unpack.go 9.53 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package abi

import (
	"encoding/binary"
	"fmt"
	"math/big"
	"reflect"

	"github.com/ethereum/go-ethereum/common"
)

var (
	// MaxUint256 is the maximum value that can be represented by a uint256
	MaxUint256 = big.NewInt(0).Add(
		big.NewInt(0).Exp(big.NewInt(2), big.NewInt(256), nil),
		big.NewInt(-1))
	// MaxInt256 is the maximum value that can be represented by a int256
	MaxInt256 = big.NewInt(0).Add(
		big.NewInt(0).Exp(big.NewInt(2), big.NewInt(255), nil),
		big.NewInt(-1))
)

// ReadInteger reads the integer based on its kind and returns the appropriate value
func ReadInteger(typ byte, kind reflect.Kind, b []byte) interface{} {
	switch kind {
	case reflect.Uint8:
		return b[len(b)-1]
	case reflect.Uint16:
		return binary.BigEndian.Uint16(b[len(b)-2:])
	case reflect.Uint32:
		return binary.BigEndian.Uint32(b[len(b)-4:])
	case reflect.Uint64:
		return binary.BigEndian.Uint64(b[len(b)-8:])
	case reflect.Int8:
		return int8(b[len(b)-1])
	case reflect.Int16:
		return int16(binary.BigEndian.Uint16(b[len(b)-2:]))
	case reflect.Int32:
		return int32(binary.BigEndian.Uint32(b[len(b)-4:]))
	case reflect.Int64:
		return int64(binary.BigEndian.Uint64(b[len(b)-8:]))
	default:
		// the only case lefts for integer is int256/uint256.
		// big.SetBytes can't tell if a number is negative, positive on itself.
		// On EVM, if the returned number > max int256, it is negative.
		ret := new(big.Int).SetBytes(b)
		if typ == UintTy {
			return ret
		}

		if ret.Cmp(MaxInt256) > 0 {
			ret.Add(MaxUint256, big.NewInt(0).Neg(ret))
			ret.Add(ret, big.NewInt(1))
			ret.Neg(ret)
		}
		return ret
	}
}

// reads a bool
func readBool(word []byte) (bool, error) {
	for _, b := range word[:31] {
		if b != 0 {
			return false, errBadBool
		}
	}
	switch word[31] {
	case 0:
		return false, nil
	case 1:
		return true, nil
	default:
		return false, errBadBool
	}
}

// A function type is simply the address with the function selection signature at the end.
// This enforces that standard by always presenting it as a 24-array (address + sig = 24 bytes)
func readFunctionType(t Type, word []byte) (funcTy [24]byte, err error) {
	if t.T != FunctionTy {
		return [24]byte{}, fmt.Errorf("abi: invalid type in call to make function type byte array")
	}
	if garbage := binary.BigEndian.Uint64(word[24:32]); garbage != 0 {
		err = fmt.Errorf("abi: got improperly encoded function type, got %v", word)
	} else {
		copy(funcTy[:], word[0:24])
	}
	return
}

// ReadFixedBytes uses reflection to create a fixed array to be read from
func ReadFixedBytes(t Type, word []byte) (interface{}, error) {
	if t.T != FixedBytesTy {
		return nil, fmt.Errorf("abi: invalid type in call to make fixed byte array")
	}
	// convert
	array := reflect.New(t.Type).Elem()

	reflect.Copy(array, reflect.ValueOf(word[0:t.Size]))
	return array.Interface(), nil

}

// iteratively unpack elements
func forEachUnpack(t Type, output []byte, start, size int) (interface{}, error) {
	if size < 0 {
		return nil, fmt.Errorf("cannot marshal input to array, size is negative (%d)", size)
	}
	if start+32*size > len(output) {
		return nil, fmt.Errorf("abi: cannot marshal in to go array: offset %d would go over slice boundary (len=%d)", len(output), start+32*size)
	}

	// this value will become our slice or our array, depending on the type
	var refSlice reflect.Value

	if t.T == SliceTy {
		// declare our slice
		refSlice = reflect.MakeSlice(t.Type, size, size)
	} else if t.T == ArrayTy {
		// declare our array
		refSlice = reflect.New(t.Type).Elem()
	} else {
		return nil, fmt.Errorf("abi: invalid type in array/slice unpacking stage")
	}

	// Arrays have packed elements, resulting in longer unpack steps.
	// Slices have just 32 bytes per element (pointing to the contents).
	elemSize := getTypeSize(*t.Elem)

	for i, j := start, 0; j < size; i, j = i+elemSize, j+1 {
		inter, err := toGoType(i, *t.Elem, output)
		if err != nil {
			return nil, err
		}

		// append the item to our reflect slice
		refSlice.Index(j).Set(reflect.ValueOf(inter))
	}

