Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
interface
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
LuckySwap
interface
Commits
20d84047
Unverified
Commit
20d84047
authored
Sep 25, 2023
by
Brendan Wong
Committed by
GitHub
Sep 25, 2023
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix: update polygon branding (#7190)
* update polygon branding * Update matic-token-icon.svg
parent
809841df
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
16 additions
and
29 deletions
+16
-29
polygonCircle.png
src/assets/images/polygonCircle.png
+0
-0
matic-token-icon.svg
src/assets/svg/matic-token-icon.svg
+14
-3
polygon-matic-logo.svg
src/assets/svg/polygon-matic-logo.svg
+1
-16
polygon_square_logo.svg
src/assets/svg/polygon_square_logo.svg
+1
-10
No files found.
src/assets/images/polygonCircle.png
View replaced file @
809841df
View file @
20d84047
1.49 KB
|
W:
|
H:
3.32 KB
|
W:
|
H:
2-up
Swipe
Onion skin
src/assets/svg/matic-token-icon.svg
View file @
20d84047
<svg
width=
"1024"
height=
"1024"
viewBox=
"0 0 1024 1024"
fill=
"none"
xmlns=
"http://www.w3.org/2000/svg"
>
<svg
width=
"490"
height=
"490"
viewBox=
"0 0 490 490"
fill=
"none"
xmlns=
"http://www.w3.org/2000/svg"
>
<circle
cx=
"512"
cy=
"512"
r=
"512"
fill=
"#8247E5"
/>
<g
clip-path=
"url(#clip0_7383_35741)"
>
<path
d=
"M681.469 402.456C669.189 395.312 653.224 395.312 639.716 402.456L543.928 457.228L478.842 492.949L383.055 547.721C370.774 554.865 354.81 554.865 341.301 547.721L265.162 504.856C252.882 497.712 244.286 484.614 244.286 470.325V385.786C244.286 371.498 251.654 358.4 265.162 351.256L340.073 309.581C352.353 302.437 368.318 302.437 381.827 309.581L456.737 351.256C469.018 358.4 477.614 371.498 477.614 385.786V440.558L542.7 403.646V348.874C542.7 334.586 535.332 321.488 521.824 314.344L383.055 235.758C370.774 228.614 354.81 228.614 341.301 235.758L200.076 314.344C186.567 321.488 179.199 334.586 179.199 348.874V507.237C179.199 521.525 186.567 534.623 200.076 541.767L341.301 620.353C353.582 627.498 369.546 627.498 383.055 620.353L478.842 566.772L543.928 529.86L639.716 476.279C651.996 469.135 667.961 469.135 681.469 476.279L756.38 517.953C768.66 525.098 777.257 538.195 777.257 552.484V637.023C777.257 651.312 769.888 664.409 756.38 671.553L681.469 714.419C669.189 721.563 653.224 721.563 639.716 714.419L564.805 672.744C552.525 665.6 543.928 652.502 543.928 638.214V583.442L478.842 620.353V675.125C478.842 689.414 486.21 702.512 499.719 709.656L640.944 788.242C653.224 795.386 669.189 795.386 682.697 788.242L823.922 709.656C836.203 702.512 844.799 689.414 844.799 675.125V516.763C844.799 502.474 837.431 489.377 823.922 482.232L681.469 402.456Z"
fill=
"white"
/>
<circle
cx=
"245"
cy=
"245"
r=
"245"
fill=
"url(#paint0_linear_7383_35741)"
/>
<path
d=
"M315.83 297.85L385.12 257.84C388.79 255.72 391.06 251.78 391.06 247.54V167.53C391.06 163.3 388.78 159.35 385.12 157.23L315.83 117.22C312.16 115.1 307.61 115.11 303.94 117.22L234.65 157.23C230.98 159.35 228.71 163.3 228.71 167.53V310.52L180.12 338.57L131.53 310.52V254.41L180.12 226.36L212.17 244.86V207.22L186.06 192.15C184.26 191.11 182.2 190.56 180.11 190.56C178.02 190.56 175.96 191.11 174.17 192.15L104.88 232.16C101.21 234.28 98.9404 238.22 98.9404 242.46V322.47C98.9404 326.7 101.22 330.65 104.88 332.77L174.17 372.78C177.83 374.89 182.39 374.89 186.06 372.78L255.35 332.78C259.02 330.66 261.29 326.71 261.29 322.48V179.49L262.17 178.99L309.88 151.44L358.47 179.49V235.6L309.88 263.65L277.88 245.17V282.81L303.94 297.86C307.61 299.97 312.16 299.97 315.83 297.86V297.85Z"
fill=
"white"
/>
</g>
<defs>
<linearGradient
id=
"paint0_linear_7383_35741"
x1=
"-175"
y1=
"4.36391e-07"
x2=
"416"
y2=
"367"
gradientUnits=
"userSpaceOnUse"
>
<stop
stop-color=
"#A229C5"
/>
<stop
offset=
"1"
stop-color=
"#7B3FE4"
/>
</linearGradient>
<clipPath
id=
"clip0_7383_35741"
>
<rect
width=
"490"
height=
"490"
fill=
"white"
/>
</clipPath>
</defs>
</svg>
</svg>
src/assets/svg/polygon-matic-logo.svg
View file @
20d84047
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<svg
id=
"Layer_1"
xmlns=
"http://www.w3.org/2000/svg"
xmlns:xlink=
"http://www.w3.org/1999/xlink"
viewBox=
"0 0 500 500"
><defs><style>
.cls-1{fill:url(#linear-gradient);}
</style><linearGradient
id=
"linear-gradient"
x1=
"54.83"
y1=
"392.31"
x2=
"459.03"
y2=
"97.58"
gradientUnits=
"userSpaceOnUse"
><stop
offset=
"0"
stop-color=
"#a726c1"
/><stop
offset=
".88"
stop-color=
"#803bdf"
/><stop
offset=
"1"
stop-color=
"#7b3fe4"
/></linearGradient></defs><path
class=
"cls-1"
d=
"m364.03,335.08l111.55-64.4c5.9-3.41,9.57-9.76,9.57-16.58V125.28c0-6.81-3.67-13.17-9.57-16.58l-111.55-64.4c-5.9-3.41-13.24-3.4-19.14,0l-111.55,64.4c-5.9,3.41-9.57,9.76-9.57,16.58v230.19l-78.22,45.15-78.22-45.15v-90.33l78.22-45.15,51.6,29.78v-60.59l-42.03-24.26c-2.9-1.67-6.21-2.55-9.57-2.55s-6.67.88-9.57,2.55L24.42,229.33c-5.9,3.41-9.57,9.76-9.57,16.58v128.81c0,6.81,3.67,13.17,9.57,16.58l111.55,64.41c5.9,3.4,13.23,3.4,19.14,0l111.55-64.4c5.9-3.41,9.57-9.77,9.57-16.58v-230.19l1.41-.81,76.81-44.34,78.22,45.16v90.32l-78.22,45.16-51.52-29.74v60.59l41.95,24.23c5.9,3.4,13.24,3.4,19.14,0Z"
/></svg>
<!-- Generator: Adobe Illustrator 24.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
\ No newline at end of file
<svg
version=
"1.1"
id=
"Layer_1"
xmlns=
"http://www.w3.org/2000/svg"
xmlns:xlink=
"http://www.w3.org/1999/xlink"
x=
"0px"
y=
"0px"
viewBox=
"0 0 38.4 33.5"
style=
"enable-background:new 0 0 38.4 33.5;"
xml:space=
"preserve"
>
<style
type=
"text/css"
>
.st0{fill:#8247E5;}
</style>
<g>
<path
class=
"st0"
d=
"M29,10.2c-0.7-0.4-1.6-0.4-2.4,0L21,13.5l-3.8,2.1l-5.5,3.3c-0.7,0.4-1.6,0.4-2.4,0L5,16.3
c-0.7-0.4-1.2-1.2-1.2-2.1v-5c0-0.8,0.4-1.6,1.2-2.1l4.3-2.5c0.7-0.4,1.6-0.4,2.4,0L16,7.2c0.7,0.4,1.2,1.2,1.2,2.1v3.3l3.8-2.2V7
c0-0.8-0.4-1.6-1.2-2.1l-8-4.7c-0.7-0.4-1.6-0.4-2.4,0L1.2,5C0.4,5.4,0,6.2,0,7v9.4c0,0.8,0.4,1.6,1.2,2.1l8.1,4.7
c0.7,0.4,1.6,0.4,2.4,0l5.5-3.2l3.8-2.2l5.5-3.2c0.7-0.4,1.6-0.4,2.4,0l4.3,2.5c0.7,0.4,1.2,1.2,1.2,2.1v5c0,0.8-0.4,1.6-1.2,2.1
L29,28.8c-0.7,0.4-1.6,0.4-2.4,0l-4.3-2.5c-0.7-0.4-1.2-1.2-1.2-2.1V21l-3.8,2.2v3.3c0,0.8,0.4,1.6,1.2,2.1l8.1,4.7
c0.7,0.4,1.6,0.4,2.4,0l8.1-4.7c0.7-0.4,1.2-1.2,1.2-2.1V17c0-0.8-0.4-1.6-1.2-2.1L29,10.2z"
/>
</g>
</svg>
src/assets/svg/polygon_square_logo.svg
View file @
20d84047
<svg
width=
"16"
height=
"16"
viewBox=
"0 0 16 16"
fill=
"none"
xmlns=
"http://www.w3.org/2000/svg"
xmlns:xlink=
"http://www.w3.org/1999/xlink"
>
<?xml version="1.0" encoding="UTF-8"?>
<svg
id=
"Layer_1"
xmlns=
"http://www.w3.org/2000/svg"
xmlns:xlink=
"http://www.w3.org/1999/xlink"
viewBox=
"0 0 500 500"
><defs><style>
.cls-1{fill:#fff;}.cls-2{fill:url(#linear-gradient);}
</style><linearGradient
id=
"linear-gradient"
x1=
"-116.09"
y1=
"25.97"
x2=
"437.45"
y2=
"364.71"
gradientUnits=
"userSpaceOnUse"
><stop
offset=
"0"
stop-color=
"#a229c5"
/><stop
offset=
"1"
stop-color=
"#7b3fe4"
/></linearGradient></defs><rect
class=
"cls-2"
x=
"-18.1"
y=
"-18.1"
width=
"536.2"
height=
"536.2"
/><path
class=
"cls-1"
d=
"m320.83,302.85l69.29-40.01c3.67-2.12,5.94-6.06,5.94-10.3v-80.01c0-4.23-2.28-8.18-5.94-10.3l-69.29-40.01c-3.67-2.12-8.22-2.11-11.89,0l-69.29,40.01c-3.67,2.12-5.94,6.07-5.94,10.3v142.99l-48.59,28.05-48.59-28.05v-56.11l48.59-28.05,32.05,18.5v-37.64l-26.11-15.07c-1.8-1.04-3.86-1.59-5.95-1.59s-4.15.55-5.94,1.59l-69.29,40.01c-3.67,2.12-5.94,6.06-5.94,10.3v80.01c0,4.23,2.28,8.18,5.94,10.3l69.29,40.01c3.66,2.11,8.22,2.11,11.89,0l69.29-40c3.67-2.12,5.94-6.07,5.94-10.3v-142.99l.88-.5,47.71-27.55,48.59,28.05v56.11l-48.59,28.05-32-18.48v37.64l26.06,15.05c3.67,2.11,8.22,2.11,11.89,0Z"
/></svg>
<rect
x=
"0"
y=
"0"
width=
"16"
height=
"16"
rx=
"3"
fill=
"#7B3FE4"
/>
\ No newline at end of file
<rect
x=
"0"
y=
"0"
width=
"16"
height=
"16"
fill=
"url(#pattern0)"
/>
<defs>
<pattern
id=
"pattern0"
patternContentUnits=
"objectBoundingBox"
width=
"1"
height=
"1"
>
<use
xlink:href=
"#image0_12237_122021"
transform=
"scale(0.0015625)"
/>
</pattern>
<image
id=
"image0_12237_122021"
width=
"640"
height=
"640"
xlink:href=
""
/>
</defs>
</svg>
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment