || (op == CALL && stack.Back(2).Sign() != 0) {
return nil, ErrWriteProtection
}
}
// Static portion of gas
cost = operation.constantGas // For tracing
if !contract.UseGas(operation.constantGas) {
return nil, ErrOutOfGas
}
var memorySize uint64
// calculate the new memory size and expand the memory to fit
// the operation
// Memory check needs to be done prior to evaluating the dynamic gas portion,
// to detect calculation overflows
if operation.memorySize != nil {
memSize, overflow := operation.memorySize(stack)
if overflow {
return nil, ErrGasUintOverflow
}
// memory is expanded in words of 32 bytes. Gas
// is also calculated in words.
if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
return nil, ErrGasUintOverflow
}
}
// Dynamic portion of gas
// consume the gas and return an error if not enough gas is available.
// cost is explicitly set so that the capture state defer method can get the proper cost
if operation.dynamicGas != nil {
var dynamicCost uint64
dynamicCost, err = operation.dynamicGas(in.evm, contract, stack, mem, memorySize)
cost += dynamicCost // total cost, for debug tracing
if err != nil || !contract.UseGas(dynamicCost) {
return nil, ErrOutOfGas
}
}
if memorySize > 0 {
mem.Resize(memorySize)
}
if in.cfg.Debug {
in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, callContext, in.returnData, in.evm.depth, err)
logged = true
}
// execute the operation
res, err = operation.execute(&pc, in, callContext)
// if the operation clears the return data (e.g. it has returning data)
// set the last return to the result of the operation.
if operation.returns {
in.returnData = res
}
switch {
case err != nil:
return nil, err
case operation.reverts:
return res, ErrExecutionReverted
case operation.halts:
return res, nil
case !operation.jumps:
pc++
}
}
return nil, nil
}
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"fmt"
)
// OpCode is an EVM opcode
type OpCode byte
// IsPush specifies if an opcode is a PUSH opcode.
func (op OpCode) IsPush() bool {
switch op {
case PUSH1, PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, PUSH7, PUSH8, PUSH9, PUSH10, PUSH11, PUSH12, PUSH13, PUSH14, PUSH15, PUSH16, PUSH17, PUSH18, PUSH19, PUSH20, PUSH21, PUSH22, PUSH23, PUSH24, PUSH25, PUSH26, PUSH27, PUSH28, PUSH29, PUSH30, PUSH31, PUSH32:
return true
}
return false
}
// IsStaticJump specifies if an opcode is JUMP.
func (op OpCode) IsStaticJump() bool {
return op == JUMP
}
// 0x0 range - arithmetic ops.
const (
STOP OpCode = iota
ADD
MUL
SUB
DIV
SDIV
MOD
SMOD
ADDMOD
MULMOD
EXP
SIGNEXTEND
)
// 0x10 range - comparison ops.
const (
LT OpCode = iota + 0x10
GT
SLT
SGT
EQ
ISZERO
AND
OR
XOR
NOT
BYTE
SHL
SHR
SAR
SHA3 OpCode = 0x20
)
// 0x30 range - closure state.
const (
ADDRESS OpCode = 0x30 + iota
BALANCE
ORIGIN
CALLER
CALLVALUE
CALLDATALOAD
CALLDATASIZE
CALLDATACOPY
CODESIZE
CODECOPY
GASPRICE
EXTCODESIZE
EXTCODECOPY
RETURNDATASIZE
RETURNDATACOPY
EXTCODEHASH
)
// 0x40 range - block operations.
const (
BLOCKHASH OpCode = 0x40 + iota
COINBASE
TIMESTAMP
NUMBER
DIFFICULTY
GASLIMIT
CHAINID OpCode = 0x46
SELFBALANCE OpCode = 0x47
BASEFEE OpCode = 0x48
)
// 0x50 range - 'storage' and execution.
const (
POP OpCode = 0x50
MLOAD OpCode = 0x51
MSTORE OpCode = 0x52
MSTORE8 OpCode = 0x53
SLOAD OpCode = 0x54
SSTORE OpCode = 0x55
JUMP OpCode = 0x56
JUMPI OpCode = 0x57
PC OpCode = 0x58
MSIZE OpCode = 0x59
GAS OpCode = 0x5a
JUMPDEST OpCode = 0x5b
)
// 0x60 range.
const (
PUSH1 OpCode = 0x60 + iota
PUSH2
PUSH3
PUSH4
PUSH5
PUSH6
PUSH7
PUSH8
PUSH9
PUSH10
PUSH11
PUSH12
PUSH13
PUSH14
PUSH15
PUSH16
PUSH17
PUSH18
PUSH19
PUSH20
PUSH21
PUSH22
PUSH23
PUSH24
PUSH25
PUSH26
PUSH27
PUSH28
PUSH29
PUSH30
PUSH31
PUSH32
DUP1
DUP2
DUP3
DUP4
DUP5
DUP6
DUP7
DUP8
DUP9
DUP10
DUP11
DUP12
DUP13
DUP14
DUP15
DUP16
SWAP1
SWAP2
SWAP3
SWAP4
SWAP5
SWAP6
SWAP7
SWAP8
SWAP9
SWAP10
SWAP11
SWAP12
SWAP13
SWAP14
SWAP15
SWAP16
)
// 0xa0 range - logging ops.
const (
LOG0 OpCode = 0xa0 + iota
LOG1
LOG2
LOG3
LOG4
)
// unofficial opcodes used for parsing.
const (
PUSH OpCode = 0xb0 + iota
DUP
SWAP
)
// 0xf0 range - closures.
const (
CREATE OpCode = 0xf0 + iota
CALL
CALLCODE
RETURN
DELEGATECALL
CREATE2
STATICCALL OpCode = 0xfa
REVERT OpCode = 0xfd
SELFDESTRUCT OpCode = 0xff
)
// Since the opcodes aren't all in order we can't use a regular slice.
var opCodeToString = map[OpCode]string{
// 0x0 range - arithmetic ops.
STOP: "STOP",
ADD: "ADD",
MUL: "MUL",
SUB: "SUB",
DIV: "DIV",
SDIV: "SDIV",
MOD: "MOD",
SMOD: "SMOD",
EXP: "EXP",
NOT: "NOT",
LT: "LT",
GT: "GT",
SLT: "SLT",
SGT: "SGT",
EQ: "EQ",
ISZERO: "ISZERO",
SIGNEXTEND: "SIGNEXTEND",
// 0x10 range - bit ops.
AND: "AND",
OR: "OR",
XOR: "XOR",
BYTE: "BYTE",
SHL: "SHL",
SHR: "SHR",
SAR: "SAR",
ADDMOD: "ADDMOD",
MULMOD: "MULMOD",
// 0x20 range - crypto.
SHA3: "SHA3",
// 0x30 range - closure state.
ADDRESS: "ADDRESS",
BALANCE: "BALANCE",
ORIGIN: "ORIGIN",
CALLER: "CALLER",
CALLVALUE: "CALLVALUE",
CALLDATALOAD: "CALLDATALOAD",
CALLDATASIZE: "CALLDATASIZE",
CALLDATACOPY: "CALLDATACOPY",
CODESIZE: "CODESIZE",
CODECOPY: "CODECOPY",
GASPRICE: "GASPRICE",
EXTCODESIZE: "EXTCODESIZE",
EXTCODECOPY: "EXTCODECOPY",
RETURNDATASIZE: "RETURNDATASIZE",
RETURNDATACOPY: "RETURNDATACOPY",
EXTCODEHASH: "EXTCODEHASH",
// 0x40 range - block operations.
BLOCKHASH: "BLOCKHASH",
COINBASE: "COINBASE",
TIMESTAMP: "TIMESTAMP",
NUMBER: "NUMBER",
DIFFICULTY: "DIFFICULTY",
GASLIMIT: "GASLIMIT",
CHAINID: "CHAINID",
SELFBALANCE: "SELFBALANCE",
BASEFEE: "BASEFEE",
// 0x50 range - 'storage' and execution.
POP: "POP",
//DUP: "DUP",
//SWAP: "SWAP",
MLOAD: "MLOAD",
MSTORE: "MSTORE",
MSTORE8: "MSTORE8",
SLOAD: "SLOAD",
SSTORE: "SSTORE",
JUMP: "JUMP",
JUMPI: "JUMPI",
PC: "PC",
MSIZE: "MSIZE",
GAS: "GAS",
JUMPDEST: "JUMPDEST",
// 0x60 range - push.
PUSH1: "PUSH1",
PUSH2: "PUSH2",
PUSH3: "PUSH3",
PUSH4: "PUSH4",
PUSH5: "PUSH5",
PUSH6: "PUSH6",
PUSH7: "PUSH7",
PUSH8: "PUSH8",
PUSH9: "PUSH9",
PUSH10: "PUSH10",
PUSH11: "PUSH11",
PUSH12: "PUSH12",
PUSH13: "PUSH13",
PUSH14: "PUSH14",
PUSH15: "PUSH15",
PUSH16: "PUSH16",
PUSH17: "PUSH17",
PUSH18: "PUSH18",
PUSH19: "PUSH19",
PUSH20: "PUSH20",
PUSH21: "PUSH21",
PUSH22: "PUSH22",
PUSH23: "PUSH23",
PUSH24: "PUSH24",
PUSH25: "PUSH25",
PUSH26: "PUSH26",
PUSH27: "PUSH27",
PUSH28: "PUSH28",
PUSH29: "PUSH29",
PUSH30: "PUSH30",
PUSH31: "PUSH31",
PUSH32: "PUSH32",
DUP1: "DUP1",
DUP2: "DUP2",
DUP3: "DUP3",
DUP4: "DUP4",
DUP5: "DUP5",
DUP6: "DUP6",
DUP7: "DUP7",
DUP8: "DUP8",
DUP9: "DUP9",
DUP10: "DUP10",
DUP11: "DUP11",
DUP12: "DUP12",
DUP13: "DUP13",
DUP14: "DUP14",
DUP15: "DUP15",
DUP16: "DUP16",
SWAP1: "SWAP1",
SWAP2: "SWAP2",
SWAP3: "SWAP3",
SWAP4: "SWAP4",
SWAP5: "SWAP5",
SWAP6: "SWAP6",
SWAP7: "SWAP7",
SWAP8: "SWAP8",
SWAP9: "SWAP9",
SWAP10: "SWAP10",
SWAP11: "SWAP11",
SWAP12: "SWAP12",
SWAP13: "SWAP13",
SWAP14: "SWAP14",
SWAP15: "SWAP15",
SWAP16: "SWAP16",
LOG0: "LOG0",
LOG1: "LOG1",
LOG2: "LOG2",
LOG3: "LOG3",
LOG4: "LOG4",
// 0xf0 range.
CREATE: "CREATE",
CALL: "CALL",
RETURN: "RETURN",
CALLCODE: "CALLCODE",
DELEGATECALL: "DELEGATECALL",
CREATE2: "CREATE2",
STATICCALL: "STATICCALL",
REVERT: "REVERT",
SELFDESTRUCT: "SELFDESTRUCT",
PUSH: "PUSH",
DUP: "DUP",
SWAP: "SWAP",
}
func (op OpCode) String() string {
str := opCodeToString[op]
if len(str) == 0 {
return fmt.Sprintf("opcode 0x%x not defined", int(op))
}
return str
}
var stringToOp = map[string]OpCode{
"STOP": STOP,
"ADD": ADD,
"MUL": MUL,
"SUB": SUB,
"DIV": DIV,
"SDIV": SDIV,
"MOD": MOD,
"SMOD": SMOD,
"EXP": EXP,
"NOT": NOT,
"LT": LT,
"GT": GT,
"SLT": SLT,
"SGT": SGT,
"EQ": EQ,
"ISZERO": ISZERO,
"SIGNEXTEND": SIGNEXTEND,
"AND": AND,
"OR": OR,
"XOR": XOR,
"BYTE": BYTE,
"SHL": SHL,
"SHR": SHR,
"SAR": SAR,
"ADDMOD": ADDMOD,
"MULMOD": MULMOD,
"SHA3": SHA3,
"ADDRESS": ADDRESS,
"BALANCE": BALANCE,
"ORIGIN": ORIGIN,
"CALLER": CALLER,
"CALLVALUE": CALLVALUE,
"CALLDATALOAD": CALLDATALOAD,
"CALLDATASIZE": CALLDATASIZE,
"CALLDATACOPY": CALLDATACOPY,
"CHAINID": CHAINID,
"BASEFEE": BASEFEE,
"DELEGATECALL": DELEGATECALL,
"STATICCALL": STATICCALL,
"CODESIZE": CODESIZE,
"CODECOPY": CODECOPY,
"GASPRICE": GASPRICE,
"EXTCODESIZE": EXTCODESIZE,
"EXTCODECOPY": EXTCODECOPY,
"RETURNDATASIZE": RETURNDATASIZE,
"RETURNDATACOPY": RETURNDATACOPY,
"EXTCODEHASH": EXTCODEHASH,
"BLOCKHASH": BLOCKHASH,
"COINBASE": COINBASE,
"TIMESTAMP": TIMESTAMP,
"NUMBER": NUMBER,
"DIFFICULTY": DIFFICULTY,
"GASLIMIT": GASLIMIT,
"SELFBALANCE": SELFBALANCE,
"POP": POP,
"MLOAD": MLOAD,
"MSTORE": MSTORE,
"MSTORE8": MSTORE8,
"SLOAD": SLOAD,
"SSTORE": SSTORE,
"JUMP": JUMP,
"JUMPI": JUMPI,
"PC": PC,
"MSIZE": MSIZE,
"GAS": GAS,
"JUMPDEST": JUMPDEST,
"PUSH1": PUSH1,
"PUSH2": PUSH2,
"PUSH3": PUSH3,
"PUSH4": PUSH4,
"PUSH5": PUSH5,
"PUSH6": PUSH6,
"PUSH7": PUSH7,
"PUSH8": PUSH8,
"PUSH9": PUSH9,
"PUSH10": PUSH10,
"PUSH11": PUSH11,
"PUSH12": PUSH12,
"PUSH13": PUSH13,
"PUSH14": PUSH14,
"PUSH15": PUSH15,
"PUSH16": PUSH16,
"PUSH17": PUSH17,
"PUSH18": PUSH18,
"PUSH19": PUSH19,
"PUSH20": PUSH20,
"PUSH21": PUSH21,
"PUSH22": PUSH22,
"PUSH23": PUSH23,
"PUSH24": PUSH24,
"PUSH25": PUSH25,
"PUSH26": PUSH26,
"PUSH27": PUSH27,
"PUSH28": PUSH28,
"PUSH29": PUSH29,
"PUSH30": PUSH30,
"PUSH31": PUSH31,
"PUSH32": PUSH32,
"DUP1": DUP1,
"DUP2": DUP2,
"DUP3": DUP3,
"DUP4": DUP4,
"DUP5": DUP5,
"DUP6": DUP6,
"DUP7": DUP7,
"DUP8": DUP8,
"DUP9": DUP9,
"DUP10": DUP10,
"DUP11": DUP11,
"DUP12": DUP12,
"DUP13": DUP13,
"DUP14": DUP14,
"DUP15": DUP15,
"DUP16": DUP16,
"SWAP1": SWAP1,
"SWAP2": SWAP2,
"SWAP3": SWAP3,
"SWAP4": SWAP4,
"SWAP5": SWAP5,
"SWAP6": SWAP6,
"SWAP7": SWAP7,
"SWAP8": SWAP8,
"SWAP9": SWAP9,
"SWAP10": SWAP10,
"SWAP11": SWAP11,
"SWAP12": SWAP12,
"SWAP13": SWAP13,
"SWAP14": SWAP14,
"SWAP15": SWAP15,
"SWAP16": SWAP16,
"LOG0": LOG0,
"LOG1": LOG1,
"LOG2": LOG2,
"LOG3": LOG3,
"LOG4": LOG4,
"CREATE": CREATE,
"CREATE2": CREATE2,
"CALL": CALL,
"RETURN": RETURN,
"CALLCODE": CALLCODE,
"REVERT": REVERT,
"SELFDESTRUCT": SELFDESTRUCT,
}
// StringToOp finds the opcode whose name is stored in `str`.
func StringToOp(str string) OpCode {
return stringToOp[str]
}
Copyright (c) 2012 The Go Authors. All rights reserved.
Copyright (c) 2018 Péter Szilágyi. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2018 Péter Szilágyi. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import bn256 "github.com/ethereum/go-ethereum/crypto/bn256/google"
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 = bn256.G1
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 = bn256.G2
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
return bn256.PairingCheck(a, b)
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not
// compatible with the implementation described in that paper, as different
// parameters are chosen.
//
// (This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
package bn256
import (
"crypto/rand"
"errors"
"io"
"math/big"
)
// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (e *G1) String() string {
return "bn256.G1" + e.p.String()
}
// CurvePoints returns p's curve points in big integer
func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(curveGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Negative(a.p)
return e
}
// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p.IsInfinity() {
return make([]byte, numBytes*2)
}
e.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(e.p.x, P).Bytes()
yBytes := new(big.Int).Mod(e.p.y, P).Bytes()
ret := make([]byte, numBytes*2)
copy(ret[1*numBytes-len(xBytes):], xBytes)
copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
e.p.z.SetInt64(0)
e.p.t.SetInt64(0)
} else {
e.p.z.SetInt64(1)
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[2*numBytes:], nil
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
return "bn256.G2" + e.p.String()
}
// CurvePoints returns the curve points of p which includes the real
// and imaginary parts of the curve point.
func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(twistGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if n.p.IsInfinity() {
return make([]byte, numBytes*4)
}
n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
ret := make([]byte, numBytes*4)
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
if e.p.y.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.y.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
e.p.y.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[4*numBytes:], nil
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Exp(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Mul(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes()
xxyBytes := n.p.x.x.y.Bytes()
xyxBytes := n.p.x.y.x.Bytes()
xyyBytes := n.p.x.y.y.Bytes()
xzxBytes := n.p.x.z.x.Bytes()
xzyBytes := n.p.x.z.y.Bytes()
yxxBytes := n.p.y.x.x.Bytes()
yxyBytes := n.p.y.x.y.Bytes()
yyxBytes := n.p.y.y.x.Bytes()
yyyBytes := n.p.y.y.y.Bytes()
yzxBytes := n.p.y.z.x.Bytes()
yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes {
return nil, false
}
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
pool := new(bnPool)
acc := newGFp12(pool)
acc.SetOne()
for i := 0; i < len(a); i++ {
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
continue
}
acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
}
ret := finalExponentiation(acc, pool)
acc.Put(pool)
return ret.IsOne()
}
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
bns []*big.Int
count int
}
func (pool *bnPool) Get() *big.Int {
if pool == nil {
return new(big.Int)
}
pool.count++
l := len(pool.bns)
if l == 0 {
return new(big.Int)
}
bn := pool.bns[l-1]
pool.bns = pool.bns[:l-1]
return bn
}
func (pool *bnPool) Put(bn *big.Int) {
if pool == nil {
return
}
pool.bns = append(pool.bns, bn)
pool.count--
}
func (pool *bnPool) Count() int {
return pool.count
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"bytes"
"crypto/rand"
"math/big"
"testing"
)
func TestGFp2Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp2(pool)
a.x.SetString("23423492374", 10)
a.y.SetString("12934872398472394827398470", 10)
inv := newGFp2(pool)
inv.Invert(a, pool)
b := newGFp2(pool).Mul(inv, a, pool)
if b.x.Int64() != 0 || b.y.Int64() != 1 {
t.Fatalf("bad result for a^-1*a: %s %s", b.x, b.y)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func isZero(n *big.Int) bool {
return new(big.Int).Mod(n, P).Int64() == 0
}
func isOne(n *big.Int) bool {
return new(big.Int).Mod(n, P).Int64() == 1
}
func TestGFp6Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp6(pool)
a.x.x.SetString("239487238491", 10)
a.x.y.SetString("2356249827341", 10)
a.y.x.SetString("082659782", 10)
a.y.y.SetString("182703523765", 10)
a.z.x.SetString("978236549263", 10)
a.z.y.SetString("64893242", 10)
inv := newGFp6(pool)
inv.Invert(a, pool)
b := newGFp6(pool).Mul(inv, a, pool)
if !isZero(b.x.x) ||
!isZero(b.x.y) ||
!isZero(b.y.x) ||
!isZero(b.y.y) ||
!isZero(b.z.x) ||
!isOne(b.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestGFp12Invert(t *testing.T) {
pool := new(bnPool)
a := newGFp12(pool)
a.x.x.x.SetString("239846234862342323958623", 10)
a.x.x.y.SetString("2359862352529835623", 10)
a.x.y.x.SetString("928836523", 10)
a.x.y.y.SetString("9856234", 10)
a.x.z.x.SetString("235635286", 10)
a.x.z.y.SetString("5628392833", 10)
a.y.x.x.SetString("252936598265329856238956532167968", 10)
a.y.x.y.SetString("23596239865236954178968", 10)
a.y.y.x.SetString("95421692834", 10)
a.y.y.y.SetString("236548", 10)
a.y.z.x.SetString("924523", 10)
a.y.z.y.SetString("12954623", 10)
inv := newGFp12(pool)
inv.Invert(a, pool)
b := newGFp12(pool).Mul(inv, a, pool)
if !isZero(b.x.x.x) ||
!isZero(b.x.x.y) ||
!isZero(b.x.y.x) ||
!isZero(b.x.y.y) ||
!isZero(b.x.z.x) ||
!isZero(b.x.z.y) ||
!isZero(b.y.x.x) ||
!isZero(b.y.x.y) ||
!isZero(b.y.y.x) ||
!isZero(b.y.y.y) ||
!isZero(b.y.z.x) ||
!isOne(b.y.z.y) {
t.Fatalf("bad result for a^-1*a: %s", b)
}
a.Put(pool)
b.Put(pool)
inv.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestCurveImpl(t *testing.T) {
pool := new(bnPool)
g := &curvePoint{
pool.Get().SetInt64(1),
pool.Get().SetInt64(-2),
pool.Get().SetInt64(1),
pool.Get().SetInt64(0),
}
x := pool.Get().SetInt64(32498273234)
X := newCurvePoint(pool).Mul(g, x, pool)
y := pool.Get().SetInt64(98732423523)
Y := newCurvePoint(pool).Mul(g, y, pool)
s1 := newCurvePoint(pool).Mul(X, y, pool).MakeAffine(pool)
s2 := newCurvePoint(pool).Mul(Y, x, pool).MakeAffine(pool)
if s1.x.Cmp(s2.x) != 0 ||
s2.x.Cmp(s1.x) != 0 {
t.Errorf("DH points don't match: (%s, %s) (%s, %s)", s1.x, s1.y, s2.x, s2.y)
}
pool.Put(x)
X.Put(pool)
pool.Put(y)
Y.Put(pool)
s1.Put(pool)
s2.Put(pool)
g.Put(pool)
if c := pool.Count(); c > 0 {
t.Errorf("Pool count non-zero: %d\n", c)
}
}
func TestOrderG1(t *testing.T) {
g := new(G1).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G1 has incorrect order")
}
one := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.Cmp(one.p.x) != 0 || g.p.y.Cmp(one.p.y) != 0 {
t.Errorf("1+0 != 1 in G1")
}
}
func TestOrderG2(t *testing.T) {
g := new(G2).ScalarBaseMult(Order)
if !g.p.IsInfinity() {
t.Error("G2 has incorrect order")
}
one := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
g.Add(g, one)
g.p.MakeAffine(nil)
if g.p.x.x.Cmp(one.p.x.x) != 0 ||
g.p.x.y.Cmp(one.p.x.y) != 0 ||
g.p.y.x.Cmp(one.p.y.x) != 0 ||
g.p.y.y.Cmp(one.p.y.y) != 0 {
t.Errorf("1+0 != 1 in G2")
}
}
func TestOrderGT(t *testing.T) {
gt := Pair(&G1{curveGen}, &G2{twistGen})
g := new(GT).ScalarMult(gt, Order)
if !g.p.IsOne() {
t.Error("GT has incorrect order")
}
}
func TestBilinearity(t *testing.T) {
for i := 0; i < 2; i++ {
a, p1, _ := RandomG1(rand.Reader)
b, p2, _ := RandomG2(rand.Reader)
e1 := Pair(p1, p2)
e2 := Pair(&G1{curveGen}, &G2{twistGen})
e2.ScalarMult(e2, a)
e2.ScalarMult(e2, b)
minusE2 := new(GT).Neg(e2)
e1.Add(e1, minusE2)
if !e1.p.IsOne() {
t.Fatalf("bad pairing result: %s", e1)
}
}
}
func TestG1Marshal(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, err := new(G1).Unmarshal(form)
if err != nil {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2 := new(G1)
if _, err = g2.Unmarshal(form); err != nil {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG2Marshal(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, err := new(G2).Unmarshal(form)
if err != nil {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2 := new(G2)
if _, err = g2.Unmarshal(form); err != nil {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
t.Fatalf("∞ unmarshaled incorrectly")
}
}
func TestG1Identity(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestG2Identity(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(0))
if !g.p.IsInfinity() {
t.Error("failure")
}
}
func TestTripartiteDiffieHellman(t *testing.T) {
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa := new(G1)
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa := new(G2)
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb := new(G1)
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb := new(G2)
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc := new(G1)
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc := new(G2)
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k1Bytes := k1.Marshal()
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k2Bytes := k2.Marshal()
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
k3Bytes := k3.Marshal()
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
t.Errorf("keys didn't agree")
}
}
func BenchmarkPairing(b *testing.B) {
for i := 0; i < b.N; i++ {
Pair(&G1{curveGen}, &G2{twistGen})
}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime.
var u = bigFromBase10("4965661367192848881")
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
// Needs to be highly 2-adic for efficient SNARK key and proof generation.
// Order - 1 = 2^28 * 3^2 * 13 * 29 * 983 * 11003 * 237073 * 405928799 * 1670836401704629 * 13818364434197438864469338081.
// Refer to https://eprint.iacr.org/2013/879.pdf and https://eprint.iacr.org/2013/507.pdf for more information on these parameters.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
x, y, z, t *big.Int
}
var curveB = new(big.Int).SetInt64(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(2),
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(1),
}
func newCurvePoint(pool *bnPool) *curvePoint {
return &curvePoint{
pool.Get(),
pool.Get(),
pool.Get(),
pool.Get(),
}
}
func (c *curvePoint) String() string {
c.MakeAffine(new(bnPool))
return "(" + c.x.String() + ", " + c.y.String() + ")"
}
func (c *curvePoint) Put(pool *bnPool) {
pool.Put(c.x)
pool.Put(c.y)
pool.Put(c.z)
pool.Put(c.t)
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
yy := new(big.Int).Mul(c.y, c.y)
xxx := new(big.Int).Mul(c.x, c.x)
xxx.Mul(xxx, c.x)
yy.Sub(yy, xxx)
yy.Sub(yy, curveB)
if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
yy.Mod(yy, P)
}
return yy.Sign() == 0
}
func (c *curvePoint) SetInfinity() {
c.z.SetInt64(0)
}
func (c *curvePoint) IsInfinity() bool {
return c.z.Sign() == 0
}
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z1z1 := pool.Get().Mul(a.z, a.z)
z1z1.Mod(z1z1, P)
z2z2 := pool.Get().Mul(b.z, b.z)
z2z2.Mod(z2z2, P)
u1 := pool.Get().Mul(a.x, z2z2)
u1.Mod(u1, P)
u2 := pool.Get().Mul(b.x, z1z1)
u2.Mod(u2, P)
t := pool.Get().Mul(b.z, z2z2)
t.Mod(t, P)
s1 := pool.Get().Mul(a.y, t)
s1.Mod(s1, P)
t.Mul(a.z, z1z1)
t.Mod(t, P)
s2 := pool.Get().Mul(b.y, t)
s2.Mod(s2, P)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := pool.Get().Sub(u2, u1)
xEqual := h.Sign() == 0
t.Add(h, h)
// i = 4h²
i := pool.Get().Mul(t, t)
i.Mod(i, P)
// j = 4h³
j := pool.Get().Mul(h, i)
j.Mod(j, P)
t.Sub(s2, s1)
yEqual := t.Sign() == 0
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := pool.Get().Add(t, t)
v := pool.Get().Mul(u1, i)
v.Mod(v, P)
// t4 = 4(s2-s1)²
t4 := pool.Get().Mul(r, r)
t4.Mod(t4, P)
t.Add(v, v)
t6 := pool.Get().Sub(t4, j)
c.x.Sub(t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
t.Sub(v, c.x) // t7
t4.Mul(s1, j) // t8
t4.Mod(t4, P)
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
t4.Mod(t4, P)
c.y.Sub(t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
t.Add(a.z, b.z) // t11
t4.Mul(t, t) // t12
t4.Mod(t4, P)
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h)
c.z.Mod(c.z, P)
pool.Put(z1z1)
pool.Put(z2z2)
pool.Put(u1)
pool.Put(u2)
pool.Put(t)
pool.Put(s1)
pool.Put(s2)
pool.Put(h)
pool.Put(i)
pool.Put(j)
pool.Put(r)
pool.Put(v)
pool.Put(t4)
pool.Put(t6)
}
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := pool.Get().Mul(a.x, a.x)
A.Mod(A, P)
B := pool.Get().Mul(a.y, a.y)
B.Mod(B, P)
C_ := pool.Get().Mul(B, B)
C_.Mod(C_, P)
t := pool.Get().Add(a.x, B)
t2 := pool.Get().Mul(t, t)
t2.Mod(t2, P)
t.Sub(t2, A)
t2.Sub(t, C_)
d := pool.Get().Add(t2, t2)
t.Add(A, A)
e := pool.Get().Add(t, A)
f := pool.Get().Mul(e, e)
f.Mod(f, P)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y)
t2.Mod(t2, P)
c.y.Sub(t2, t)
t.Mul(a.y, a.z)
t.Mod(t, P)
c.z.Add(t, t)
pool.Put(A)
pool.Put(B)
pool.Put(C_)
pool.Put(t)
pool.Put(t2)
pool.Put(d)
pool.Put(e)
pool.Put(f)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
sum := newCurvePoint(pool)
sum.SetInfinity()
t := newCurvePoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
return c
}
if c.IsInfinity() {
c.x.SetInt64(0)
c.y.SetInt64(1)
c.z.SetInt64(0)
c.t.SetInt64(0)
return c
}
zInv := pool.Get().ModInverse(c.z, P)
t := pool.Get().Mul(c.y, zInv)
t.Mod(t, P)
zInv2 := pool.Get().Mul(zInv, zInv)
zInv2.Mod(zInv2, P)
c.y.Mul(t, zInv2)
c.y.Mod(c.y, P)
t.Mul(c.x, zInv2)
t.Mod(t, P)
c.x.Set(t)
c.z.SetInt64(1)
c.t.SetInt64(1)
pool.Put(zInv)
pool.Put(t)
pool.Put(zInv2)
return c
}
func (c *curvePoint) Negative(a *curvePoint) {
c.x.Set(a.x)
c.y.Neg(a.y)
c.z.Set(a.z)
c.t.SetInt64(0)
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"crypto/rand"
)
func ExamplePair() {
// This implements the tripartite Diffie-Hellman algorithm from "A One
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
// Each of three parties, a, b and c, generate a private value.
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
// Then each party calculates g₁ and g₂ times their private value.
pa := new(G1).ScalarBaseMult(a)
qa := new(G2).ScalarBaseMult(a)
pb := new(G1).ScalarBaseMult(b)
qb := new(G2).ScalarBaseMult(b)
pc := new(G1).ScalarBaseMult(c)
qc := new(G2).ScalarBaseMult(c)
// Now each party exchanges its public values with the other two and
// all parties can calculate the shared key.
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
// k1, k2 and k3 will all be equal.
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y *gfP6 // value is xω + y
}
func newGFp12(pool *bnPool) *gfP12 {
return &gfP12{newGFp6(pool), newGFp6(pool)}
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) Minimal() {
e.x.Minimal()
e.y.Minimal()
}
func (e *gfP12) IsZero() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Set(a.y)
return a
}
func (e *gfP12) Negative(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Negative(a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
e.x.Frobenius(a.x, pool)
e.y.Frobenius(a.y, pool)
e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
e.x.FrobeniusP2(a.x)
e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
tx := newGFp6(pool)
tx.Mul(a.x, b.y, pool)
t := newGFp6(pool)
t.Mul(b.x, a.y, pool)
tx.Add(tx, t)
ty := newGFp6(pool)
ty.Mul(a.y, b.y, pool)
t.Mul(a.x, b.x, pool)
t.MulTau(t, pool)
e.y.Add(ty, t)
e.x.Set(tx)
tx.Put(pool)
ty.Put(pool)
t.Put(pool)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
e.x.Mul(e.x, b, pool)
e.y.Mul(e.y, b, pool)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
sum := newGFp12(pool)
sum.SetOne()
t := newGFp12(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
// Complex squaring algorithm
v0 := newGFp6(pool)
v0.Mul(a.x, a.y, pool)
t := newGFp6(pool)
t.MulTau(a.x, pool)
t.Add(a.y, t)
ty := newGFp6(pool)
ty.Add(a.x, a.y)
ty.Mul(ty, t, pool)
ty.Sub(ty, v0)
t.MulTau(v0, pool)
ty.Sub(ty, t)
e.y.Set(ty)
e.x.Double(v0)
v0.Put(pool)
t.Put(pool)
ty.Put(pool)
return e
}
func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1 := newGFp6(pool)
t2 := newGFp6(pool)
t1.Square(a.x, pool)
t2.Square(a.y, pool)
t1.MulTau(t1, pool)
t1.Sub(t2, t1)
t2.Invert(t1, pool)
e.x.Negative(a.x)
e.y.Set(a.y)
e.MulScalar(e, t2, pool)
t1.Put(pool)
t2.Put(pool)
return e
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP2 implements a field of size p² as a quadratic extension of the base
// field where i²=-1.
type gfP2 struct {
x, y *big.Int // value is xi+y.
}
func newGFp2(pool *bnPool) *gfP2 {
return &gfP2{pool.Get(), pool.Get()}
}
func (e *gfP2) String() string {
x := new(big.Int).Mod(e.x, P)
y := new(big.Int).Mod(e.y, P)
return "(" + x.String() + "," + y.String() + ")"
}
func (e *gfP2) Put(pool *bnPool) {
pool.Put(e.x)
pool.Put(e.y)
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(0)
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(1)
return e
}
func (e *gfP2) Minimal() {
if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 {
e.x.Mod(e.x, P)
}
if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 {
e.y.Mod(e.y, P)
}
}
func (e *gfP2) IsZero() bool {
return e.x.Sign() == 0 && e.y.Sign() == 0
}
func (e *gfP2) IsOne() bool {
if e.x.Sign() != 0 {
return false
}
words := e.y.Bits()
return len(words) == 1 && words[0] == 1
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(a.y)
e.x.Neg(a.x)
return e
}
func (e *gfP2) Negative(a *gfP2) *gfP2 {
e.x.Neg(a.x)
e.y.Neg(a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP2) Double(a *gfP2) *gfP2 {
e.x.Lsh(a.x, 1)
e.y.Lsh(a.y, 1)
return e
}
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
sum := newGFp2(pool)
sum.SetOne()
t := newGFp2(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
tx := pool.Get().Mul(a.x, b.y)
t := pool.Get().Mul(b.x, a.y)
tx.Add(tx, t)
tx.Mod(tx, P)
ty := pool.Get().Mul(a.y, b.y)
t.Mul(a.x, b.x)
ty.Sub(ty, t)
e.y.Mod(ty, P)
e.x.Set(tx)
pool.Put(tx)
pool.Put(ty)
pool.Put(t)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
e.x.Mul(a.x, b)
e.y.Mul(a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
// (xi+y)(i+3) = (9x+y)i+(9y-x)
tx := pool.Get().Lsh(a.x, 3)
tx.Add(tx, a.x)
tx.Add(tx, a.y)
ty := pool.Get().Lsh(a.y, 3)
ty.Add(ty, a.y)
ty.Sub(ty, a.x)
e.x.Set(tx)
e.y.Set(ty)
pool.Put(tx)
pool.Put(ty)
return e
}
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
// Complex squaring algorithm:
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
t1 := pool.Get().Sub(a.y, a.x)
t2 := pool.Get().Add(a.x, a.y)
ty := pool.Get().Mul(t1, t2)
ty.Mod(ty, P)
t1.Mul(a.x, a.y)
t1.Lsh(t1, 1)
e.x.Mod(t1, P)
e.y.Set(ty)
pool.Put(t1)
pool.Put(t2)
pool.Put(ty)
return e
}
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t := pool.Get()
t.Mul(a.y, a.y)
t2 := pool.Get()
t2.Mul(a.x, a.x)
t.Add(t, t2)
inv := pool.Get()
inv.ModInverse(t, P)
e.x.Neg(a.x)
e.x.Mul(e.x, inv)
e.x.Mod(e.x, P)
e.y.Mul(a.y, inv)
e.y.Mod(e.y, P)
pool.Put(t)
pool.Put(t2)
pool.Put(inv)
return e
}
func (e *gfP2) Real() *big.Int {
return e.x
}
func (e *gfP2) Imag() *big.Int {
return e.y
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+9.
type gfP6 struct {
x, y, z *gfP2 // value is xτ² + yτ + z
}
func newGFp6(pool *bnPool) *gfP6 {
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
}
func (e *gfP6) String() string {
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
}
func (e *gfP6) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
e.z.Put(pool)
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(a.x)
e.y.Set(a.y)
e.z.Set(a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) Minimal() {
e.x.Minimal()
e.y.Minimal()
e.z.Minimal()
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Negative(a *gfP6) *gfP6 {
e.x.Negative(a.x)
e.y.Negative(a.y)
e.z.Negative(a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
e.x.Conjugate(a.x)
e.y.Conjugate(a.y)
e.z.Conjugate(a.z)
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
e.y.Mul(e.y, xiToPMinus1Over3, pool)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
e.z.Set(a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
e.z.Add(a.z, b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
e.z.Sub(a.z, b.z)
return e
}
func (e *gfP6) Double(a *gfP6) *gfP6 {
e.x.Double(a.x)
e.y.Double(a.y)
e.z.Double(a.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := newGFp2(pool)
v0.Mul(a.z, b.z, pool)
v1 := newGFp2(pool)
v1.Mul(a.y, b.y, pool)
v2 := newGFp2(pool)
v2.Mul(a.x, b.x, pool)
t0 := newGFp2(pool)
t0.Add(a.x, a.y)
t1 := newGFp2(pool)
t1.Add(b.x, b.y)
tz := newGFp2(pool)
tz.Mul(t0, t1, pool)
tz.Sub(tz, v1)
tz.Sub(tz, v2)
tz.MulXi(tz, pool)
tz.Add(tz, v0)
t0.Add(a.y, a.z)
t1.Add(b.y, b.z)
ty := newGFp2(pool)
ty.Mul(t0, t1, pool)
ty.Sub(ty, v0)
ty.Sub(ty, v1)
t0.MulXi(v2, pool)
ty.Add(ty, t0)
t0.Add(a.x, a.z)
t1.Add(b.x, b.z)
tx := newGFp2(pool)
tx.Mul(t0, t1, pool)
tx.Sub(tx, v0)
tx.Add(tx, v1)
tx.Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
t0.Put(pool)
t1.Put(pool)
tx.Put(pool)
ty.Put(pool)
tz.Put(pool)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
e.x.Mul(a.x, b, pool)
e.y.Mul(a.y, b, pool)
e.z.Mul(a.z, b, pool)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
e.x.MulScalar(a.x, b)
e.y.MulScalar(a.y, b)
e.z.MulScalar(a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
tz := newGFp2(pool)
tz.MulXi(a.x, pool)
ty := newGFp2(pool)
ty.Set(a.y)
e.y.Set(a.z)
e.x.Set(ty)
e.z.Set(tz)
tz.Put(pool)
ty.Put(pool)
}
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
v0 := newGFp2(pool).Square(a.z, pool)
v1 := newGFp2(pool).Square(a.y, pool)
v2 := newGFp2(pool).Square(a.x, pool)
c0 := newGFp2(pool).Add(a.x, a.y)
c0.Square(c0, pool)
c0.Sub(c0, v1)
c0.Sub(c0, v2)
c0.MulXi(c0, pool)
c0.Add(c0, v0)
c1 := newGFp2(pool).Add(a.y, a.z)
c1.Square(c1, pool)
c1.Sub(c1, v0)
c1.Sub(c1, v1)
xiV2 := newGFp2(pool).MulXi(v2, pool)
c1.Add(c1, xiV2)
c2 := newGFp2(pool).Add(a.x, a.z)
c2.Square(c2, pool)
c2.Sub(c2, v0)
c2.Add(c2, v1)
c2.Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
c0.Put(pool)
c1.Put(pool)
c2.Put(pool)
xiV2.Put(pool)
return e
}
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := newGFp2(pool)
A := newGFp2(pool)
A.Square(a.z, pool)
t1.Mul(a.x, a.y, pool)
t1.MulXi(t1, pool)
A.Sub(A, t1)
B := newGFp2(pool)
B.Square(a.x, pool)
B.MulXi(B, pool)
t1.Mul(a.y, a.z, pool)
B.Sub(B, t1)
C_ := newGFp2(pool)
C_.Square(a.y, pool)
t1.Mul(a.x, a.z, pool)
C_.Sub(C_, t1)
F := newGFp2(pool)
F.Mul(C_, a.y, pool)
F.MulXi(F, pool)
t1.Mul(A, a.z, pool)
F.Add(F, t1)
t1.Mul(B, a.x, pool)
t1.MulXi(t1, pool)
F.Add(F, t1)
F.Invert(F, pool)
e.x.Mul(C_, F, pool)
e.y.Mul(B, F, pool)
e.z.Mul(A, F, pool)
t1.Put(pool)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
F.Put(pool)
return e
}
package bn256
import (
"testing"
"crypto/rand"
)
func TestRandomG2Marshal(t *testing.T) {
for i := 0; i < 10; i++ {
n, g2, err := RandomG2(rand.Reader)
if err != nil {
t.Error(err)
continue
}
t.Logf("%v: %x\n", n, g2.Marshal())
}
}
func TestPairings(t *testing.T) {
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
p1 := Pair(a1, b1)
pn1 := Pair(a1, bn1)
np1 := Pair(an1, b1)
if pn1.String() != np1.String() {
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
}
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false negative!")
}
p0 := new(GT).Add(p1, pn1)
p0_2 := Pair(a1, b0)
if p0.String() != p0_2.String() {
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
}
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
if p0.String() != p0_3.String() {
t.Error("Pairing mismatch: e(a, b) has wrong order")
}
p2 := Pair(a2, b1)
p2_2 := Pair(a1, b2)
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
if p2.String() != p2_2.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
}
if p2.String() != p2_3.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
}
if p2.String() == p1.String() {
t.Error("Pairing is degenerate!")
}
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false positive!")
}
p999 := Pair(a37, b27)
p999_2 := Pair(a1, b999)
if p999.String() != p999_2.String() {
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := newGFp2(pool).Mul(p.x, r.t, pool)
D := newGFp2(pool).Add(p.y, r.z)
D.Square(D, pool)
D.Sub(D, r2)
D.Sub(D, r.t)
D.Mul(D, r.t, pool)
H := newGFp2(pool).Sub(B, r.x)
I := newGFp2(pool).Square(H, pool)
E := newGFp2(pool).Add(I, I)
E.Add(E, E)
J := newGFp2(pool).Mul(H, E, pool)
L1 := newGFp2(pool).Sub(D, r.y)
L1.Sub(L1, r.y)
V := newGFp2(pool).Mul(r.x, E, pool)
rOut = newTwistPoint(pool)
rOut.x.Square(L1, pool)
rOut.x.Sub(rOut.x, J)
rOut.x.Sub(rOut.x, V)
rOut.x.Sub(rOut.x, V)
rOut.z.Add(r.z, H)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, r.t)
rOut.z.Sub(rOut.z, I)
t := newGFp2(pool).Sub(V, rOut.x)
t.Mul(t, L1, pool)
t2 := newGFp2(pool).Mul(r.y, J, pool)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(rOut.z, pool)
t.Add(p.y, rOut.z)
t.Square(t, pool)
t.Sub(t, r2)
t.Sub(t, rOut.t)
t2.Mul(L1, p.x, pool)
t2.Add(t2, t2)
a = newGFp2(pool)
a.Sub(t2, t)
c = newGFp2(pool)
c.MulScalar(rOut.z, q.y)
c.Add(c, c)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, L1)
b.MulScalar(b, q.x)
b.Add(b, b)
B.Put(pool)
D.Put(pool)
H.Put(pool)
I.Put(pool)
E.Put(pool)
J.Put(pool)
L1.Put(pool)
V.Put(pool)
t.Put(pool)
t2.Put(pool)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := newGFp2(pool).Square(r.x, pool)
B := newGFp2(pool).Square(r.y, pool)
C_ := newGFp2(pool).Square(B, pool)
D := newGFp2(pool).Add(r.x, B)
D.Square(D, pool)
D.Sub(D, A)
D.Sub(D, C_)
D.Add(D, D)
E := newGFp2(pool).Add(A, A)
E.Add(E, A)
G := newGFp2(pool).Square(E, pool)
rOut = newTwistPoint(pool)
rOut.x.Sub(G, D)
rOut.x.Sub(rOut.x, D)
rOut.z.Add(r.y, r.z)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, B)
rOut.z.Sub(rOut.z, r.t)
rOut.y.Sub(D, rOut.x)
rOut.y.Mul(rOut.y, E, pool)
t := newGFp2(pool).Add(C_, C_)
t.Add(t, t)
t.Add(t, t)
rOut.y.Sub(rOut.y, t)
rOut.t.Square(rOut.z, pool)
t.Mul(E, r.t, pool)
t.Add(t, t)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, t)
b.MulScalar(b, q.x)
a = newGFp2(pool)
a.Add(r.x, E)
a.Square(a, pool)
a.Sub(a, A)
a.Sub(a, G)
t.Add(B, B)
t.Add(t, t)
a.Sub(a, t)
c = newGFp2(pool)
c.Mul(rOut.z, r.t, pool)
c.Add(c, c)
c.MulScalar(c, q.y)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
D.Put(pool)
E.Put(pool)
G.Put(pool)
t.Put(pool)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
a2 := newGFp6(pool)
a2.x.SetZero()
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, ret.x, pool)
t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
t := newGFp2(pool)
t.Add(b, c)
t2 := newGFp6(pool)
t2.x.SetZero()
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(ret.x, ret.y)
ret.y.Set(t3)
ret.x.Mul(ret.x, t2, pool)
ret.x.Sub(ret.x, a2)
ret.x.Sub(ret.x, ret.y)
a2.MulTau(a2, pool)
ret.y.Add(ret.y, a2)
a2.Put(pool)
t3.Put(pool)
t2.Put(pool)
t.Put(pool)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
ret := newGFp12(pool)
ret.SetOne()
aAffine := newTwistPoint(pool)
aAffine.Set(q)
aAffine.MakeAffine(pool)
bAffine := newCurvePoint(pool)
bAffine.Set(p)
bAffine.MakeAffine(pool)
minusA := newTwistPoint(pool)
minusA.Negative(aAffine, pool)
r := newTwistPoint(pool)
r.Set(aAffine)
r2 := newGFp2(pool)
r2.Square(aAffine.y, pool)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret, pool)
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
default:
continue
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := newTwistPoint(pool)
q1.x.Conjugate(aAffine.x)
q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
q1.y.Conjugate(aAffine.y)
q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := newTwistPoint(pool)
minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(q1.y, pool)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
r2.Square(minusQ2.y, pool)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
aAffine.Put(pool)
bAffine.Put(pool)
minusA.Put(pool)
r.Put(pool)
r2.Put(pool)
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
t1 := newGFp12(pool)
// This is the p^6-Frobenius
t1.x.Negative(in.x)
t1.y.Set(in.y)
inv := newGFp12(pool)
inv.Invert(in, pool)
t1.Mul(t1, inv, pool)
t2 := newGFp12(pool).FrobeniusP2(t1, pool)
t1.Mul(t1, t2, pool)
fp := newGFp12(pool).Frobenius(t1, pool)
fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
fp3 := newGFp12(pool).Frobenius(fp2, pool)
fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
fu.Exp(t1, u, pool)
fu2.Exp(fu, u, pool)
fu3.Exp(fu2, u, pool)
y3 := newGFp12(pool).Frobenius(fu, pool)
fu2p := newGFp12(pool).Frobenius(fu2, pool)
fu3p := newGFp12(pool).Frobenius(fu3, pool)
y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
y0 := newGFp12(pool)
y0.Mul(fp, fp2, pool)
y0.Mul(y0, fp3, pool)
y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
y1.Conjugate(t1)
y5.Conjugate(fu2)
y3.Conjugate(y3)
y4.Mul(fu, fu2p, pool)
y4.Conjugate(y4)
y6 := newGFp12(pool)
y6.Mul(fu3, fu3p, pool)
y6.Conjugate(y6)
t0 := newGFp12(pool)
t0.Square(y6, pool)
t0.Mul(t0, y4, pool)
t0.Mul(t0, y5, pool)
t1.Mul(y3, y5, pool)
t1.Mul(t1, t0, pool)
t0.Mul(t0, y2, pool)
t1.Square(t1, pool)
t1.Mul(t1, t0, pool)
t1.Square(t1, pool)
t0.Mul(t1, y1, pool)
t1.Mul(t1, y0, pool)
t0.Square(t0, pool)
t0.Mul(t0, t1, pool)
inv.Put(pool)
t1.Put(pool)
t2.Put(pool)
fp.Put(pool)
fp2.Put(pool)
fp3.Put(pool)
fu.Put(pool)
fu2.Put(pool)
fu3.Put(pool)
fu2p.Put(pool)
fu3p.Put(pool)
y0.Put(pool)
y1.Put(pool)
y2.Put(pool)
y3.Put(pool)
y4.Put(pool)
y5.Put(pool)
y6.Put(pool)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
e := miller(a, b, pool)
ret := finalExponentiation(e, pool)
e.Put(pool)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t *gfP2
}
var twistB = &gfP2{
bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
&gfP2{
bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
},
&gfP2{
bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
}
func newTwistPoint(pool *bnPool) *twistPoint {
return &twistPoint{
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
}
}
func (c *twistPoint) String() string {
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
}
func (c *twistPoint) Put(pool *bnPool) {
c.x.Put(pool)
c.y.Put(pool)
c.z.Put(pool)
c.t.Put(pool)
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *twistPoint) IsOnCurve() bool {
pool := new(bnPool)
yy := newGFp2(pool).Square(c.y, pool)
xxx := newGFp2(pool).Square(c.x, pool)
xxx.Mul(xxx, c.x, pool)
yy.Sub(yy, xxx)
yy.Sub(yy, twistB)
yy.Minimal()
if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
return false
}
cneg := newTwistPoint(pool)
cneg.Mul(c, Order, pool)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {
c.z.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z1z1 := newGFp2(pool).Square(a.z, pool)
z2z2 := newGFp2(pool).Square(b.z, pool)
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
t := newGFp2(pool).Mul(b.z, z2z2, pool)
s1 := newGFp2(pool).Mul(a.y, t, pool)
t.Mul(a.z, z1z1, pool)
s2 := newGFp2(pool).Mul(b.y, t, pool)
h := newGFp2(pool).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := newGFp2(pool).Square(t, pool)
j := newGFp2(pool).Mul(h, i, pool)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := newGFp2(pool).Add(t, t)
v := newGFp2(pool).Mul(u1, i, pool)
t4 := newGFp2(pool).Square(r, pool)
t.Add(v, v)
t6 := newGFp2(pool).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, c.x) // t7
t4.Mul(s1, j, pool) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t, pool) // t10
c.y.Sub(t4, t6)
t.Add(a.z, b.z) // t11
t4.Square(t, pool) // t12
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h, pool)
z1z1.Put(pool)
z2z2.Put(pool)
u1.Put(pool)
u2.Put(pool)
t.Put(pool)
s1.Put(pool)
s2.Put(pool)
h.Put(pool)
i.Put(pool)
j.Put(pool)
r.Put(pool)
v.Put(pool)
t4.Put(pool)
t6.Put(pool)
}
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := newGFp2(pool).Square(a.x, pool)
B := newGFp2(pool).Square(a.y, pool)
C_ := newGFp2(pool).Square(B, pool)
t := newGFp2(pool).Add(a.x, B)
t2 := newGFp2(pool).Square(t, pool)
t.Sub(t2, A)
t2.Sub(t, C_)
d := newGFp2(pool).Add(t2, t2)
t.Add(A, A)
e := newGFp2(pool).Add(t, A)
f := newGFp2(pool).Square(e, pool)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y, pool)
c.y.Sub(t2, t)
t.Mul(a.y, a.z, pool)
c.z.Add(t, t)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
t.Put(pool)
t2.Put(pool)
d.Put(pool)
e.Put(pool)
f.Put(pool)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
sum := newTwistPoint(pool)
sum.SetInfinity()
t := newTwistPoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
if c.z.IsOne() {
return c
}
if c.IsInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
return c
}
zInv := newGFp2(pool).Invert(c.z, pool)
t := newGFp2(pool).Mul(c.y, zInv, pool)
zInv2 := newGFp2(pool).Square(zInv, pool)
c.y.Mul(t, zInv2, pool)
t.Mul(c.x, zInv2, pool)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
zInv.Put(pool)
t.Put(pool)
zInv2.Put(pool)
return c
}
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
c.x.Set(a.x)
c.y.SetZero()
c.y.Sub(c.y, a.y)
c.z.Set(a.z)
c.t.SetZero()
}
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package params
import "math/big"
const (
GasLimitBoundDivisor uint64 = 1024 // The bound divisor of the gas limit, used in update calculations.
MinGasLimit uint64 = 5000 // Minimum the gas limit may ever be.
GenesisGasLimit uint64 = 4712388 // Gas limit of the Genesis block.
MaximumExtraDataSize uint64 = 32 // Maximum size extra data may be after Genesis.
ExpByteGas uint64 = 10 // Times ceil(log256(exponent)) for the EXP instruction.
SloadGas uint64 = 50 // Multiplied by the number of 32-byte words that are copied (round up) for any *COPY operation and added.
CallValueTransferGas uint64 = 9000 // Paid for CALL when the value transfer is non-zero.
CallNewAccountGas uint64 = 25000 // Paid for CALL when the destination address didn't exist prior.
TxGas uint64 = 21000 // Per transaction not creating a contract. NOTE: Not payable on data of calls between transactions.
TxGasContractCreation uint64 = 53000 // Per transaction that creates a contract. NOTE: Not payable on data of calls between transactions.
TxDataZeroGas uint64 = 4 // Per byte of data attached to a transaction that equals zero. NOTE: Not payable on data of calls between transactions.
QuadCoeffDiv uint64 = 512 // Divisor for the quadratic particle of the memory cost equation.
LogDataGas uint64 = 8 // Per byte in a LOG* operation's data.
CallStipend uint64 = 2300 // Free gas given at beginning of call.
Sha3Gas uint64 = 30 // Once per SHA3 operation.
Sha3WordGas uint64 = 6 // Once per word of the SHA3 operation's data.
SstoreSetGas uint64 = 20000 // Once per SSTORE operation.
SstoreResetGas uint64 = 5000 // Once per SSTORE operation if the zeroness changes from zero.
SstoreClearGas uint64 = 5000 // Once per SSTORE operation if the zeroness doesn't change.
SstoreRefundGas uint64 = 15000 // Once per SSTORE operation if the zeroness changes to zero.
NetSstoreNoopGas uint64 = 200 // Once per SSTORE operation if the value doesn't change.
NetSstoreInitGas uint64 = 20000 // Once per SSTORE operation from clean zero.
NetSstoreCleanGas uint64 = 5000 // Once per SSTORE operation from clean non-zero.
NetSstoreDirtyGas uint64 = 200 // Once per SSTORE operation from dirty.
NetSstoreClearRefund uint64 = 15000 // Once per SSTORE operation for clearing an originally existing storage slot
NetSstoreResetRefund uint64 = 4800 // Once per SSTORE operation for resetting to the original non-zero value
NetSstoreResetClearRefund uint64 = 19800 // Once per SSTORE operation for resetting to the original zero value
SstoreSentryGasEIP2200 uint64 = 2300 // Minimum gas required to be present for an SSTORE call, not consumed
SstoreSetGasEIP2200 uint64 = 20000 // Once per SSTORE operation from clean zero to non-zero
SstoreResetGasEIP2200 uint64 = 5000 // Once per SSTORE operation from clean non-zero to something else
SstoreClearsScheduleRefundEIP2200 uint64 = 15000 // Once per SSTORE operation for clearing an originally existing storage slot
ColdAccountAccessCostEIP2929 = uint64(2600) // COLD_ACCOUNT_ACCESS_COST
ColdSloadCostEIP2929 = uint64(2100) // COLD_SLOAD_COST
WarmStorageReadCostEIP2929 = uint64(100) // WARM_STORAGE_READ_COST
// In EIP-2200: SstoreResetGas was 5000.
// In EIP-2929: SstoreResetGas was changed to '5000 - COLD_SLOAD_COST'.
// In EIP-3529: SSTORE_CLEARS_SCHEDULE is defined as SSTORE_RESET_GAS + ACCESS_LIST_STORAGE_KEY_COST
// Which becomes: 5000 - 2100 + 1900 = 4800
SstoreClearsScheduleRefundEIP3529 uint64 = SstoreResetGasEIP2200 - ColdSloadCostEIP2929 + TxAccessListStorageKeyGas
JumpdestGas uint64 = 1 // Once per JUMPDEST operation.
EpochDuration uint64 = 30000 // Duration between proof-of-work epochs.
CreateDataGas uint64 = 200 //
CallCreateDepth uint64 = 1024 // Maximum depth of call/create stack.
ExpGas uint64 = 10 // Once per EXP instruction
LogGas uint64 = 375 // Per LOG* operation.
CopyGas uint64 = 3 //
StackLimit uint64 = 1024 // Maximum size of VM stack allowed.
TierStepGas uint64 = 0 // Once per operation, for a selection of them.
LogTopicGas uint64 = 375 // Multiplied by the * of the LOG*, per LOG transaction. e.g. LOG0 incurs 0 * c_txLogTopicGas, LOG4 incurs 4 * c_txLogTopicGas.
CreateGas uint64 = 32000 // Once per CREATE operation & contract-creation transaction.
Create2Gas uint64 = 32000 // Once per CREATE2 operation
SelfdestructRefundGas uint64 = 24000 // Refunded following a selfdestruct operation.
MemoryGas uint64 = 3 // Times the address of the (highest referenced byte in memory + 1). NOTE: referencing happens on read, write and in instructions such as RETURN and CALL.
TxDataNonZeroGasFrontier uint64 = 68 // Per byte of data attached to a transaction that is not equal to zero. NOTE: Not payable on data of calls between transactions.
TxDataNonZeroGasEIP2028 uint64 = 16 // Per byte of non zero data attached to a transaction after EIP 2028 (part in Istanbul)
TxAccessListAddressGas uint64 = 2400 // Per address specified in EIP 2930 access list
TxAccessListStorageKeyGas uint64 = 1900 // Per storage key specified in EIP 2930 access list
// These have been changed during the course of the chain
CallGasFrontier uint64 = 40 // Once per CALL operation & message call transaction.
CallGasEIP150 uint64 = 700 // Static portion of gas for CALL-derivates after EIP 150 (Tangerine)
BalanceGasFrontier uint64 = 20 // The cost of a BALANCE operation
BalanceGasEIP150 uint64 = 400 // The cost of a BALANCE operation after Tangerine
BalanceGasEIP1884 uint64 = 700 // The cost of a BALANCE operation after EIP 1884 (part of Istanbul)
ExtcodeSizeGasFrontier uint64 = 20 // Cost of EXTCODESIZE before EIP 150 (Tangerine)
ExtcodeSizeGasEIP150 uint64 = 700 // Cost of EXTCODESIZE after EIP 150 (Tangerine)
SloadGasFrontier uint64 = 50
SloadGasEIP150 uint64 = 200
SloadGasEIP1884 uint64 = 800 // Cost of SLOAD after EIP 1884 (part of Istanbul)
SloadGasEIP2200 uint64 = 800 // Cost of SLOAD after EIP 2200 (part of Istanbul)
ExtcodeHashGasConstantinople uint64 = 400 // Cost of EXTCODEHASH (introduced in Constantinople)
ExtcodeHashGasEIP1884 uint64 = 700 // Cost of EXTCODEHASH after EIP 1884 (part in Istanbul)
SelfdestructGasEIP150 uint64 = 5000 // Cost of SELFDESTRUCT post EIP 150 (Tangerine)
// EXP has a dynamic portion depending on the size of the exponent
ExpByteFrontier uint64 = 10 // was set to 10 in Frontier
ExpByteEIP158 uint64 = 50 // was raised to 50 during Eip158 (Spurious Dragon)
// Extcodecopy has a dynamic AND a static cost. This represents only the
// static portion of the gas. It was changed during EIP 150 (Tangerine)
ExtcodeCopyBaseFrontier uint64 = 20
ExtcodeCopyBaseEIP150 uint64 = 700
// CreateBySelfdestructGas is used when the refunded account is one that does
// not exist. This logic is similar to call.
// Introduced in Tangerine Whistle (Eip 150)
CreateBySelfdestructGas uint64 = 25000
BaseFeeChangeDenominator = 8 // Bounds the amount the base fee can change between blocks.
ElasticityMultiplier = 2 // Bounds the maximum gas limit an EIP-1559 block may have.
InitialBaseFee = 1000000000 // Initial base fee for EIP-1559 blocks.
MaxCodeSize = 24576 // Maximum bytecode to permit for a contract
// Precompiled contract gas prices
EcrecoverGas uint64 = 3000 // Elliptic curve sender recovery gas price
Sha256BaseGas uint64 = 60 // Base price for a SHA256 operation
Sha256PerWordGas uint64 = 12 // Per-word price for a SHA256 operation
Ripemd160BaseGas uint64 = 600 // Base price for a RIPEMD160 operation
Ripemd160PerWordGas uint64 = 120 // Per-word price for a RIPEMD160 operation
IdentityBaseGas uint64 = 15 // Base price for a data copy operation
IdentityPerWordGas uint64 = 3 // Per-work price for a data copy operation
Bn256AddGasByzantium uint64 = 500 // Byzantium gas needed for an elliptic curve addition
Bn256AddGasIstanbul uint64 = 150 // Gas needed for an elliptic curve addition
Bn256ScalarMulGasByzantium uint64 = 40000 // Byzantium gas needed for an elliptic curve scalar multiplication
Bn256ScalarMulGasIstanbul uint64 = 6000 // Gas needed for an elliptic curve scalar multiplication
Bn256PairingBaseGasByzantium uint64 = 100000 // Byzantium base price for an elliptic curve pairing check
Bn256PairingBaseGasIstanbul uint64 = 45000 // Base price for an elliptic curve pairing check
Bn256PairingPerPointGasByzantium uint64 = 80000 // Byzantium per-point price for an elliptic curve pairing check
Bn256PairingPerPointGasIstanbul uint64 = 34000 // Per-point price for an elliptic curve pairing check
Bls12381G1AddGas uint64 = 600 // Price for BLS12-381 elliptic curve G1 point addition
Bls12381G1MulGas uint64 = 12000 // Price for BLS12-381 elliptic curve G1 point scalar multiplication
Bls12381G2AddGas uint64 = 4500 // Price for BLS12-381 elliptic curve G2 point addition
Bls12381G2MulGas uint64 = 55000 // Price for BLS12-381 elliptic curve G2 point scalar multiplication
Bls12381PairingBaseGas uint64 = 115000 // Base gas price for BLS12-381 elliptic curve pairing check
Bls12381PairingPerPairGas uint64 = 23000 // Per-point pair gas price for BLS12-381 elliptic curve pairing check
Bls12381MapG1Gas uint64 = 5500 // Gas price for BLS12-381 mapping field element to G1 operation
Bls12381MapG2Gas uint64 = 110000 // Gas price for BLS12-381 mapping field element to G2 operation
// The Refund Quotient is the cap on how much of the used gas can be refunded. Before EIP-3529,
// up to half the consumed gas could be refunded. Redefined as 1/5th in EIP-3529
RefundQuotient uint64 = 2
RefundQuotientEIP3529 uint64 = 5
)
// Gas discount table for BLS12-381 G1 and G2 multi exponentiation operations
var Bls12381MultiExpDiscountTable = [128]uint64{1200, 888, 764, 641, 594, 547, 500, 453, 438, 423, 408, 394, 379, 364, 349, 334, 330, 326, 322, 318, 314, 310, 306, 302, 298, 294, 289, 285, 281, 277, 273, 269, 268, 266, 265, 263, 262, 260, 259, 257, 256, 254, 253, 251, 250, 248, 247, 245, 244, 242, 241, 239, 238, 236, 235, 233, 232, 231, 229, 228, 226, 225, 223, 222, 221, 220, 219, 219, 218, 217, 216, 216, 215, 214, 213, 213, 212, 211, 211, 210, 209, 208, 208, 207, 206, 205, 205, 204, 203, 202, 202, 201, 200, 199, 199, 198, 197, 196, 196, 195, 194, 193, 193, 192, 191, 191, 190, 189, 188, 188, 187, 186, 185, 185, 184, 183, 182, 182, 181, 180, 179, 179, 178, 177, 176, 176, 175, 174}
var (
DifficultyBoundDivisor = big.NewInt(2048) // The bound divisor of the difficulty, used in the update calculations.
GenesisDifficulty = big.NewInt(131072) // Difficulty of the Genesis block.
MinimumDifficulty = big.NewInt(131072) // The minimum that the difficulty may ever be.
DurationLimit = big.NewInt(13) // The decision boundary on the blocktime duration used to determine whether difficulty should go up or not.
)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment