
Appendix

Austin Adams Gordon Liao

May 2022

1 Fee returns

1.1 v2 fee returns
Let xt , yt be the amount of asset 1 and asset 2 reserves in a constant prod-
uct function market making (CPFMM) liquidity pool at time t. Let pt be the
marginal price of token y in units of token x, pt = yt

xt
. Let kt denote the liquidity

that exists in the pool at time t.The constant product formula, xtyt = kt is held
in every period. That is, xt = kt/yt =

√
kt/pt and yt =

√
ktpt. kt can only be

changed via accrual of return fees absent of addition and subtraction of reserves
through liquidity pool mints and burns.

Let vt ≡ v (kt, pt) be the portfolio value of the liquidity pool expressed in
asset 1 as the numeraire at time t. When expressed in terms of the amount of
reserve asset 1 and 2, the portfolio value is v (kt, pt) = xt+ytp

−1
t . Applying the

CPFMM formula, the liquidity pool value can be expressed as

vt ≡ v (kt,pt) =

√
kt
pt

+
√
ktptp

−1
t .

Absent of mints and burns, the simple return on a liquidity pool due to fee
accrual is

rfeet+1 =
vt+1 − v (kt, pt+1)

vt
.

Note that v(kt,pt+1)
vt

is the gross return of the liquidity pool portfolio value
without fee accrual. Minting and burning of liquidity pool positions can be
accounted for as follows. The evolution of liquidity value follows kt+1 = kt +
κt+1 + ϕt+1, where κt+1 is the net mints minus burns that occurs in between
t and t + 1 and ϕt+1 is the fee accrual due to transactions in this period, i.e.
ϕt+1 =

∑
i λ|si| ∀ swap si that occurs between tand t + 1 and fee tier λ. Let

k′t+1 ≡ kt+1 −κt+1. Thus, we have the mint-burn adjusted simple fee return on
a liquidity pool

rfeet+1 =
v
(
k′t+1, pt+1

)
− v (kt, pt+1)

v (kt, pt)
.

1

1.2 v3 returns
Uniswap v3 added several pool, tick, and positional indexed state values. The
following methodology follows the descriptions in the v3 white paper.

1.2.1 Position- and tick- indexed state

Each position has three state values, two associated with upper and lower tick
and a liquidity value l. The liquidity value denotes the virtual liquidity held by
the position. The two ticks are the lower tick - il - and the upper tick - iu. These
ticks both have two values associated with them - feeGrowthOutside0X128 - fo,0
- and feeGrowthOutside1X128 - fo,1.

The ticks are determined by the user when they create a position. The tick
values fo,0 and fo,1 track how many fees were accumulated within a certain
range.

1.2.2 Pool-indexed state

Pools also track feeGrowthGlobal0X128, fg,0, and feeGrowthGlobal1X128 - fg,1.
These two values track the total amount of fees collected per unit of virtual
liquidity l.

1.2.3 General fee calculations

Unclaimed fees are calculate as follows. We drop the subscript indicating token
1 and 2 since the formula for the two are the same.

Cumulative fees per share fr(t) in the range between two ticks il and iu is

fr(t) = fg,t − fb,t(il)− fa,t(iu)

where ic is the current tick state of the pool, fa(i) and fb(i) are defined as

fa(i) =

{
fg − fo(i) ic ≥ i

fo(i) ic < i

fb(i) =

{
fo(i) ic ≥ i

fg − fo(i) ic < i

The uncollected fees can be defined as

fu(t1, t0) = l(fr(t1)− fr(t0)

where t1 is the current time and t0 is the time the position was opened.
fr(t0) can either be calculated from the pool state or from feeGrowthInside
value stored in the position state.

2

1.3 Full-range fee Calculations
For full-range positions, ic is always between il and iu, i.e. il ≤ ic ≤ iu∀ic

The fee calculation simplifies to

fr(t) = fg,t − fo,t(il)− fo,t(iu)

However, fo,t(il) and fo,t(iu) are static values, i.e., fo,t(il) = 0 and fo,t(iu) =
c. The constant c is the value of fr(t) when tick iu is initialized and drops out.
Thus uncollected full range fee is

fu(t1, t0) = l(fg,t1 − fg,t0).

fg,t is the fee growth of one unit of liquidity l since time 0 and fg,t1 − fg,t0
gives the fee growth of one unit of liquidity from t0 to t1. The fee return on a
full-range v3 positions is

rfeet+1 = l
fg,t1+1 − fg,t

vt

where vt is the portfolio value of the full-range liquidity position at time t
defined similarly as that in v2.1

2 Data Methodology
We use data from Uniswap v2 and v3 subgraphs. The data sample is constructed
as follows. First, we pull the top 500 pools by volume from Uniswap v3 and
remove any pool that has no Uniswap v2 counterpart in the sample. Since
multiple v3 pools may use the same v2 pool as Uniswap v3 implemented multiple
fee-tiers, we choose the v3 pool with the highest average TVL over the sample
period if there are multiple v3 pools (choosing the pool with the highest volume
yields a similar sample).

To calculate return on pegged token pairs, we empirically assess the tick
range that bounds minor price fluctuations in the pegged asset pairs. Specif-
ically, we winsorize historical peg token prices at the 0.5% threshold symmet-
rically (capturing 99% of the historical prices). With the observed historical
price range, we create synthetic positions on the pegged pairs. This method-
ology takes a conservative approach in creating liquidity positions that do not
have the need to rebalance.

To avoid extreme outliers as a result of small pool size on any particular date,
we impute the returns with 0 if the total value locked for a given pool on an
observation date is less than $1000. We chose this data cleaning procedure for
two reasons. First, large returns for small TVL pools could not be realized. As
we assume that additional liquidity deployed into the pool is marginal. For pools

1Equation 2.2 in the v3 white paper has the real reserve of a position defined by the curve(
x+ L√

pb

) (
y + L

√
pa

)
= L2. In full-range positions, pa → 0 and pb → ∞, this indifference

curve becomes identical to xy = L2 ≡ k.

3

with TVL less than $1000, absolute returns are generally small (e.g. fraction of a
cent) despite non-zero returns when expressed as a percentage. Additionally, for
small TVL pools, large capital deployment would impact the behavior of other
participants in the pool and thus contradict our marginal liquidity assumption.

4

