proof.go 20 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package trie

import (
	"bytes"
	"errors"
	"fmt"

	"go-ethereum-advance/common"
	"go-ethereum-advance/ethdb"
	"go-ethereum-advance/ethdb/memorydb"
	"go-ethereum-advance/log"
)

// Prove constructs a merkle proof for key. The result contains all encoded nodes
// on the path to the value at key. The value itself is also included in the last
// node and can be retrieved by verifying the proof.
//
// If the trie does not contain a value for key, the returned proof contains all
// nodes of the longest existing prefix of the key (at least the root node), ending
// with the node that proves the absence of the key.
func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
	// Collect all nodes on the path to key.
	key = keybytesToHex(key)
	var nodes []node
	tn := t.root
	for len(key) > 0 && tn != nil {
		switch n := tn.(type) {
		case *shortNode:
			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
				// The trie doesn't contain the key.
				tn = nil
			} else {
				tn = n.Val
				key = key[len(n.Key):]
			}
			nodes = append(nodes, n)
		case *fullNode:
			tn = n.Children[key[0]]
			key = key[1:]
			nodes = append(nodes, n)
		case hashNode:
			var err error
			tn, err = t.resolveHash(n, nil)
			if err != nil {
				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
				return err
			}
		default:
			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
		}
	}
	hasher := newHasher(false)
	defer returnHasherToPool(hasher)

	for i, n := range nodes {
		if fromLevel > 0 {
			fromLevel--
			continue
		}
		var hn node
		n, hn = hasher.proofHash(n)
		if hash, ok := hn.(hashNode); ok || i == 0 {
			// If the node's database encoding is a hash (or is the
			// root node), it becomes a proof element.
			enc := nodeToBytes(n)
			if !ok {
				hash = hasher.hashData(enc)
			}
			proofDb.Put(hash, enc)
		}
	}
	return nil
}

// Prove constructs a merkle proof for key. The result contains all encoded nodes
// on the path to the value at key. The value itself is also included in the last
// node and can be retrieved by verifying the proof.
//
// If the trie does not contain a value for key, the returned proof contains all
// nodes of the longest existing prefix of the key (at least the root node), ending
// with the node that proves the absence of the key.
func (t *SecureTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
	return t.trie.Prove(key, fromLevel, proofDb)
}

// VerifyProof checks merkle proofs. The given proof must contain the value for
// key in a trie with the given root hash. VerifyProof returns an error if the
// proof contains invalid trie nodes or the wrong value.
func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
	key = keybytesToHex(key)
	wantHash := rootHash
	for i := 0; ; i++ {
		buf, _ := proofDb.Get(wantHash[:])
		if buf == nil {
			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
		}
		n, err := decodeNode(wantHash[:], buf)
		if err != nil {
			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
		}
		keyrest, cld := get(n, key, true)
		switch cld := cld.(type) {
		case nil:
			// The trie doesn't contain the key.
			return nil, nil
		case hashNode:
			key = keyrest
			copy(wantHash[:], cld)
		case valueNode:
			return cld, nil
		}
	}
}

// proofToPath converts a merkle proof to trie node path. The main purpose of
// this function is recovering a node path from the merkle proof stream. All
// necessary nodes will be resolved and leave the remaining as hashnode.
//
// The given edge proof is allowed to be an existent or non-existent proof.
func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
	// resolveNode retrieves and resolves trie node from merkle proof stream
	resolveNode := func(hash common.Hash) (node, error) {
		buf, _ := proofDb.Get(hash[:])
		if buf == nil {
			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
		}
		n, err := decodeNode(hash[:], buf)
		if err != nil {
			return nil, fmt.Errorf("bad proof node %v", err)
		}
		return n, err
	}
	// If the root node is empty, resolve it first.
	// Root node must be included in the proof.
	if root == nil {
		n, err := resolveNode(rootHash)
		if err != nil {
			return nil, nil, err
		}
		root = n
	}
	var (
		err           error
		child, parent node
		keyrest       []byte
		valnode       []byte
	)
	key, parent = keybytesToHex(key), root
	for {
		keyrest, child = get(parent, key, false)
		switch cld := child.(type) {
		case nil:
			// The trie doesn't contain the key. It's possible
			// the proof is a non-existing proof, but at least
			// we can prove all resolved nodes are correct, it's
			// enough for us to prove range.
			if allowNonExistent {
				return root, nil, nil
			}
			return nil, nil, errors.New("the node is not contained in trie")
		case *shortNode:
			key, parent = keyrest, child // Already resolved
			continue
		case *fullNode:
			key, parent = keyrest, child // Already resolved
			continue
		case hashNode:
			child, err = resolveNode(common.BytesToHash(cld))
			if err != nil {
				return nil, nil, err
			}
		case valueNode:
			valnode = cld
		}
		// Link the parent and child.
		switch pnode := parent.(type) {
		case *shortNode:
			pnode.Val = child
		case *fullNode:
			pnode.Children[key[0]] = child
		default:
			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
		}
		if len(valnode) > 0 {
			return root, valnode, nil // The whole path is resolved
		}
		key, parent = keyrest, child
	}
}

// unsetInternal removes all internal node references(hashnode, embedded node).
// It should be called after a trie is constructed with two edge paths. Also
// the given boundary keys must be the one used to construct the edge paths.
//
// It's the key step for range proof. All visited nodes should be marked dirty
// since the node content might be modified. Besides it can happen that some
// fullnodes only have one child which is disallowed. But if the proof is valid,
// the missing children will be filled, otherwise it will be thrown anyway.
//
// Note we have the assumption here the given boundary keys are different
// and right is larger than left.
func unsetInternal(n node, left []byte, right []byte) (bool, error) {
	left, right = keybytesToHex(left), keybytesToHex(right)

	// Step down to the fork point. There are two scenarios can happen:
	// - the fork point is a shortnode: either the key of left proof or
	//   right proof doesn't match with shortnode's key.
	// - the fork point is a fullnode: both two edge proofs are allowed
	//   to point to a non-existent key.
	var (
		pos    = 0
		parent node

		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
		shortForkLeft, shortForkRight int
	)
findFork:
	for {
		switch rn := (n).(type) {
		case *shortNode:
			rn.flags = nodeFlag{dirty: true}

			// If either the key of left proof or right proof doesn't match with
			// shortnode, stop here and the forkpoint is the shortnode.
			if len(left)-pos < len(rn.Key) {
				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
			} else {
				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
			}
			if len(right)-pos < len(rn.Key) {
				shortForkRight = bytes.Compare(right[pos:], rn.Key)
			} else {
				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
			}
			if shortForkLeft != 0 || shortForkRight != 0 {
				break findFork
			}
			parent = n
			n, pos = rn.Val, pos+len(rn.Key)
		case *fullNode:
			rn.flags = nodeFlag{dirty: true}

			// If either the node pointed by left proof or right proof is nil,
			// stop here and the forkpoint is the fullnode.
			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
			if leftnode == nil || rightnode == nil || leftnode != rightnode {
				break findFork
			}
			parent = n
			n, pos = rn.Children[left[pos]], pos+1
		default:
			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
		}
	}
	switch rn := n.(type) {
	case *shortNode:
		// There can have these five scenarios:
		// - both proofs are less than the trie path => no valid range
		// - both proofs are greater than the trie path => no valid range
		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
		// - left proof points to the shortnode, but right proof is greater
		// - right proof points to the shortnode, but left proof is less
		if shortForkLeft == -1 && shortForkRight == -1 {
			return false, errors.New("empty range")
		}
		if shortForkLeft == 1 && shortForkRight == 1 {
			return false, errors.New("empty range")
		}
		if shortForkLeft != 0 && shortForkRight != 0 {
			// The fork point is root node, unset the entire trie
			if parent == nil {
				return true, nil
			}
			parent.(*fullNode).Children[left[pos-1]] = nil
			return false, nil
		}
		// Only one proof points to non-existent key.
		if shortForkRight != 0 {
			if _, ok := rn.Val.(valueNode); ok {
				// The fork point is root node, unset the entire trie
				if parent == nil {
					return true, nil
				}
				parent.(*fullNode).Children[left[pos-1]] = nil
				return false, nil
			}
			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
		}
		if shortForkLeft != 0 {
			if _, ok := rn.Val.(valueNode); ok {
				// The fork point is root node, unset the entire trie
				if parent == nil {
					return true, nil
				}
				parent.(*fullNode).Children[right[pos-1]] = nil
				return false, nil
			}
			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
		}
		return false, nil
	case *fullNode:
		// unset all internal nodes in the forkpoint
		for i := left[pos] + 1; i < right[pos]; i++ {
			rn.Children[i] = nil
		}
		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
			return false, err
		}
		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
			return false, err
		}
		return false, nil
	default:
		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
	}
}

// unset removes all internal node references either the left most or right most.
// It can meet these scenarios:
//
// - The given path is existent in the trie, unset the associated nodes with the
//   specific direction
// - The given path is non-existent in the trie
//   - the fork point is a fullnode, the corresponding child pointed by path
//     is nil, return
//   - the fork point is a shortnode, the shortnode is included in the range,
//     keep the entire branch and return.
//   - the fork point is a shortnode, the shortnode is excluded in the range,
//     unset the entire branch.
func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
	switch cld := child.(type) {
	case *fullNode:
		if removeLeft {
			for i := 0; i < int(key[pos]); i++ {
				cld.Children[i] = nil
			}
			cld.flags = nodeFlag{dirty: true}
		} else {
			for i := key[pos] + 1; i < 16; i++ {
				cld.Children[i] = nil
			}
			cld.flags = nodeFlag{dirty: true}
		}
		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
	case *shortNode:
		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
			// Find the fork point, it's an non-existent branch.
			if removeLeft {
				if bytes.Compare(cld.Key, key[pos:]) < 0 {
					// The key of fork shortnode is less than the path
					// (it belongs to the range), unset the entrie
					// branch. The parent must be a fullnode.
					fn := parent.(*fullNode)
					fn.Children[key[pos-1]] = nil
				} else {
					// The key of fork shortnode is greater than the
					// path(it doesn't belong to the range), keep
					// it with the cached hash available.
				}
			} else {
				if bytes.Compare(cld.Key, key[pos:]) > 0 {
					// The key of fork shortnode is greater than the
					// path(it belongs to the range), unset the entrie
					// branch. The parent must be a fullnode.
					fn := parent.(*fullNode)
					fn.Children[key[pos-1]] = nil
				} else {
					// The key of fork shortnode is less than the
					// path(it doesn't belong to the range), keep
					// it with the cached hash available.
				}
			}
			return nil
		}
		if _, ok := cld.Val.(valueNode); ok {
			fn := parent.(*fullNode)
			fn.Children[key[pos-1]] = nil
			return nil
		}
		cld.flags = nodeFlag{dirty: true}
		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
	case nil:
		// If the node is nil, then it's a child of the fork point
		// fullnode(it's a non-existent branch).
		return nil
	default:
		panic("it shouldn't happen") // hashNode, valueNode
	}
}

// hasRightElement returns the indicator whether there exists more elements
// on the right side of the given path. The given path can point to an existent
// key or a non-existent one. This function has the assumption that the whole
// path should already be resolved.
func hasRightElement(node node, key []byte) bool {
	pos, key := 0, keybytesToHex(key)
	for node != nil {
		switch rn := node.(type) {
		case *fullNode:
			for i := key[pos] + 1; i < 16; i++ {
				if rn.Children[i] != nil {
					return true
				}
			}
			node, pos = rn.Children[key[pos]], pos+1
		case *shortNode:
			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
				return bytes.Compare(rn.Key, key[pos:]) > 0
			}
			node, pos = rn.Val, pos+len(rn.Key)
		case valueNode:
			return false // We have resolved the whole path
		default:
			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
		}
	}
	return false
}

// VerifyRangeProof checks whether the given leaf nodes and edge proof
// can prove the given trie leaves range is matched with the specific root.
// Besides, the range should be consecutive (no gap inside) and monotonic
// increasing.
//
// Note the given proof actually contains two edge proofs. Both of them can
// be non-existent proofs. For example the first proof is for a non-existent
// key 0x03, the last proof is for a non-existent key 0x10. The given batch
// leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
// batch is valid.
//
// The firstKey is paired with firstProof, not necessarily the same as keys[0]
// (unless firstProof is an existent proof). Similarly, lastKey and lastProof
// are paired.
//
// Expect the normal case, this function can also be used to verify the following
// range proofs:
//
// - All elements proof. In this case the proof can be nil, but the range should
//   be all the leaves in the trie.
//
// - One element proof. In this case no matter the edge proof is a non-existent
//   proof or not, we can always verify the correctness of the proof.
//
// - Zero element proof. In this case a single non-existent proof is enough to prove.
//   Besides, if there are still some other leaves available on the right side, then
//   an error will be returned.
//
// Except returning the error to indicate the proof is valid or not, the function will
// also return a flag to indicate whether there exists more accounts/slots in the trie.
//
// Note: This method does not verify that the proof is of minimal form. If the input
// proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
// data, then the proof will still be accepted.
func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
	if len(keys) != len(values) {
		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
	}
	// Ensure the received batch is monotonic increasing and contains no deletions
	for i := 0; i < len(keys)-1; i++ {
		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
			return false, errors.New("range is not monotonically increasing")
		}
	}
	for _, value := range values {
		if len(value) == 0 {
			return false, errors.New("range contains deletion")
		}
	}
	// Special case, there is no edge proof at all. The given range is expected
	// to be the whole leaf-set in the trie.
	if proof == nil {
		tr := NewStackTrie(nil)
		for index, key := range keys {
			tr.TryUpdate(key, values[index])
		}
		if have, want := tr.Hash(), rootHash; have != want {
			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
		}
		return false, nil // No more elements
	}
	// Special case, there is a provided edge proof but zero key/value
	// pairs, ensure there are no more accounts / slots in the trie.
	if len(keys) == 0 {
		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
		if err != nil {
			return false, err
		}
		if val != nil || hasRightElement(root, firstKey) {
			return false, errors.New("more entries available")
		}
		return false, nil
	}
	// Special case, there is only one element and two edge keys are same.
	// In this case, we can't construct two edge paths. So handle it here.
	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
		if err != nil {
			return false, err
		}
		if !bytes.Equal(firstKey, keys[0]) {
			return false, errors.New("correct proof but invalid key")
		}
		if !bytes.Equal(val, values[0]) {
			return false, errors.New("correct proof but invalid data")
		}
		return hasRightElement(root, firstKey), nil
	}
	// Ok, in all other cases, we require two edge paths available.
	// First check the validity of edge keys.
	if bytes.Compare(firstKey, lastKey) >= 0 {
		return false, errors.New("invalid edge keys")
	}
	// todo(rjl493456442) different length edge keys should be supported
	if len(firstKey) != len(lastKey) {
		return false, errors.New("inconsistent edge keys")
	}
	// Convert the edge proofs to edge trie paths. Then we can
	// have the same tree architecture with the original one.
	// For the first edge proof, non-existent proof is allowed.
	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
	if err != nil {
		return false, err
	}
	// Pass the root node here, the second path will be merged
	// with the first one. For the last edge proof, non-existent
	// proof is also allowed.
	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
	if err != nil {
		return false, err
	}
	// Remove all internal references. All the removed parts should
	// be re-filled(or re-constructed) by the given leaves range.
	empty, err := unsetInternal(root, firstKey, lastKey)
	if err != nil {
		return false, err
	}
	// Rebuild the trie with the leaf stream, the shape of trie
	// should be same with the original one.
	tr := &Trie{root: root, db: NewDatabase(memorydb.New())}
	if empty {
		tr.root = nil
	}
	for index, key := range keys {
		tr.TryUpdate(key, values[index])
	}
	if tr.Hash() != rootHash {
		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
	}
	return hasRightElement(tr.root, keys[len(keys)-1]), nil
}

// get returns the child of the given node. Return nil if the
// node with specified key doesn't exist at all.
//
// There is an additional flag `skipResolved`. If it's set then
// all resolved nodes won't be returned.
func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
	for {
		switch n := tn.(type) {
		case *shortNode:
			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
				return nil, nil
			}
			tn = n.Val
			key = key[len(n.Key):]
			if !skipResolved {
				return key, tn
			}
		case *fullNode:
			tn = n.Children[key[0]]
			key = key[1:]
			if !skipResolved {
				return key, tn
			}
		case hashNode:
			return key, n
		case nil:
			return key, nil
		case valueNode:
			return nil, n
		default:
			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
		}
	}
}