iter.go 6.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package enode

import (
	"go-ethereum-advance/log"
	"sync"
	"time"
)

// Iterator represents a sequence of nodes. The Next method moves to the next node in the
// sequence. It returns false when the sequence has ended or the iterator is closed. Close
// may be called concurrently with Next and Node, and interrupts Next if it is blocked.
type Iterator interface {
	Next() bool  // moves to next node
	Node() *Node // returns current node
	Close()      // ends the iterator
}

// ReadNodes reads at most n nodes from the given iterator. The return value contains no
// duplicates and no nil values. To prevent looping indefinitely for small repeating node
// sequences, this function calls Next at most n times.
func ReadNodes(it Iterator, n int) []*Node {
	seen := make(map[ID]*Node, n)
	for i := 0; i < n && it.Next(); i++ {
		// Remove duplicates, keeping the node with higher seq.
		node := it.Node()
		prevNode, ok := seen[node.ID()]
		if ok && prevNode.Seq() > node.Seq() {
			continue
		}
		seen[node.ID()] = node
	}
	result := make([]*Node, 0, len(seen))
	for _, node := range seen {
		result = append(result, node)
	}
	return result
}

// IterNodes makes an iterator which runs through the given nodes once.
func IterNodes(nodes []*Node) Iterator {
	return &sliceIter{nodes: nodes, index: -1}
}

// CycleNodes makes an iterator which cycles through the given nodes indefinitely.
func CycleNodes(nodes []*Node) Iterator {
	return &sliceIter{nodes: nodes, index: -1, cycle: true}
}

type sliceIter struct {
	mu    sync.Mutex
	nodes []*Node
	index int
	cycle bool
}

func (it *sliceIter) Next() bool {
	it.mu.Lock()
	defer it.mu.Unlock()

	if len(it.nodes) == 0 {
		return false
	}
	it.index++
	if it.index == len(it.nodes) {
		if it.cycle {
			it.index = 0
		} else {
			it.nodes = nil
			return false
		}
	}
	return true
}

func (it *sliceIter) Node() *Node {
	it.mu.Lock()
	defer it.mu.Unlock()
	if len(it.nodes) == 0 {
		return nil
	}
	return it.nodes[it.index]
}

func (it *sliceIter) Close() {
	it.mu.Lock()
	defer it.mu.Unlock()

	it.nodes = nil
}

// Filter wraps an iterator such that Next only returns nodes for which
// the 'check' function returns true.
func Filter(it Iterator, check func(*Node) bool) Iterator {
	return &filterIter{it, check}
}

type filterIter struct {
	Iterator
	check func(*Node) bool
}

func (f *filterIter) Next() bool {
	for f.Iterator.Next() {
		if f.check(f.Node()) {
			return true
		}
	}
	return false
}

// FairMix aggregates multiple node iterators. The mixer itself is an iterator which ends
// only when Close is called. Source iterators added via AddSource are removed from the
// mix when they end.
//
// The distribution of nodes returned by Next is approximately fair, i.e. FairMix
// attempts to draw from all sources equally often. However, if a certain source is slow
// and doesn't return a node within the configured timeout, a node from any other source
// will be returned.
//
// It's safe to call AddSource and Close concurrently with Next.
type FairMix struct {
	wg      sync.WaitGroup
	fromAny chan *Node
	timeout time.Duration
	cur     *Node

	mu      sync.Mutex
	closed  chan struct{}
	sources []*mixSource
	last    int
}

type mixSource struct {
	it      Iterator
	next    chan *Node
	timeout time.Duration
}

// NewFairMix creates a mixer.
//
// The timeout specifies how long the mixer will wait for the next fairly-chosen source
// before giving up and taking a node from any other source. A good way to set the timeout
// is deciding how long you'd want to wait for a node on average. Passing a negative
// timeout makes the mixer completely fair.
func NewFairMix(timeout time.Duration) *FairMix {
	m := &FairMix{
		fromAny: make(chan *Node),
		closed:  make(chan struct{}),
		timeout: timeout,
	}
	return m
}

// AddSource adds a source of nodes.
func (m *FairMix) AddSource(it Iterator) {
	m.mu.Lock()
	defer m.mu.Unlock()

	if m.closed == nil {
		return
	}
	m.wg.Add(1)
	source := &mixSource{it, make(chan *Node), m.timeout}
	m.sources = append(m.sources, source)
	go m.runSource(m.closed, source)
}

// Close shuts down the mixer and all current sources.
// Calling this is required to release resources associated with the mixer.
func (m *FairMix) Close() {
	m.mu.Lock()
	defer m.mu.Unlock()

	if m.closed == nil {
		return
	}
	for _, s := range m.sources {
		s.it.Close()
	}
	close(m.closed)
	m.wg.Wait()
	close(m.fromAny)
	m.sources = nil
	m.closed = nil
}

// Next returns a node from a random source.
func (m *FairMix) Next() bool {
	m.cur = nil

	var timeout <-chan time.Time
	if m.timeout >= 0 {
		timer := time.NewTimer(m.timeout)
		timeout = timer.C
		defer timer.Stop()
	}
	for {
		source := m.pickSource()
		if source == nil {
			return m.nextFromAny()
		}
		select {
		case n, ok := <-source.next:
			if ok {
				m.cur = n
				source.timeout = m.timeout
				return true
			}
			// This source has ended.
			m.deleteSource(source)
		case <-timeout:
			source.timeout /= 2
			return m.nextFromAny()
		}
	}
}

// Node returns the current node.
func (m *FairMix) Node() *Node {
	return m.cur
}

// nextFromAny is used when there are no sources or when the 'fair' choice
// doesn't turn up a node quickly enough.
func (m *FairMix) nextFromAny() bool {
	n, ok := <-m.fromAny
	if ok {
		m.cur = n
	}
	return ok
}

// pickSource chooses the next source to read from, cycling through them in order.
func (m *FairMix) pickSource() *mixSource {
	m.mu.Lock()
	defer m.mu.Unlock()

	if len(m.sources) == 0 {
		return nil
	}
	m.last = (m.last + 1) % len(m.sources)
	return m.sources[m.last]
}

// deleteSource deletes a source.
func (m *FairMix) deleteSource(s *mixSource) {
	m.mu.Lock()
	defer m.mu.Unlock()

	for i := range m.sources {
		if m.sources[i] == s {
			copy(m.sources[i:], m.sources[i+1:])
			m.sources[len(m.sources)-1] = nil
			m.sources = m.sources[:len(m.sources)-1]
			break
		}
	}
}

// runSource reads a single source in a loop.
func (m *FairMix) runSource(closed chan struct{}, s *mixSource) {
	defer m.wg.Done()
	defer close(s.next)
	for s.it.Next() {
		n := s.it.Node()
		log.Info("runSource----","node id",n.id.String())
		select {
		case s.next <- n:
		case m.fromAny <- n:
		case <-closed:
			return
		}
	}
}