	// return the interface
	return refSlice.Interface(), nil
}

func forTupleUnpack(t Type, output []byte) (interface{}, error) {
	retval := reflect.New(t.Type).Elem()
	virtualArgs := 0
	for index, elem := range t.TupleElems {
		marshalledValue, err := toGoType((index+virtualArgs)*32, *elem, output)
		if elem.T == ArrayTy && !isDynamicType(*elem) {
			// If we have a static array, like [3]uint256, these are coded as
			// just like uint256,uint256,uint256.
			// This means that we need to add two 'virtual' arguments when
			// we count the index from now on.
			//
			// Array values nested multiple levels deep are also encoded inline:
			// [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256
			//
			// Calculate the full array size to get the correct offset for the next argument.
			// Decrement it by 1, as the normal index increment is still applied.
			virtualArgs += getTypeSize(*elem)/32 - 1
		} else if elem.T == TupleTy && !isDynamicType(*elem) {
			// If we have a static tuple, like (uint256, bool, uint256), these are
			// coded as just like uint256,bool,uint256
			virtualArgs += getTypeSize(*elem)/32 - 1
		}
		if err != nil {
			return nil, err
		}
		retval.Field(index).Set(reflect.ValueOf(marshalledValue))
	}
	return retval.Interface(), nil
}

// toGoType parses the output bytes and recursively assigns the value of these bytes
// into a go type with accordance with the ABI spec.
func toGoType(index int, t Type, output []byte) (interface{}, error) {
	if index+32 > len(output) {
		return nil, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %d require %d", len(output), index+32)
	}

	var (
		returnOutput  []byte
		begin, length int
		err           error
	)

	// if we require a length prefix, find the beginning word and size returned.
	if t.requiresLengthPrefix() {
		begin, length, err = lengthPrefixPointsTo(index, output)
		if err != nil {
			return nil, err
		}
	} else {
		returnOutput = output[index : index+32]
	}

	switch t.T {
	case TupleTy:
		if isDynamicType(t) {
			begin, err := tuplePointsTo(index, output)
			if err != nil {
				return nil, err
			}
			return forTupleUnpack(t, output[begin:])
		} else {
			return forTupleUnpack(t, output[index:])
		}
	case SliceTy:
		return forEachUnpack(t, output[begin:], 0, length)
	case ArrayTy:
		if isDynamicType(*t.Elem) {
			offset := int64(binary.BigEndian.Uint64(returnOutput[len(returnOutput)-8:]))
			return forEachUnpack(t, output[offset:], 0, t.Size)
		}
		return forEachUnpack(t, output[index:], 0, t.Size)
	case StringTy: // variable arrays are written at the end of the return bytes
		return string(output[begin : begin+length]), nil
	case IntTy, UintTy:
		return ReadInteger(t.T, t.Kind, returnOutput), nil
	case BoolTy:
		return readBool(returnOutput)
	case AddressTy:
		return common.BytesToAddress(returnOutput), nil
	case HashTy:
		return common.BytesToHash(returnOutput), nil
	case BytesTy:
		return output[begin : begin+length], nil
	case FixedBytesTy:
		return ReadFixedBytes(t, returnOutput)
	case FunctionTy:
		return readFunctionType(t, returnOutput)
	default:
		return nil, fmt.Errorf("abi: unknown type %v", t.T)
	}
}

// interprets a 32 byte slice as an offset and then determines which indice to look to decode the type.
func lengthPrefixPointsTo(index int, output []byte) (start int, length int, err error) {
	bigOffsetEnd := big.NewInt(0).SetBytes(output[index : index+32])
	bigOffsetEnd.Add(bigOffsetEnd, common.Big32)
	outputLength := big.NewInt(int64(len(output)))

	if bigOffsetEnd.Cmp(outputLength) > 0 {
		return 0, 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", bigOffsetEnd, outputLength)
	}

	if bigOffsetEnd.BitLen() > 63 {
		return 0, 0, fmt.Errorf("abi offset larger than int64: %v", bigOffsetEnd)
	}

	offsetEnd := int(bigOffsetEnd.Uint64())
	lengthBig := big.NewInt(0).SetBytes(output[offsetEnd-32 : offsetEnd])

	totalSize := big.NewInt(0)
	totalSize.Add(totalSize, bigOffsetEnd)
	totalSize.Add(totalSize, lengthBig)
	if totalSize.BitLen() > 63 {
		return 0, 0, fmt.Errorf("abi: length larger than int64: %v", totalSize)
	}

	if totalSize.Cmp(outputLength) > 0 {
		return 0, 0, fmt.Errorf("abi: cannot marshal in to go type: length insufficient %v require %v", outputLength, totalSize)
	}
	start = int(bigOffsetEnd.Uint64())
	length = int(lengthBig.Uint64())
	return
}

// tuplePointsTo resolves the location reference for dynamic tuple.
func tuplePointsTo(index int, output []byte) (start int, err error) {
	offset := big.NewInt(0).SetBytes(output[index : index+32])
	outputLen := big.NewInt(int64(len(output)))

	if offset.Cmp(big.NewInt(int64(len(output)))) > 0 {
		return 0, fmt.Errorf("abi: cannot marshal in to go slice: offset %v would go over slice boundary (len=%v)", offset, outputLen)
	}
	if offset.BitLen() > 63 {
		return 0, fmt.Errorf("abi offset larger than int64: %v", offset)
	}
	return int(offset.Uint64()), nil
}