Commit b03652ee authored by vicotor's avatar vicotor

delete crypto

parent 024bc656
......@@ -24,7 +24,7 @@ import (
"io"
"math/big"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
metatypes "github.com/CaduceusMetaverseProtocol/MetaTypes/types"
)
......
......@@ -27,7 +27,7 @@ import (
"strings"
"testing"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
"github.com/CaduceusMetaverseProtocol/MetaTypes/common/math"
//"github.com/ethereum/go-ethereum/internal/testrand"
)
......
......@@ -22,7 +22,7 @@ import (
metatypes "github.com/CaduceusMetaverseProtocol/MetaTypes/types"
"strings"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
)
type Error struct {
......
......@@ -20,7 +20,7 @@ import (
"fmt"
"strings"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
metatypes "github.com/CaduceusMetaverseProtocol/MetaTypes/types"
)
......
......@@ -26,7 +26,7 @@ import (
"strings"
"testing"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
......
......@@ -20,7 +20,7 @@ import (
"fmt"
"strings"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
)
// FunctionType represents different types of functions a contract might have.
......
......@@ -24,7 +24,7 @@ import (
"math/big"
"reflect"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
"github.com/CaduceusMetaverseProtocol/MetaTypes/common/math"
)
......
......@@ -23,7 +23,7 @@ import (
"reflect"
"testing"
"code.wuban.net.cn/cmpchain/ethcrypto/crypto"
"github.com/ethereum/go-ethereum/crypto"
)
func TestMakeTopics(t *testing.T) {
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xb.
//
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2b (Sum512 or New512).
// If you need a secret-key MAC (message authentication code), use the New512
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 64 bytes. It
// can produce hash values between 0 and 4 GiB.
package blake2b
import (
"encoding/binary"
"errors"
"hash"
)
const (
// BlockSize the blocksize of BLAKE2b in bytes.
BlockSize = 128
// Size the hash size of BLAKE2b-512 in bytes.
Size = 64
// Size384 the hash size of BLAKE2b-384 in bytes.
Size384 = 48
// Size256 the hash size of BLAKE2b-256 in bytes.
Size256 = 32
)
var (
useAVX2 bool
useAVX bool
useSSE4 bool
)
var (
errKeySize = errors.New("blake2b: invalid key size")
errHashSize = errors.New("blake2b: invalid hash size")
)
var iv = [8]uint64{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
}
// Sum512 returns the BLAKE2b-512 checksum of the data.
func Sum512(data []byte) [Size]byte {
var sum [Size]byte
checkSum(&sum, Size, data)
return sum
}
// Sum384 returns the BLAKE2b-384 checksum of the data.
func Sum384(data []byte) [Size384]byte {
var sum [Size]byte
var sum384 [Size384]byte
checkSum(&sum, Size384, data)
copy(sum384[:], sum[:Size384])
return sum384
}
// Sum256 returns the BLAKE2b-256 checksum of the data.
func Sum256(data []byte) [Size256]byte {
var sum [Size]byte
var sum256 [Size256]byte
checkSum(&sum, Size256, data)
copy(sum256[:], sum[:Size256])
return sum256
}
// New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
// New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) }
// New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) }
// New returns a new hash.Hash computing the BLAKE2b checksum with a custom length.
// A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long.
// The hash size can be a value between 1 and 64 but it is highly recommended to use
// values equal or greater than:
// - 32 if BLAKE2b is used as a hash function (The key is zero bytes long).
// - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long).
// When the key is nil, the returned hash.Hash implements BinaryMarshaler
// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash.
func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) }
// F is a compression function for BLAKE2b. It takes as an argument the state
// vector `h`, message block vector `m`, offset counter `t`, final block indicator
// flag `f`, and number of rounds `rounds`. The state vector provided as the first
// parameter is modified by the function.
func F(h *[8]uint64, m [16]uint64, c [2]uint64, final bool, rounds uint32) {
var flag uint64
if final {
flag = 0xFFFFFFFFFFFFFFFF
}
f(h, &m, c[0], c[1], flag, uint64(rounds))
}
func newDigest(hashSize int, key []byte) (*digest, error) {
if hashSize < 1 || hashSize > Size {
return nil, errHashSize
}
if len(key) > Size {
return nil, errKeySize
}
d := &digest{
size: hashSize,
keyLen: len(key),
}
copy(d.key[:], key)
d.Reset()
return d, nil
}
func checkSum(sum *[Size]byte, hashSize int, data []byte) {
h := iv
h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24)
var c [2]uint64
if length := len(data); length > BlockSize {
n := length &^ (BlockSize - 1)
if length == n {
n -= BlockSize
}
hashBlocks(&h, &c, 0, data[:n])
data = data[n:]
}
var block [BlockSize]byte
offset := copy(block[:], data)
remaining := uint64(BlockSize - offset)
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h[:(hashSize+7)/8] {
binary.LittleEndian.PutUint64(sum[8*i:], v)
}
}
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
var m [16]uint64
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
for j := range m {
m[j] = binary.LittleEndian.Uint64(blocks[i:])
i += 8
}
f(h, &m, c0, c1, flag, 12)
}
c[0], c[1] = c0, c1
}
type digest struct {
h [8]uint64
c [2]uint64
size int
block [BlockSize]byte
offset int
key [BlockSize]byte
keyLen int
}
const (
magic = "b2b"
marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1
)
func (d *digest) MarshalBinary() ([]byte, error) {
if d.keyLen != 0 {
return nil, errors.New("crypto/blake2b: cannot marshal MACs")
}
b := make([]byte, 0, marshaledSize)
b = append(b, magic...)
for i := 0; i < 8; i++ {
b = appendUint64(b, d.h[i])
}
b = appendUint64(b, d.c[0])
b = appendUint64(b, d.c[1])
// Maximum value for size is 64
b = append(b, byte(d.size))
b = append(b, d.block[:]...)
b = append(b, byte(d.offset))
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("crypto/blake2b: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/blake2b: invalid hash state size")
}
b = b[len(magic):]
for i := 0; i < 8; i++ {
b, d.h[i] = consumeUint64(b)
}
b, d.c[0] = consumeUint64(b)
b, d.c[1] = consumeUint64(b)
d.size = int(b[0])
b = b[1:]
copy(d.block[:], b[:BlockSize])
b = b[BlockSize:]
d.offset = int(b[0])
return nil
}
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Size() int { return d.size }
func (d *digest) Reset() {
d.h = iv
d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24)
d.offset, d.c[0], d.c[1] = 0, 0, 0
if d.keyLen > 0 {
d.block = d.key
d.offset = BlockSize
}
}
func (d *digest) Write(p []byte) (n int, err error) {
n = len(p)
if d.offset > 0 {
remaining := BlockSize - d.offset
if n <= remaining {
d.offset += copy(d.block[d.offset:], p)
return
}
copy(d.block[d.offset:], p[:remaining])
hashBlocks(&d.h, &d.c, 0, d.block[:])
d.offset = 0
p = p[remaining:]
}
if length := len(p); length > BlockSize {
nn := length &^ (BlockSize - 1)
if length == nn {
nn -= BlockSize
}
hashBlocks(&d.h, &d.c, 0, p[:nn])
p = p[nn:]
}
if len(p) > 0 {
d.offset += copy(d.block[:], p)
}
return
}
func (d *digest) Sum(sum []byte) []byte {
var hash [Size]byte
d.finalize(&hash)
return append(sum, hash[:d.size]...)
}
func (d *digest) finalize(hash *[Size]byte) {
var block [BlockSize]byte
copy(block[:], d.block[:d.offset])
remaining := uint64(BlockSize - d.offset)
c := d.c
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
h := d.h
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h {
binary.LittleEndian.PutUint64(hash[8*i:], v)
}
}
func appendUint64(b []byte, x uint64) []byte {
var a [8]byte
binary.BigEndian.PutUint64(a[:], x)
return append(b, a[:]...)
}
//nolint:unused,deadcode
func appendUint32(b []byte, x uint32) []byte {
var a [4]byte
binary.BigEndian.PutUint32(a[:], x)
return append(b, a[:]...)
}
func consumeUint64(b []byte) ([]byte, uint64) {
x := binary.BigEndian.Uint64(b)
return b[8:], x
}
//nolint:unused,deadcode
func consumeUint32(b []byte) ([]byte, uint32) {
x := binary.BigEndian.Uint32(b)
return b[4:], x
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.7 && amd64 && !gccgo && !appengine
// +build go1.7,amd64,!gccgo,!appengine
package blake2b
import "golang.org/x/sys/cpu"
func init() {
useAVX2 = cpu.X86.HasAVX2
useAVX = cpu.X86.HasAVX
useSSE4 = cpu.X86.HasSSE41
}
//go:noescape
func fAVX2(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
//go:noescape
func fAVX(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
//go:noescape
func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
switch {
case useAVX2:
fAVX2(h, m, c0, c1, flag, rounds)
case useAVX:
fAVX(h, m, c0, c1, flag, rounds)
case useSSE4:
fSSE4(h, m, c0, c1, flag, rounds)
default:
fGeneric(h, m, c0, c1, flag, rounds)
}
}
This diff is collapsed.
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.7 && amd64 && !gccgo && !appengine
// +build !go1.7,amd64,!gccgo,!appengine
package blake2b
import "golang.org/x/sys/cpu"
func init() {
useSSE4 = cpu.X86.HasSSE41
}
//go:noescape
func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
if useSSE4 {
fSSE4(h, m, c0, c1, flag, rounds)
} else {
fGeneric(h, m, c0, c1, flag, rounds)
}
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
#include "textflag.h"
DATA ·iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
DATA ·iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
GLOBL ·iv0<>(SB), (NOPTR+RODATA), $16
DATA ·iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b
DATA ·iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1
GLOBL ·iv1<>(SB), (NOPTR+RODATA), $16
DATA ·iv2<>+0x00(SB)/8, $0x510e527fade682d1
DATA ·iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
GLOBL ·iv2<>(SB), (NOPTR+RODATA), $16
DATA ·iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b
DATA ·iv3<>+0x08(SB)/8, $0x5be0cd19137e2179
GLOBL ·iv3<>(SB), (NOPTR+RODATA), $16
DATA ·c40<>+0x00(SB)/8, $0x0201000706050403
DATA ·c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
GLOBL ·c40<>(SB), (NOPTR+RODATA), $16
DATA ·c48<>+0x00(SB)/8, $0x0100070605040302
DATA ·c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
GLOBL ·c48<>(SB), (NOPTR+RODATA), $16
#define SHUFFLE(v2, v3, v4, v5, v6, v7, t1, t2) \
MOVO v4, t1; \
MOVO v5, v4; \
MOVO t1, v5; \
MOVO v6, t1; \
PUNPCKLQDQ v6, t2; \
PUNPCKHQDQ v7, v6; \
PUNPCKHQDQ t2, v6; \
PUNPCKLQDQ v7, t2; \
MOVO t1, v7; \
MOVO v2, t1; \
PUNPCKHQDQ t2, v7; \
PUNPCKLQDQ v3, t2; \
PUNPCKHQDQ t2, v2; \
PUNPCKLQDQ t1, t2; \
PUNPCKHQDQ t2, v3
#define SHUFFLE_INV(v2, v3, v4, v5, v6, v7, t1, t2) \
MOVO v4, t1; \
MOVO v5, v4; \
MOVO t1, v5; \
MOVO v2, t1; \
PUNPCKLQDQ v2, t2; \
PUNPCKHQDQ v3, v2; \
PUNPCKHQDQ t2, v2; \
PUNPCKLQDQ v3, t2; \
MOVO t1, v3; \
MOVO v6, t1; \
PUNPCKHQDQ t2, v3; \
PUNPCKLQDQ v7, t2; \
PUNPCKHQDQ t2, v6; \
PUNPCKLQDQ t1, t2; \
PUNPCKHQDQ t2, v7
#define HALF_ROUND(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \
PADDQ m0, v0; \
PADDQ m1, v1; \
PADDQ v2, v0; \
PADDQ v3, v1; \
PXOR v0, v6; \
PXOR v1, v7; \
PSHUFD $0xB1, v6, v6; \
PSHUFD $0xB1, v7, v7; \
PADDQ v6, v4; \
PADDQ v7, v5; \
PXOR v4, v2; \
PXOR v5, v3; \
PSHUFB c40, v2; \
PSHUFB c40, v3; \
PADDQ m2, v0; \
PADDQ m3, v1; \
PADDQ v2, v0; \
PADDQ v3, v1; \
PXOR v0, v6; \
PXOR v1, v7; \
PSHUFB c48, v6; \
PSHUFB c48, v7; \
PADDQ v6, v4; \
PADDQ v7, v5; \
PXOR v4, v2; \
PXOR v5, v3; \
MOVOU v2, t0; \
PADDQ v2, t0; \
PSRLQ $63, v2; \
PXOR t0, v2; \
MOVOU v3, t0; \
PADDQ v3, t0; \
PSRLQ $63, v3; \
PXOR t0, v3
#define LOAD_MSG(m0, m1, m2, m3, i0, i1, i2, i3, i4, i5, i6, i7) \
MOVQ i0*8(SI), m0; \
PINSRQ $1, i1*8(SI), m0; \
MOVQ i2*8(SI), m1; \
PINSRQ $1, i3*8(SI), m1; \
MOVQ i4*8(SI), m2; \
PINSRQ $1, i5*8(SI), m2; \
MOVQ i6*8(SI), m3; \
PINSRQ $1, i7*8(SI), m3
// func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
TEXT ·fSSE4(SB), 4, $24-48 // frame size = 8 + 16 byte alignment
MOVQ h+0(FP), AX
MOVQ m+8(FP), SI
MOVQ c0+16(FP), R8
MOVQ c1+24(FP), R9
MOVQ flag+32(FP), CX
MOVQ rounds+40(FP), BX
MOVQ SP, BP
MOVQ SP, R10
ADDQ $15, R10
ANDQ $~15, R10
MOVQ R10, SP
MOVOU ·iv3<>(SB), X0
MOVO X0, 0(SP)
XORQ CX, 0(SP) // 0(SP) = ·iv3 ^ (CX || 0)
MOVOU ·c40<>(SB), X13
MOVOU ·c48<>(SB), X14
MOVOU 0(AX), X12
MOVOU 16(AX), X15
MOVQ R8, X8
PINSRQ $1, R9, X8
MOVO X12, X0
MOVO X15, X1
MOVOU 32(AX), X2
MOVOU 48(AX), X3
MOVOU ·iv0<>(SB), X4
MOVOU ·iv1<>(SB), X5
MOVOU ·iv2<>(SB), X6
PXOR X8, X6
MOVO 0(SP), X7
loop:
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 0, 2, 4, 6, 1, 3, 5, 7)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 8, 10, 12, 14, 9, 11, 13, 15)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 14, 4, 9, 13, 10, 8, 15, 6)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 1, 0, 11, 5, 12, 2, 7, 3)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 11, 12, 5, 15, 8, 0, 2, 13)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 10, 3, 7, 9, 14, 6, 1, 4)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 7, 3, 13, 11, 9, 1, 12, 14)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 2, 5, 4, 15, 6, 10, 0, 8)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 9, 5, 2, 10, 0, 7, 4, 15)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 14, 11, 6, 3, 1, 12, 8, 13)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 2, 6, 0, 8, 12, 10, 11, 3)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 4, 7, 15, 1, 13, 5, 14, 9)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 12, 1, 14, 4, 5, 15, 13, 10)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 0, 6, 9, 8, 7, 3, 2, 11)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 13, 7, 12, 3, 11, 14, 1, 9)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 5, 15, 8, 2, 0, 4, 6, 10)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 6, 14, 11, 0, 15, 9, 3, 8)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 12, 13, 1, 10, 2, 7, 4, 5)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 10, 8, 7, 1, 2, 4, 6, 5)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 15, 9, 3, 13, 11, 14, 12, 0)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
JMP loop
done:
MOVOU 32(AX), X10
MOVOU 48(AX), X11
PXOR X0, X12
PXOR X1, X15
PXOR X2, X10
PXOR X3, X11
PXOR X4, X12
PXOR X5, X15
PXOR X6, X10
PXOR X7, X11
MOVOU X10, 32(AX)
MOVOU X11, 48(AX)
MOVOU X12, 0(AX)
MOVOU X15, 16(AX)
MOVQ BP, SP
RET
// Only enable fuzzer on platforms with AVX enabled
//go:build go1.7 && amd64 && !gccgo && !appengine
// +build go1.7,amd64,!gccgo,!appengine
package blake2b
import (
"encoding/binary"
"testing"
)
func Fuzz(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
fuzz(data)
})
}
func fuzz(data []byte) {
// Make sure the data confirms to the input model
if len(data) != 211 {
return
}
// Parse everything and call all the implementations
var (
rounds = binary.BigEndian.Uint16(data[0:2])
h [8]uint64
m [16]uint64
t [2]uint64
f uint64
)
for i := 0; i < 8; i++ {
offset := 2 + i*8
h[i] = binary.LittleEndian.Uint64(data[offset : offset+8])
}
for i := 0; i < 16; i++ {
offset := 66 + i*8
m[i] = binary.LittleEndian.Uint64(data[offset : offset+8])
}
t[0] = binary.LittleEndian.Uint64(data[194:202])
t[1] = binary.LittleEndian.Uint64(data[202:210])
if data[210]%2 == 1 { // Avoid spinning the fuzzer to hit 0/1
f = 0xFFFFFFFFFFFFFFFF
}
// Run the blake2b compression on all instruction sets and cross reference
want := h
fGeneric(&want, &m, t[0], t[1], f, uint64(rounds))
have := h
if useSSE4 {
fSSE4(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("SSE4 mismatches generic algo")
}
}
if useAVX {
have = h
fAVX(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("AVX mismatches generic algo")
}
}
if useAVX2 {
have = h
fAVX2(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("AVX2 mismatches generic algo")
}
}
}
package blake2b
import (
"fmt"
"reflect"
"testing"
)
func TestF(t *testing.T) {
for i, test := range testVectorsF {
t.Run(fmt.Sprintf("test vector %v", i), func(t *testing.T) {
//toEthereumTestCase(test)
h := test.hIn
F(&h, test.m, test.c, test.f, test.rounds)
if !reflect.DeepEqual(test.hOut, h) {
t.Errorf("Unexpected result\nExpected: [%#x]\nActual: [%#x]\n", test.hOut, h)
}
})
}
}
type testVector struct {
hIn [8]uint64
m [16]uint64
c [2]uint64
f bool
rounds uint32
hOut [8]uint64
}
// https://tools.ietf.org/html/rfc7693#appendix-A
var testVectorsF = []testVector{
{
hIn: [8]uint64{
0x6a09e667f2bdc948, 0xbb67ae8584caa73b,
0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f,
0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
},
m: [16]uint64{
0x0000000000636261, 0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
0x0000000000000000,
},
c: [2]uint64{3, 0},
f: true,
rounds: 12,
hOut: [8]uint64{
0x0D4D1C983FA580BA, 0xE9F6129FB697276A, 0xB7C45A68142F214C,
0xD1A2FFDB6FBB124B, 0x2D79AB2A39C5877D, 0x95CC3345DED552C2,
0x5A92F1DBA88AD318, 0x239900D4ED8623B9,
},
},
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2b
import (
"encoding/binary"
"math/bits"
)
// the precomputed values for BLAKE2b
// there are 10 16-byte arrays - one for each round
// the entries are calculated from the sigma constants.
var precomputed = [10][16]byte{
{0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15},
{14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3},
{11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4},
{7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8},
{9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13},
{2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9},
{12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11},
{13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10},
{6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5},
{10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0},
}
// nolint:unused,deadcode
func hashBlocksGeneric(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
var m [16]uint64
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
for j := range m {
m[j] = binary.LittleEndian.Uint64(blocks[i:])
i += 8
}
fGeneric(h, &m, c0, c1, flag, 12)
}
c[0], c[1] = c0, c1
}
func fGeneric(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
v0, v1, v2, v3, v4, v5, v6, v7 := h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
v8, v9, v10, v11, v12, v13, v14, v15 := iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]
v12 ^= c0
v13 ^= c1
v14 ^= flag
for i := 0; i < int(rounds); i++ {
s := &(precomputed[i%10])
v0 += m[s[0]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft64(v12, -32)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft64(v4, -24)
v1 += m[s[1]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft64(v13, -32)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft64(v5, -24)
v2 += m[s[2]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft64(v14, -32)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft64(v6, -24)
v3 += m[s[3]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft64(v15, -32)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft64(v7, -24)
v0 += m[s[4]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft64(v12, -16)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft64(v4, -63)
v1 += m[s[5]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft64(v13, -16)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft64(v5, -63)
v2 += m[s[6]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft64(v14, -16)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft64(v6, -63)
v3 += m[s[7]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft64(v15, -16)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft64(v7, -63)
v0 += m[s[8]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft64(v15, -32)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft64(v5, -24)
v1 += m[s[9]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft64(v12, -32)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft64(v6, -24)
v2 += m[s[10]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft64(v13, -32)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft64(v7, -24)
v3 += m[s[11]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft64(v14, -32)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft64(v4, -24)
v0 += m[s[12]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft64(v15, -16)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft64(v5, -63)
v1 += m[s[13]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft64(v12, -16)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft64(v6, -63)
v2 += m[s[14]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft64(v13, -16)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft64(v7, -63)
v3 += m[s[15]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft64(v14, -16)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft64(v4, -63)
}
h[0] ^= v0 ^ v8
h[1] ^= v1 ^ v9
h[2] ^= v2 ^ v10
h[3] ^= v3 ^ v11
h[4] ^= v4 ^ v12
h[5] ^= v5 ^ v13
h[6] ^= v6 ^ v14
h[7] ^= v7 ^ v15
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || appengine || gccgo
// +build !amd64 appengine gccgo
package blake2b
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
fGeneric(h, m, c0, c1, flag, rounds)
}
This source diff could not be displayed because it is too large. You can view the blob instead.
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2b
import (
"encoding/binary"
"errors"
"io"
)
// XOF defines the interface to hash functions that
// support arbitrary-length output.
type XOF interface {
// Write absorbs more data into the hash's state. It panics if called
// after Read.
io.Writer
// Read reads more output from the hash. It returns io.EOF if the limit
// has been reached.
io.Reader
// Clone returns a copy of the XOF in its current state.
Clone() XOF
// Reset resets the XOF to its initial state.
Reset()
}
// OutputLengthUnknown can be used as the size argument to NewXOF to indicate
// the length of the output is not known in advance.
const OutputLengthUnknown = 0
// magicUnknownOutputLength is a magic value for the output size that indicates
// an unknown number of output bytes.
const magicUnknownOutputLength = (1 << 32) - 1
// maxOutputLength is the absolute maximum number of bytes to produce when the
// number of output bytes is unknown.
const maxOutputLength = (1 << 32) * 64
// NewXOF creates a new variable-output-length hash. The hash either produce a
// known number of bytes (1 <= size < 2**32-1), or an unknown number of bytes
// (size == OutputLengthUnknown). In the latter case, an absolute limit of
// 256GiB applies.
//
// A non-nil key turns the hash into a MAC. The key must between
// zero and 32 bytes long.
func NewXOF(size uint32, key []byte) (XOF, error) {
if len(key) > Size {
return nil, errKeySize
}
if size == magicUnknownOutputLength {
// 2^32-1 indicates an unknown number of bytes and thus isn't a
// valid length.
return nil, errors.New("blake2b: XOF length too large")
}
if size == OutputLengthUnknown {
size = magicUnknownOutputLength
}
x := &xof{
d: digest{
size: Size,
keyLen: len(key),
},
length: size,
}
copy(x.d.key[:], key)
x.Reset()
return x, nil
}
type xof struct {
d digest
length uint32
remaining uint64
cfg, root, block [Size]byte
offset int
nodeOffset uint32
readMode bool
}
func (x *xof) Write(p []byte) (n int, err error) {
if x.readMode {
panic("blake2b: write to XOF after read")
}
return x.d.Write(p)
}
func (x *xof) Clone() XOF {
clone := *x
return &clone
}
func (x *xof) Reset() {
x.cfg[0] = byte(Size)
binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length
binary.LittleEndian.PutUint32(x.cfg[12:], x.length) // XOF length
x.cfg[17] = byte(Size) // inner hash size
x.d.Reset()
x.d.h[1] ^= uint64(x.length) << 32
x.remaining = uint64(x.length)
if x.remaining == magicUnknownOutputLength {
x.remaining = maxOutputLength
}
x.offset, x.nodeOffset = 0, 0
x.readMode = false
}
func (x *xof) Read(p []byte) (n int, err error) {
if !x.readMode {
x.d.finalize(&x.root)
x.readMode = true
}
if x.remaining == 0 {
return 0, io.EOF
}
n = len(p)
if uint64(n) > x.remaining {
n = int(x.remaining)
p = p[:n]
}
if x.offset > 0 {
blockRemaining := Size - x.offset
if n < blockRemaining {
x.offset += copy(p, x.block[x.offset:])
x.remaining -= uint64(n)
return
}
copy(p, x.block[x.offset:])
p = p[blockRemaining:]
x.offset = 0
x.remaining -= uint64(blockRemaining)
}
for len(p) >= Size {
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
copy(p, x.block[:])
p = p[Size:]
x.remaining -= uint64(Size)
}
if todo := len(p); todo > 0 {
if x.remaining < uint64(Size) {
x.cfg[0] = byte(x.remaining)
}
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
x.offset = copy(p, x.block[:todo])
x.remaining -= uint64(todo)
}
return
}
func (d *digest) initConfig(cfg *[Size]byte) {
d.offset, d.c[0], d.c[1] = 0, 0, 0
for i := range d.h {
d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(cfg[i*8:])
}
}
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.9
// +build go1.9
package blake2b
import (
"crypto"
"hash"
)
func init() {
newHash256 := func() hash.Hash {
h, _ := New256(nil)
return h
}
newHash384 := func() hash.Hash {
h, _ := New384(nil)
return h
}
newHash512 := func() hash.Hash {
h, _ := New512(nil)
return h
}
crypto.RegisterHash(crypto.BLAKE2b_256, newHash256)
crypto.RegisterHash(crypto.BLAKE2b_384, newHash384)
crypto.RegisterHash(crypto.BLAKE2b_512, newHash512)
}
Copyright (c) 2012 The Go Authors. All rights reserved.
Copyright (c) 2018 Péter Szilágyi. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Copyright 2018 Péter Szilágyi. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
//go:build amd64 || arm64
// +build amd64 arm64
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import (
bn256cf "code.wuban.net.cn/cmpchain/ethcrypto/crypto/bn256/cloudflare"
)
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 = bn256cf.G1
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 = bn256cf.G2
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
return bn256cf.PairingCheck(a, b)
}
// Copyright 2018 Péter Szilágyi. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
//go:build !amd64 && !arm64
// +build !amd64,!arm64
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import bn256 "code.wuban.net.cn/cmpchain/ethcrypto/crypto/bn256/google"
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 = bn256.G1
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 = bn256.G2
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
return bn256.PairingCheck(a, b)
}
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This diff is collapsed.
package bn256
import (
"bytes"
"crypto/rand"
"testing"
)
func TestG1Marshal(t *testing.T) {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
t.Fatal(err)
}
ma := Ga.Marshal()
Gb := new(G1)
_, err = Gb.Unmarshal(ma)
if err != nil {
t.Fatal(err)
}
mb := Gb.Marshal()
if !bytes.Equal(ma, mb) {
t.Fatal("bytes are different")
}
}
func TestG2Marshal(t *testing.T) {
_, Ga, err := RandomG2(rand.Reader)
if err != nil {
t.Fatal(err)
}
ma := Ga.Marshal()
Gb := new(G2)
_, err = Gb.Unmarshal(ma)
if err != nil {
t.Fatal(err)
}
mb := Gb.Marshal()
if !bytes.Equal(ma, mb) {
t.Fatal("bytes are different")
}
}
func TestBilinearity(t *testing.T) {
for i := 0; i < 2; i++ {
a, p1, _ := RandomG1(rand.Reader)
b, p2, _ := RandomG2(rand.Reader)
e1 := Pair(p1, p2)
e2 := Pair(&G1{curveGen}, &G2{twistGen})
e2.ScalarMult(e2, a)
e2.ScalarMult(e2, b)
if *e1.p != *e2.p {
t.Fatalf("bad pairing result: %s", e1)
}
}
}
func TestTripartiteDiffieHellman(t *testing.T) {
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa, pb, pc := new(G1), new(G1), new(G1)
qa, qb, qc := new(G2), new(G2), new(G2)
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k1Bytes := k1.Marshal()
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k2Bytes := k2.Marshal()
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
k3Bytes := k3.Marshal()
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
t.Errorf("keys didn't agree")
}
}
func TestG2SelfAddition(t *testing.T) {
s, _ := rand.Int(rand.Reader, Order)
p := new(G2).ScalarBaseMult(s)
if !p.p.IsOnCurve() {
t.Fatal("p isn't on curve")
}
m := p.Add(p, p).Marshal()
if _, err := p.Unmarshal(m); err != nil {
t.Fatalf("p.Add(p, p) ∉ G₂: %v", err)
}
}
func BenchmarkG1(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer()
for i := 0; i < b.N; i++ {
new(G1).ScalarBaseMult(x)
}
}
func BenchmarkG2(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer()
for i := 0; i < b.N; i++ {
new(G2).ScalarBaseMult(x)
}
}
func BenchmarkPairing(b *testing.B) {
for i := 0; i < b.N; i++ {
Pair(&G1{curveGen}, &G2{twistGen})
}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter.
var u = bigFromBase10("4965661367192848881")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
// Needs to be highly 2-adic for efficient SNARK key and proof generation.
// Order - 1 = 2^28 * 3^2 * 13 * 29 * 983 * 11003 * 237073 * 405928799 * 1670836401704629 * 13818364434197438864469338081.
// Refer to https://eprint.iacr.org/2013/879.pdf and https://eprint.iacr.org/2013/507.pdf for more information on these parameters.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// p2 is p, represented as little-endian 64-bit words.
var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
// np is the negative inverse of p, mod 2^256.
var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b}
// rN1 is R^-1 where R = 2^256 mod p.
var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639}
// r2 is R^2 where R = 2^256 mod p.
var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f}
// r3 is R^3 where R = 2^256 mod p.
var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544}
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0}
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943}
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6}
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}}
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
x, y, z, t gfP
}
var curveB = newGFp(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
x: *newGFp(1),
y: *newGFp(2),
z: *newGFp(1),
t: *newGFp(1),
}
func (c *curvePoint) String() string {
c.MakeAffine()
x, y := &gfP{}, &gfP{}
montDecode(x, &c.x)
montDecode(y, &c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP{}, &gfP{}
gfpMul(y2, &c.y, &c.y)
gfpMul(x3, &c.x, &c.x)
gfpMul(x3, x3, &c.x)
gfpAdd(x3, x3, curveB)
return *y2 == *x3
}
func (c *curvePoint) SetInfinity() {
c.x = gfP{0}
c.y = *newGFp(1)
c.z = gfP{0}
c.t = gfP{0}
}
func (c *curvePoint) IsInfinity() bool {
return c.z == gfP{0}
}
func (c *curvePoint) Add(a, b *curvePoint) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpMul(z12, &a.z, &a.z)
gfpMul(z22, &b.z, &b.z)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
xEqual := *h == gfP{0}
gfpAdd(t, h, h)
// i = 4h²
i := &gfP{}
gfpMul(i, t, t)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
yEqual := *t == gfP{0}
if xEqual && yEqual {
c.Double(a)
return
}
r := &gfP{}
gfpAdd(r, t, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpMul(t4, r, r)
gfpAdd(t, v, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpAdd(t6, t4, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpMul(t4, t, t) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
}
func (c *curvePoint) Double(a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpMul(A, &a.x, &a.x)
gfpMul(B, &a.y, &a.y)
gfpMul(C, B, B)
t, t2 := &gfP{}, &gfP{}
gfpAdd(t, &a.x, B)
gfpMul(t2, t, t)
gfpSub(t, t2, A)
gfpSub(t2, t, C)
d, e, f := &gfP{}, &gfP{}, &gfP{}
gfpAdd(d, t2, t2)
gfpAdd(t, A, A)
gfpAdd(e, t, A)
gfpMul(f, e, e)
gfpAdd(t, d, d)
gfpSub(&c.x, f, t)
gfpMul(&c.z, &a.y, &a.z)
gfpAdd(&c.z, &c.z, &c.z)
gfpAdd(t, C, C)
gfpAdd(t2, t, t)
gfpAdd(t, t2, t2)
gfpSub(&c.y, d, &c.x)
gfpMul(t2, e, &c.y)
gfpSub(&c.y, t2, t)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
precomp[1].Set(a)
precomp[2].Set(a)
gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
precomp[3].Add(precomp[1], precomp[2])
multiScalar := curveLattice.Multi(scalar)
sum := &curvePoint{}
sum.SetInfinity()
t := &curvePoint{}
for i := len(multiScalar) - 1; i >= 0; i-- {
t.Double(sum)
if multiScalar[i] == 0 {
sum.Set(t)
} else {
sum.Add(t, precomp[multiScalar[i]])
}
}
c.Set(sum)
}
func (c *curvePoint) MakeAffine() {
if c.z == *newGFp(1) {
return
} else if c.z == *newGFp(0) {
c.x = gfP{0}
c.y = *newGFp(1)
c.t = gfP{0}
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv)
gfpMul(zInv2, zInv, zInv)
gfpMul(&c.x, &c.x, zInv2)
gfpMul(&c.y, t, zInv2)
c.z = *newGFp(1)
c.t = *newGFp(1)
}
func (c *curvePoint) Neg(a *curvePoint) {
c.x.Set(&a.x)
gfpNeg(&c.y, &a.y)
c.z.Set(&a.z)
c.t = gfP{0}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"crypto/rand"
"testing"
"github.com/stretchr/testify/require"
)
func TestExamplePair(t *testing.T) {
// This implements the tripartite Diffie-Hellman algorithm from "A One
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
// Each of three parties, a, b and c, generate a private value.
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
// Then each party calculates g₁ and g₂ times their private value.
pa := new(G1).ScalarBaseMult(a)
qa := new(G2).ScalarBaseMult(a)
pb := new(G1).ScalarBaseMult(b)
qb := new(G2).ScalarBaseMult(b)
pc := new(G1).ScalarBaseMult(c)
qc := new(G2).ScalarBaseMult(c)
// Now each party exchanges its public values with the other two and
// all parties can calculate the shared key.
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
// k1, k2 and k3 will all be equal.
require.Equal(t, k1, k2)
require.Equal(t, k1, k3)
require.Equal(t, len(np), 4) //Avoid gometalinter varcheck err on np
}
package bn256
import (
"errors"
"fmt"
)
type gfP [4]uint64
func newGFp(x int64) (out *gfP) {
if x >= 0 {
out = &gfP{uint64(x)}
} else {
out = &gfP{uint64(-x)}
gfpNeg(out, out)
}
montEncode(out, out)
return out
}
func (e *gfP) String() string {
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
}
func (e *gfP) Set(f *gfP) {
e[0] = f[0]
e[1] = f[1]
e[2] = f[2]
e[3] = f[3]
}
func (e *gfP) Invert(f *gfP) {
bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
sum, power := &gfP{}, &gfP{}
sum.Set(rN1)
power.Set(f)
for word := 0; word < 4; word++ {
for bit := uint(0); bit < 64; bit++ {
if (bits[word]>>bit)&1 == 1 {
gfpMul(sum, sum, power)
}
gfpMul(power, power, power)
}
}
gfpMul(sum, sum, r3)
e.Set(sum)
}
func (e *gfP) Marshal(out []byte) {
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
}
}
}
func (e *gfP) Unmarshal(in []byte) error {
// Unmarshal the bytes into little endian form
for w := uint(0); w < 4; w++ {
e[3-w] = 0
for b := uint(0); b < 8; b++ {
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
}
}
// Ensure the point respects the curve modulus
for i := 3; i >= 0; i-- {
if e[i] < p2[i] {
return nil
}
if e[i] > p2[i] {
return errors.New("bn256: coordinate exceeds modulus")
}
}
return errors.New("bn256: coordinate equals modulus")
}
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y gfP6 // value is xω + y
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) IsZero() bool {
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) Neg(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
e.x.Frobenius(&a.x)
e.y.Frobenius(&a.y)
e.x.MulScalar(&e.x, xiToPMinus1Over6)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
e.x.FrobeniusP2(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(&a.y)
return e
}
func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
e.x.FrobeniusP4(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
e.y.FrobeniusP4(&a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
tx := (&gfP6{}).Mul(&a.x, &b.y)
t := (&gfP6{}).Mul(&b.x, &a.y)
tx.Add(tx, t)
ty := (&gfP6{}).Mul(&a.y, &b.y)
t.Mul(&a.x, &b.x).MulTau(t)
e.x.Set(tx)
e.y.Add(ty, t)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
e.x.Mul(&a.x, b)
e.y.Mul(&a.y, b)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
sum := (&gfP12{}).SetOne()
t := &gfP12{}
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum)
if power.Bit(i) != 0 {
sum.Mul(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
return c
}
func (e *gfP12) Square(a *gfP12) *gfP12 {
// Complex squaring algorithm
v0 := (&gfP6{}).Mul(&a.x, &a.y)
t := (&gfP6{}).MulTau(&a.x)
t.Add(&a.y, t)
ty := (&gfP6{}).Add(&a.x, &a.y)
ty.Mul(ty, t).Sub(ty, v0)
t.MulTau(v0)
ty.Sub(ty, t)
e.x.Add(v0, v0)
e.y.Set(ty)
return e
}
func (e *gfP12) Invert(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP6{}, &gfP6{}
t1.Square(&a.x)
t2.Square(&a.y)
t1.MulTau(t1).Sub(t2, t1)
t2.Invert(t1)
e.x.Neg(&a.x)
e.y.Set(&a.y)
e.MulScalar(e, t2)
return e
}
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP2 implements a field of size p² as a quadratic extension of the base field
// where i²=-1.
type gfP2 struct {
x, y gfP // value is xi+y.
}
func gfP2Decode(in *gfP2) *gfP2 {
out := &gfP2{}
montDecode(&out.x, &in.x)
montDecode(&out.y, &in.y)
return out
}
func (e *gfP2) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ")"
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x = gfP{0}
e.y = gfP{0}
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x = gfP{0}
e.y = *newGFp(1)
return e
}
func (e *gfP2) IsZero() bool {
zero := gfP{0}
return e.x == zero && e.y == zero
}
func (e *gfP2) IsOne() bool {
zero, one := gfP{0}, *newGFp(1)
return e.x == zero && e.y == one
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(&a.y)
gfpNeg(&e.x, &a.x)
return e
}
func (e *gfP2) Neg(a *gfP2) *gfP2 {
gfpNeg(&e.x, &a.x)
gfpNeg(&e.y, &a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
gfpAdd(&e.x, &a.x, &b.x)
gfpAdd(&e.y, &a.y, &b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
gfpSub(&e.x, &a.x, &b.x)
gfpSub(&e.y, &a.y, &b.y)
return e
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
tx, t := &gfP{}, &gfP{}
gfpMul(tx, &a.x, &b.y)
gfpMul(t, &b.x, &a.y)
gfpAdd(tx, tx, t)
ty := &gfP{}
gfpMul(ty, &a.y, &b.y)
gfpMul(t, &a.x, &b.x)
gfpSub(ty, ty, t)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
gfpMul(&e.x, &a.x, b)
gfpMul(&e.y, &a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
// (xi+y)(i+9) = (9x+y)i+(9y-x)
tx := &gfP{}
gfpAdd(tx, &a.x, &a.x)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, &a.x)
gfpAdd(tx, tx, &a.y)
ty := &gfP{}
gfpAdd(ty, &a.y, &a.y)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, &a.y)
gfpSub(ty, ty, &a.x)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Square(a *gfP2) *gfP2 {
// Complex squaring algorithm:
// (xi+y)² = (x+y)(y-x) + 2*i*x*y
tx, ty := &gfP{}, &gfP{}
gfpSub(tx, &a.y, &a.x)
gfpAdd(ty, &a.x, &a.y)
gfpMul(ty, tx, ty)
gfpMul(tx, &a.x, &a.y)
gfpAdd(tx, tx, tx)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Invert(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP{}, &gfP{}
gfpMul(t1, &a.x, &a.x)
gfpMul(t2, &a.y, &a.y)
gfpAdd(t1, t1, t2)
inv := &gfP{}
inv.Invert(t1)
gfpNeg(t1, &a.x)
gfpMul(&e.x, t1, inv)
gfpMul(&e.y, &a.y, inv)
return e
}
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+9.
type gfP6 struct {
x, y, z gfP2 // value is xτ² + yτ + z
}
func (e *gfP6) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")"
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(&a.x)
e.y.Set(&a.y)
e.z.Set(&a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Neg(a *gfP6) *gfP6 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
e.z.Neg(&a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6) *gfP6 {
e.x.Conjugate(&a.x)
e.y.Conjugate(&a.y)
e.z.Conjugate(&a.z)
e.x.Mul(&e.x, xiTo2PMinus2Over3)
e.y.Mul(&e.y, xiToPMinus1Over3)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 {
e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
e.z.Add(&a.z, &b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
e.z.Sub(&a.z, &b.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := (&gfP2{}).Mul(&a.z, &b.z)
v1 := (&gfP2{}).Mul(&a.y, &b.y)
v2 := (&gfP2{}).Mul(&a.x, &b.x)
t0 := (&gfP2{}).Add(&a.x, &a.y)
t1 := (&gfP2{}).Add(&b.x, &b.y)
tz := (&gfP2{}).Mul(t0, t1)
tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0)
t0.Add(&a.y, &a.z)
t1.Add(&b.y, &b.z)
ty := (&gfP2{}).Mul(t0, t1)
t0.MulXi(v2)
ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0)
t0.Add(&a.x, &a.z)
t1.Add(&b.x, &b.z)
tx := (&gfP2{}).Mul(t0, t1)
tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 {
e.x.Mul(&a.x, b)
e.y.Mul(&a.y, b)
e.z.Mul(&a.z, b)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 {
e.x.MulScalar(&a.x, b)
e.y.MulScalar(&a.y, b)
e.z.MulScalar(&a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6) *gfP6 {
tz := (&gfP2{}).MulXi(&a.x)
ty := (&gfP2{}).Set(&a.y)
e.y.Set(&a.z)
e.x.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) Square(a *gfP6) *gfP6 {
v0 := (&gfP2{}).Square(&a.z)
v1 := (&gfP2{}).Square(&a.y)
v2 := (&gfP2{}).Square(&a.x)
c0 := (&gfP2{}).Add(&a.x, &a.y)
c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0)
c1 := (&gfP2{}).Add(&a.y, &a.z)
c1.Square(c1).Sub(c1, v0).Sub(c1, v1)
xiV2 := (&gfP2{}).MulXi(v2)
c1.Add(c1, xiV2)
c2 := (&gfP2{}).Add(&a.x, &a.z)
c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
return e
}
func (e *gfP6) Invert(a *gfP6) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := (&gfP2{}).Mul(&a.x, &a.y)
t1.MulXi(t1)
A := (&gfP2{}).Square(&a.z)
A.Sub(A, t1)
B := (&gfP2{}).Square(&a.x)
B.MulXi(B)
t1.Mul(&a.y, &a.z)
B.Sub(B, t1)
C := (&gfP2{}).Square(&a.y)
t1.Mul(&a.x, &a.z)
C.Sub(C, t1)
F := (&gfP2{}).Mul(C, &a.y)
F.MulXi(F)
t1.Mul(A, &a.z)
F.Add(F, t1)
t1.Mul(B, &a.x).MulXi(t1)
F.Add(F, t1)
F.Invert(F)
e.x.Mul(C, F)
e.y.Mul(B, F)
e.z.Mul(A, F)
return e
}
// +build amd64,!generic
#define storeBlock(a0,a1,a2,a3, r) \
MOVQ a0, 0+r \
MOVQ a1, 8+r \
MOVQ a2, 16+r \
MOVQ a3, 24+r
#define loadBlock(r, a0,a1,a2,a3) \
MOVQ 0+r, a0 \
MOVQ 8+r, a1 \
MOVQ 16+r, a2 \
MOVQ 24+r, a3
#define gfpCarry(a0,a1,a2,a3,a4, b0,b1,b2,b3,b4) \
\ // b = a-p
MOVQ a0, b0 \
MOVQ a1, b1 \
MOVQ a2, b2 \
MOVQ a3, b3 \
MOVQ a4, b4 \
\
SUBQ ·p2+0(SB), b0 \
SBBQ ·p2+8(SB), b1 \
SBBQ ·p2+16(SB), b2 \
SBBQ ·p2+24(SB), b3 \
SBBQ $0, b4 \
\
\ // if b is negative then return a
\ // else return b
CMOVQCC b0, a0 \
CMOVQCC b1, a1 \
CMOVQCC b2, a2 \
CMOVQCC b3, a3
#include "mul_amd64.h"
#include "mul_bmi2_amd64.h"
TEXT ·gfpNeg(SB),0,$0-16
MOVQ ·p2+0(SB), R8
MOVQ ·p2+8(SB), R9
MOVQ ·p2+16(SB), R10
MOVQ ·p2+24(SB), R11
MOVQ a+8(FP), DI
SUBQ 0(DI), R8
SBBQ 8(DI), R9
SBBQ 16(DI), R10
SBBQ 24(DI), R11
MOVQ $0, AX
gfpCarry(R8,R9,R10,R11,AX, R12,R13,R14,CX,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpAdd(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ $0, R12
ADDQ 0(SI), R8
ADCQ 8(SI), R9
ADCQ 16(SI), R10
ADCQ 24(SI), R11
ADCQ $0, R12
gfpCarry(R8,R9,R10,R11,R12, R13,R14,CX,AX,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpSub(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ ·p2+0(SB), R12
MOVQ ·p2+8(SB), R13
MOVQ ·p2+16(SB), R14
MOVQ ·p2+24(SB), CX
MOVQ $0, AX
SUBQ 0(SI), R8
SBBQ 8(SI), R9
SBBQ 16(SI), R10
SBBQ 24(SI), R11
CMOVQCC AX, R12
CMOVQCC AX, R13
CMOVQCC AX, R14
CMOVQCC AX, CX
ADDQ R12, R8
ADCQ R13, R9
ADCQ R14, R10
ADCQ CX, R11
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpMul(SB),0,$160-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
// Jump to a slightly different implementation if MULX isn't supported.
CMPB ·hasBMI2(SB), $0
JE nobmi2Mul
mulBMI2(0(DI),8(DI),16(DI),24(DI), 0(SI))
storeBlock( R8, R9,R10,R11, 0(SP))
storeBlock(R12,R13,R14,CX, 32(SP))
gfpReduceBMI2()
JMP end
nobmi2Mul:
mul(0(DI),8(DI),16(DI),24(DI), 0(SI), 0(SP))
gfpReduce(0(SP))
end:
MOVQ c+0(FP), DI
storeBlock(R12,R13,R14,CX, 0(DI))
RET
// +build arm64,!generic
#define storeBlock(a0,a1,a2,a3, r) \
MOVD a0, 0+r \
MOVD a1, 8+r \
MOVD a2, 16+r \
MOVD a3, 24+r
#define loadBlock(r, a0,a1,a2,a3) \
MOVD 0+r, a0 \
MOVD 8+r, a1 \
MOVD 16+r, a2 \
MOVD 24+r, a3
#define loadModulus(p0,p1,p2,p3) \
MOVD ·p2+0(SB), p0 \
MOVD ·p2+8(SB), p1 \
MOVD ·p2+16(SB), p2 \
MOVD ·p2+24(SB), p3
#include "mul_arm64.h"
TEXT ·gfpNeg(SB),0,$0-16
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
loadModulus(R5,R6,R7,R8)
SUBS R1, R5, R1
SBCS R2, R6, R2
SBCS R3, R7, R3
SBCS R4, R8, R4
SUBS R5, R1, R5
SBCS R6, R2, R6
SBCS R7, R3, R7
SBCS R8, R4, R8
CSEL CS, R5, R1, R1
CSEL CS, R6, R2, R2
CSEL CS, R7, R3, R3
CSEL CS, R8, R4, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpAdd(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
loadModulus(R9,R10,R11,R12)
MOVD ZR, R0
ADDS R5, R1
ADCS R6, R2
ADCS R7, R3
ADCS R8, R4
ADCS ZR, R0
SUBS R9, R1, R5
SBCS R10, R2, R6
SBCS R11, R3, R7
SBCS R12, R4, R8
SBCS ZR, R0, R0
CSEL CS, R5, R1, R1
CSEL CS, R6, R2, R2
CSEL CS, R7, R3, R3
CSEL CS, R8, R4, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpSub(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
loadModulus(R9,R10,R11,R12)
SUBS R5, R1
SBCS R6, R2
SBCS R7, R3
SBCS R8, R4
CSEL CS, ZR, R9, R9
CSEL CS, ZR, R10, R10
CSEL CS, ZR, R11, R11
CSEL CS, ZR, R12, R12
ADDS R9, R1
ADCS R10, R2
ADCS R11, R3
ADCS R12, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpMul(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
mul(R9,R10,R11,R12,R13,R14,R15,R16)
gfpReduce()
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
//go:build (amd64 && !generic) || (arm64 && !generic)
// +build amd64,!generic arm64,!generic
package bn256
// This file contains forward declarations for the architecture-specific
// assembly implementations of these functions, provided that they exist.
import (
"golang.org/x/sys/cpu"
)
//nolint:varcheck,unused,deadcode
var hasBMI2 = cpu.X86.HasBMI2
//go:noescape
func gfpNeg(c, a *gfP)
//go:noescape
func gfpAdd(c, a, b *gfP)
//go:noescape
func gfpSub(c, a, b *gfP)
//go:noescape
func gfpMul(c, a, b *gfP)
//go:build (!amd64 && !arm64) || generic
// +build !amd64,!arm64 generic
package bn256
func gfpCarry(a *gfP, head uint64) {
b := &gfP{}
var carry uint64
for i, pi := range p2 {
ai := a[i]
bi := ai - pi - carry
b[i] = bi
carry = (pi&^ai | (pi|^ai)&bi) >> 63
}
carry = carry &^ head
// If b is negative, then return a.
// Else return b.
carry = -carry
ncarry := ^carry
for i := 0; i < 4; i++ {
a[i] = (a[i] & carry) | (b[i] & ncarry)
}
}
func gfpNeg(c, a *gfP) {
var carry uint64
for i, pi := range p2 {
ai := a[i]
ci := pi - ai - carry
c[i] = ci
carry = (ai&^pi | (ai|^pi)&ci) >> 63
}
gfpCarry(c, 0)
}
func gfpAdd(c, a, b *gfP) {
var carry uint64
for i, ai := range a {
bi := b[i]
ci := ai + bi + carry
c[i] = ci
carry = (ai&bi | (ai|bi)&^ci) >> 63
}
gfpCarry(c, carry)
}
func gfpSub(c, a, b *gfP) {
t := &gfP{}
var carry uint64
for i, pi := range p2 {
bi := b[i]
ti := pi - bi - carry
t[i] = ti
carry = (bi&^pi | (bi|^pi)&ti) >> 63
}
carry = 0
for i, ai := range a {
ti := t[i]
ci := ai + ti + carry
c[i] = ci
carry = (ai&ti | (ai|ti)&^ci) >> 63
}
gfpCarry(c, carry)
}
func mul(a, b [4]uint64) [8]uint64 {
const (
mask16 uint64 = 0x0000ffff
mask32 uint64 = 0xffffffff
)
var buff [32]uint64
for i, ai := range a {
a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48
for j, bj := range b {
b0, b2 := bj&mask32, bj>>32
off := 4 * (i + j)
buff[off+0] += a0 * b0
buff[off+1] += a1 * b0
buff[off+2] += a2*b0 + a0*b2
buff[off+3] += a3*b0 + a1*b2
buff[off+4] += a2 * b2
buff[off+5] += a3 * b2
}
}
for i := uint(1); i < 4; i++ {
shift := 16 * i
var head, carry uint64
for j := uint(0); j < 8; j++ {
block := 4 * j
xi := buff[block]
yi := (buff[block+i] << shift) + head
zi := xi + yi + carry
buff[block] = zi
carry = (xi&yi | (xi|yi)&^zi) >> 63
head = buff[block+i] >> (64 - shift)
}
}
return [8]uint64{buff[0], buff[4], buff[8], buff[12], buff[16], buff[20], buff[24], buff[28]}
}
func halfMul(a, b [4]uint64) [4]uint64 {
const (
mask16 uint64 = 0x0000ffff
mask32 uint64 = 0xffffffff
)
var buff [18]uint64
for i, ai := range a {
a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48
for j, bj := range b {
if i+j > 3 {
break
}
b0, b2 := bj&mask32, bj>>32
off := 4 * (i + j)
buff[off+0] += a0 * b0
buff[off+1] += a1 * b0
buff[off+2] += a2*b0 + a0*b2
buff[off+3] += a3*b0 + a1*b2
buff[off+4] += a2 * b2
buff[off+5] += a3 * b2
}
}
for i := uint(1); i < 4; i++ {
shift := 16 * i
var head, carry uint64
for j := uint(0); j < 4; j++ {
block := 4 * j
xi := buff[block]
yi := (buff[block+i] << shift) + head
zi := xi + yi + carry
buff[block] = zi
carry = (xi&yi | (xi|yi)&^zi) >> 63
head = buff[block+i] >> (64 - shift)
}
}
return [4]uint64{buff[0], buff[4], buff[8], buff[12]}
}
func gfpMul(c, a, b *gfP) {
T := mul(*a, *b)
m := halfMul([4]uint64{T[0], T[1], T[2], T[3]}, np)
t := mul([4]uint64{m[0], m[1], m[2], m[3]}, p2)
var carry uint64
for i, Ti := range T {
ti := t[i]
zi := Ti + ti + carry
T[i] = zi
carry = (Ti&ti | (Ti|ti)&^zi) >> 63
}
*c = gfP{T[4], T[5], T[6], T[7]}
gfpCarry(c, carry)
}
package bn256
import (
"testing"
)
// Tests that negation works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpNeg(t *testing.T) {
n := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
w := &gfP{0xfedcba9876543211, 0x0123456789abcdef, 0x2152411021524110, 0x0114251201142512}
h := &gfP{}
gfpNeg(h, n)
if *h != *w {
t.Errorf("negation mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that addition works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpAdd(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0xc3df73e9278302b8, 0x687e956e978e3572, 0x254954275c18417f, 0xad354b6afc67f9b4}
h := &gfP{}
gfpAdd(h, a, b)
if *h != *w {
t.Errorf("addition mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that subtraction works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpSub(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0x02468acf13579bdf, 0xfdb97530eca86420, 0xdfc1e401dfc1e402, 0x203e1bfe203e1bfd}
h := &gfP{}
gfpSub(h, a, b)
if *h != *w {
t.Errorf("subtraction mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that multiplication works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpMul(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0xcbcbd377f7ad22d3, 0x3b89ba5d849379bf, 0x87b61627bd38b6d2, 0xc44052a2a0e654b2}
h := &gfP{}
gfpMul(h, a, b)
if *h != *w {
t.Errorf("multiplication mismatch: have %#x, want %#x", *h, *w)
}
}
package bn256
import (
"math/big"
)
var half = new(big.Int).Rsh(Order, 1)
var curveLattice = &lattice{
vectors: [][]*big.Int{
{bigFromBase10("147946756881789319000765030803803410728"), bigFromBase10("147946756881789319010696353538189108491")},
{bigFromBase10("147946756881789319020627676272574806254"), bigFromBase10("-147946756881789318990833708069417712965")},
},
inverse: []*big.Int{
bigFromBase10("147946756881789318990833708069417712965"),
bigFromBase10("147946756881789319010696353538189108491"),
},
det: bigFromBase10("43776485743678550444492811490514550177096728800832068687396408373151616991234"),
}
var targetLattice = &lattice{
vectors: [][]*big.Int{
{bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697763"), bigFromBase10("9931322734385697764")},
{bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848882"), bigFromBase10("-9931322734385697762")},
{bigFromBase10("-9931322734385697762"), bigFromBase10("-4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("-4965661367192848882")},
{bigFromBase10("9931322734385697763"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881")},
},
inverse: []*big.Int{
bigFromBase10("734653495049373973658254490726798021314063399421879442165"),
bigFromBase10("147946756881789319000765030803803410728"),
bigFromBase10("-147946756881789319005730692170996259609"),
bigFromBase10("1469306990098747947464455738335385361643788813749140841702"),
},
det: new(big.Int).Set(Order),
}
type lattice struct {
vectors [][]*big.Int
inverse []*big.Int
det *big.Int
}
// decompose takes a scalar mod Order as input and finds a short, positive decomposition of it wrt to the lattice basis.
func (l *lattice) decompose(k *big.Int) []*big.Int {
n := len(l.inverse)
// Calculate closest vector in lattice to <k,0,0,...> with Babai's rounding.
c := make([]*big.Int, n)
for i := 0; i < n; i++ {
c[i] = new(big.Int).Mul(k, l.inverse[i])
round(c[i], l.det)
}
// Transform vectors according to c and subtract <k,0,0,...>.
out := make([]*big.Int, n)
temp := new(big.Int)
for i := 0; i < n; i++ {
out[i] = new(big.Int)
for j := 0; j < n; j++ {
temp.Mul(c[j], l.vectors[j][i])
out[i].Add(out[i], temp)
}
out[i].Neg(out[i])
out[i].Add(out[i], l.vectors[0][i]).Add(out[i], l.vectors[0][i])
}
out[0].Add(out[0], k)
return out
}
func (l *lattice) Precompute(add func(i, j uint)) {
n := uint(len(l.vectors))
total := uint(1) << n
for i := uint(0); i < n; i++ {
for j := uint(0); j < total; j++ {
if (j>>i)&1 == 1 {
add(i, j)
}
}
}
}
func (l *lattice) Multi(scalar *big.Int) []uint8 {
decomp := l.decompose(scalar)
maxLen := 0
for _, x := range decomp {
if x.BitLen() > maxLen {
maxLen = x.BitLen()
}
}
out := make([]uint8, maxLen)
for j, x := range decomp {
for i := 0; i < maxLen; i++ {
out[i] += uint8(x.Bit(i)) << uint(j)
}
}
return out
}
// round sets num to num/denom rounded to the nearest integer.
func round(num, denom *big.Int) {
r := new(big.Int)
num.DivMod(num, denom, r)
if r.Cmp(half) == 1 {
num.Add(num, big.NewInt(1))
}
}
package bn256
import (
"crypto/rand"
"testing"
)
func TestLatticeReduceCurve(t *testing.T) {
k, _ := rand.Int(rand.Reader, Order)
ks := curveLattice.decompose(k)
if ks[0].BitLen() > 130 || ks[1].BitLen() > 130 {
t.Fatal("reduction too large")
} else if ks[0].Sign() < 0 || ks[1].Sign() < 0 {
t.Fatal("reduction must be positive")
}
}
func TestLatticeReduceTarget(t *testing.T) {
k, _ := rand.Int(rand.Reader, Order)
ks := targetLattice.decompose(k)
if ks[0].BitLen() > 66 || ks[1].BitLen() > 66 || ks[2].BitLen() > 66 || ks[3].BitLen() > 66 {
t.Fatal("reduction too large")
} else if ks[0].Sign() < 0 || ks[1].Sign() < 0 || ks[2].Sign() < 0 || ks[3].Sign() < 0 {
t.Fatal("reduction must be positive")
}
}
package bn256
import (
"testing"
"crypto/rand"
)
func TestRandomG2Marshal(t *testing.T) {
for i := 0; i < 10; i++ {
n, g2, err := RandomG2(rand.Reader)
if err != nil {
t.Error(err)
continue
}
t.Logf("%v: %x\n", n, g2.Marshal())
}
}
func TestPairings(t *testing.T) {
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
p1 := Pair(a1, b1)
pn1 := Pair(a1, bn1)
np1 := Pair(an1, b1)
if pn1.String() != np1.String() {
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
}
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false negative!")
}
p0 := new(GT).Add(p1, pn1)
p0_2 := Pair(a1, b0)
if p0.String() != p0_2.String() {
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
}
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
if p0.String() != p0_3.String() {
t.Error("Pairing mismatch: e(a, b) has wrong order")
}
p2 := Pair(a2, b1)
p2_2 := Pair(a1, b2)
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
if p2.String() != p2_2.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
}
if p2.String() != p2_3.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
}
if p2.String() == p1.String() {
t.Error("Pairing is degenerate!")
}
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false positive!")
}
p999 := Pair(a37, b27)
p999_2 := Pair(a1, b999)
if p999.String() != p999_2.String() {
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
}
}
#define mul(a0,a1,a2,a3, rb, stack) \
MOVQ a0, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a0, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a0, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a0, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
storeBlock(R8,R9,R10,R11, 0+stack) \
MOVQ R12, 32+stack \
\
MOVQ a1, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a1, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a1, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a1, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 8+stack, R8 \
ADCQ 16+stack, R9 \
ADCQ 24+stack, R10 \
ADCQ 32+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 8+stack) \
MOVQ R12, 40+stack \
\
MOVQ a2, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a2, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a2, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a2, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 16+stack, R8 \
ADCQ 24+stack, R9 \
ADCQ 32+stack, R10 \
ADCQ 40+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 16+stack) \
MOVQ R12, 48+stack \
\
MOVQ a3, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a3, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a3, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a3, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 24+stack, R8 \
ADCQ 32+stack, R9 \
ADCQ 40+stack, R10 \
ADCQ 48+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 24+stack) \
MOVQ R12, 56+stack
#define gfpReduce(stack) \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), AX \
MULQ 0+stack \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ ·np+0(SB), AX \
MULQ 8+stack \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ ·np+0(SB), AX \
MULQ 16+stack \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ ·np+0(SB), AX \
MULQ 24+stack \
ADDQ AX, R11 \
\
MOVQ ·np+8(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+8(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
ADCQ $0, DX \
MOVQ DX, R14 \
MOVQ ·np+8(SB), AX \
MULQ 16+stack \
ADDQ AX, R14 \
\
ADDQ R12, R9 \
ADCQ R13, R10 \
ADCQ R14, R11 \
\
MOVQ ·np+16(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+16(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
\
ADDQ R12, R10 \
ADCQ R13, R11 \
\
MOVQ ·np+24(SB), AX \
MULQ 0+stack \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64+stack) \
\
\ // m * N
mul(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64+stack, 96+stack) \
\
\ // Add the 512-bit intermediate to m*N
loadBlock(96+stack, R8,R9,R10,R11) \
loadBlock(128+stack, R12,R13,R14,CX) \
\
MOVQ $0, AX \
ADDQ 0+stack, R8 \
ADCQ 8+stack, R9 \
ADCQ 16+stack, R10 \
ADCQ 24+stack, R11 \
ADCQ 32+stack, R12 \
ADCQ 40+stack, R13 \
ADCQ 48+stack, R14 \
ADCQ 56+stack, CX \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,CX,AX, R8,R9,R10,R11,BX)
#define mul(c0,c1,c2,c3,c4,c5,c6,c7) \
MUL R1, R5, c0 \
UMULH R1, R5, c1 \
MUL R1, R6, R0 \
ADDS R0, c1 \
UMULH R1, R6, c2 \
MUL R1, R7, R0 \
ADCS R0, c2 \
UMULH R1, R7, c3 \
MUL R1, R8, R0 \
ADCS R0, c3 \
UMULH R1, R8, c4 \
ADCS ZR, c4 \
\
MUL R2, R5, R1 \
UMULH R2, R5, R26 \
MUL R2, R6, R0 \
ADDS R0, R26 \
UMULH R2, R6, R27 \
MUL R2, R7, R0 \
ADCS R0, R27 \
UMULH R2, R7, R29 \
MUL R2, R8, R0 \
ADCS R0, R29 \
UMULH R2, R8, c5 \
ADCS ZR, c5 \
ADDS R1, c1 \
ADCS R26, c2 \
ADCS R27, c3 \
ADCS R29, c4 \
ADCS ZR, c5 \
\
MUL R3, R5, R1 \
UMULH R3, R5, R26 \
MUL R3, R6, R0 \
ADDS R0, R26 \
UMULH R3, R6, R27 \
MUL R3, R7, R0 \
ADCS R0, R27 \
UMULH R3, R7, R29 \
MUL R3, R8, R0 \
ADCS R0, R29 \
UMULH R3, R8, c6 \
ADCS ZR, c6 \
ADDS R1, c2 \
ADCS R26, c3 \
ADCS R27, c4 \
ADCS R29, c5 \
ADCS ZR, c6 \
\
MUL R4, R5, R1 \
UMULH R4, R5, R26 \
MUL R4, R6, R0 \
ADDS R0, R26 \
UMULH R4, R6, R27 \
MUL R4, R7, R0 \
ADCS R0, R27 \
UMULH R4, R7, R29 \
MUL R4, R8, R0 \
ADCS R0, R29 \
UMULH R4, R8, c7 \
ADCS ZR, c7 \
ADDS R1, c3 \
ADCS R26, c4 \
ADCS R27, c5 \
ADCS R29, c6 \
ADCS ZR, c7
#define gfpReduce() \
\ // m = (T * N') mod R, store m in R1:R2:R3:R4
MOVD ·np+0(SB), R17 \
MOVD ·np+8(SB), R25 \
MOVD ·np+16(SB), R19 \
MOVD ·np+24(SB), R20 \
\
MUL R9, R17, R1 \
UMULH R9, R17, R2 \
MUL R9, R25, R0 \
ADDS R0, R2 \
UMULH R9, R25, R3 \
MUL R9, R19, R0 \
ADCS R0, R3 \
UMULH R9, R19, R4 \
MUL R9, R20, R0 \
ADCS R0, R4 \
\
MUL R10, R17, R21 \
UMULH R10, R17, R22 \
MUL R10, R25, R0 \
ADDS R0, R22 \
UMULH R10, R25, R23 \
MUL R10, R19, R0 \
ADCS R0, R23 \
ADDS R21, R2 \
ADCS R22, R3 \
ADCS R23, R4 \
\
MUL R11, R17, R21 \
UMULH R11, R17, R22 \
MUL R11, R25, R0 \
ADDS R0, R22 \
ADDS R21, R3 \
ADCS R22, R4 \
\
MUL R12, R17, R21 \
ADDS R21, R4 \
\
\ // m * N
loadModulus(R5,R6,R7,R8) \
mul(R17,R25,R19,R20,R21,R22,R23,R24) \
\
\ // Add the 512-bit intermediate to m*N
MOVD ZR, R0 \
ADDS R9, R17 \
ADCS R10, R25 \
ADCS R11, R19 \
ADCS R12, R20 \
ADCS R13, R21 \
ADCS R14, R22 \
ADCS R15, R23 \
ADCS R16, R24 \
ADCS ZR, R0 \
\
\ // Our output is R21:R22:R23:R24. Reduce mod p if necessary.
SUBS R5, R21, R10 \
SBCS R6, R22, R11 \
SBCS R7, R23, R12 \
SBCS R8, R24, R13 \
\
CSEL CS, R10, R21, R1 \
CSEL CS, R11, R22, R2 \
CSEL CS, R12, R23, R3 \
CSEL CS, R13, R24, R4
#define mulBMI2(a0,a1,a2,a3, rb) \
MOVQ a0, DX \
MOVQ $0, R13 \
MULXQ 0+rb, R8, R9 \
MULXQ 8+rb, AX, R10 \
ADDQ AX, R9 \
MULXQ 16+rb, AX, R11 \
ADCQ AX, R10 \
MULXQ 24+rb, AX, R12 \
ADCQ AX, R11 \
ADCQ $0, R12 \
ADCQ $0, R13 \
\
MOVQ a1, DX \
MOVQ $0, R14 \
MULXQ 0+rb, AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R11 \
ADCQ BX, R12 \
ADCQ $0, R13 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
\
MOVQ a2, DX \
MOVQ $0, CX \
MULXQ 0+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, CX \
\
MOVQ a3, DX \
MULXQ 0+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, CX \
MULXQ 8+rb, AX, BX \
ADDQ AX, R12 \
ADCQ BX, R13 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R14 \
ADCQ BX, CX
#define gfpReduceBMI2() \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), DX \
MULXQ 0(SP), R8, R9 \
MULXQ 8(SP), AX, R10 \
ADDQ AX, R9 \
MULXQ 16(SP), AX, R11 \
ADCQ AX, R10 \
MULXQ 24(SP), AX, BX \
ADCQ AX, R11 \
\
MOVQ ·np+8(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16(SP), AX, BX \
ADCQ AX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
\
MOVQ ·np+16(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R11 \
\
MOVQ ·np+24(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64(SP)) \
\
\ // m * N
mulBMI2(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64(SP)) \
\
\ // Add the 512-bit intermediate to m*N
MOVQ $0, AX \
ADDQ 0(SP), R8 \
ADCQ 8(SP), R9 \
ADCQ 16(SP), R10 \
ADCQ 24(SP), R11 \
ADCQ 32(SP), R12 \
ADCQ 40(SP), R13 \
ADCQ 48(SP), R14 \
ADCQ 56(SP), CX \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,CX,AX, R8,R9,R10,R11,BX)
This diff is collapsed.
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t gfP2
}
var twistB = &gfP2{
gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
gfP2{
gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
},
gfP2{
gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
},
gfP2{*newGFp(0), *newGFp(1)},
gfP2{*newGFp(0), *newGFp(1)},
}
func (c *twistPoint) String() string {
c.MakeAffine()
x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *twistPoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP2{}, &gfP2{}
y2.Square(&c.y)
x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
if *y2 != *x3 {
return false
}
cneg := &twistPoint{}
cneg.Mul(c, Order)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z12 := (&gfP2{}).Square(&a.z)
z22 := (&gfP2{}).Square(&b.z)
u1 := (&gfP2{}).Mul(&a.x, z22)
u2 := (&gfP2{}).Mul(&b.x, z12)
t := (&gfP2{}).Mul(&b.z, z22)
s1 := (&gfP2{}).Mul(&a.y, t)
t.Mul(&a.z, z12)
s2 := (&gfP2{}).Mul(&b.y, t)
h := (&gfP2{}).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := (&gfP2{}).Square(t)
j := (&gfP2{}).Mul(h, i)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a)
return
}
r := (&gfP2{}).Add(t, t)
v := (&gfP2{}).Mul(u1, i)
t4 := (&gfP2{}).Square(r)
t.Add(v, v)
t6 := (&gfP2{}).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, &c.x) // t7
t4.Mul(s1, j) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
c.y.Sub(t4, t6)
t.Add(&a.z, &b.z) // t11
t4.Square(t) // t12
t.Sub(t4, z12) // t13
t4.Sub(t, z22) // t14
c.z.Mul(t4, h)
}
func (c *twistPoint) Double(a *twistPoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := (&gfP2{}).Square(&a.x)
B := (&gfP2{}).Square(&a.y)
C := (&gfP2{}).Square(B)
t := (&gfP2{}).Add(&a.x, B)
t2 := (&gfP2{}).Square(t)
t.Sub(t2, A)
t2.Sub(t, C)
d := (&gfP2{}).Add(t2, t2)
t.Add(A, A)
e := (&gfP2{}).Add(t, A)
f := (&gfP2{}).Square(e)
t.Add(d, d)
c.x.Sub(f, t)
c.z.Mul(&a.y, &a.z)
c.z.Add(&c.z, &c.z)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, &c.x)
t2.Mul(e, &c.y)
c.y.Sub(t2, t)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
sum, t := &twistPoint{}, &twistPoint{}
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *twistPoint) MakeAffine() {
if c.z.IsOne() {
return
} else if c.z.IsZero() {
c.x.SetZero()
c.y.SetOne()
c.t.SetZero()
return
}
zInv := (&gfP2{}).Invert(&c.z)
t := (&gfP2{}).Mul(&c.y, zInv)
zInv2 := (&gfP2{}).Square(zInv)
c.y.Mul(t, zInv2)
t.Mul(&c.x, zInv2)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) Neg(a *twistPoint) {
c.x.Set(&a.x)
c.y.Neg(&a.y)
c.z.Set(&a.z)
c.t.SetZero()
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
src/precomputed_ecmult.c linguist-generated
src/precomputed_ecmult_gen.c linguist-generated
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#!/bin/sh
set -e
autoreconf -if --warnings=all
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment