node.go 7.11 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package enode

import (
	"crypto/ecdsa"
	"encoding/base64"
	"encoding/hex"
	"errors"
	"fmt"
	"math/bits"
	"math/rand"
	"net"
	"strings"

	"github.com/ethereum/go-ethereum/p2p/enr"
	"github.com/ethereum/go-ethereum/rlp"
)

var errMissingPrefix = errors.New("missing 'enr:' prefix for base64-encoded record")

// Node represents a host on the network.
type Node struct {
	r  enr.Record
	id ID
}

// New wraps a node record. The record must be valid according to the given
// identity scheme.
func New(validSchemes enr.IdentityScheme, r *enr.Record) (*Node, error) {
	if err := r.VerifySignature(validSchemes); err != nil {
		return nil, err
	}
	node := &Node{r: *r}
	if n := copy(node.id[:], validSchemes.NodeAddr(&node.r)); n != len(ID{}) {
		return nil, fmt.Errorf("invalid node ID length %d, need %d", n, len(ID{}))
	}
	return node, nil
}

// MustParse parses a node record or enode:// URL. It panics if the input is invalid.
func MustParse(rawurl string) *Node {
	n, err := Parse(ValidSchemes, rawurl)
	if err != nil {
		panic("invalid node: " + err.Error())
	}
	return n
}

// Parse decodes and verifies a base64-encoded node record.
func Parse(validSchemes enr.IdentityScheme, input string) (*Node, error) {
	if strings.HasPrefix(input, "enode://") {
		return ParseV4(input)
	}
	if !strings.HasPrefix(input, "enr:") {
		return nil, errMissingPrefix
	}
	bin, err := base64.RawURLEncoding.DecodeString(input[4:])
	if err != nil {
		return nil, err
	}
	var r enr.Record
	if err := rlp.DecodeBytes(bin, &r); err != nil {
		return nil, err
	}
	return New(validSchemes, &r)
}

// ID returns the node identifier.
func (n *Node) ID() ID {
	return n.id
}

// Seq returns the sequence number of the underlying record.
func (n *Node) Seq() uint64 {
	return n.r.Seq()
}

// Incomplete returns true for nodes with no IP address.
func (n *Node) Incomplete() bool {
	return n.IP() == nil
}

// Load retrieves an entry from the underlying record.
func (n *Node) Load(k enr.Entry) error {
	return n.r.Load(k)
}

// IP returns the IP address of the node. This prefers IPv4 addresses.
func (n *Node) IP() net.IP {
	var (
		ip4 enr.IPv4
		ip6 enr.IPv6
	)
	if n.Load(&ip4) == nil {
		return net.IP(ip4)
	}
	if n.Load(&ip6) == nil {
		return net.IP(ip6)
	}
	return nil
}

// UDP returns the UDP port of the node.
func (n *Node) UDP() int {
	var port enr.UDP
	n.Load(&port)
	return int(port)
}

// UDP returns the TCP port of the node.
func (n *Node) TCP() int {
	var port enr.TCP
	n.Load(&port)
	return int(port)
}

// Pubkey returns the secp256k1 public key of the node, if present.
func (n *Node) Pubkey() *ecdsa.PublicKey {
	var key ecdsa.PublicKey
	if n.Load((*Secp256k1)(&key)) != nil {
		return nil
	}
	return &key
}

// Record returns the node's record. The return value is a copy and may
// be modified by the caller.
func (n *Node) Record() *enr.Record {
	cpy := n.r
	return &cpy
}

// ValidateComplete checks whether n has a valid IP and UDP port.
// Deprecated: don't use this method.
func (n *Node) ValidateComplete() error {
	if n.Incomplete() {
		return errors.New("missing IP address")
	}
	if n.UDP() == 0 {
		return errors.New("missing UDP port")
	}
	ip := n.IP()
	if ip.IsMulticast() || ip.IsUnspecified() {
		return errors.New("invalid IP (multicast/unspecified)")
	}
	// Validate the node key (on curve, etc.).
	var key Secp256k1
	return n.Load(&key)
}

// String returns the text representation of the record.
func (n *Node) String() string {
	if isNewV4(n) {
		return n.URLv4() // backwards-compatibility glue for NewV4 nodes
	}
	enc, _ := rlp.EncodeToBytes(&n.r) // always succeeds because record is valid
	b64 := base64.RawURLEncoding.EncodeToString(enc)
	return "enr:" + b64
}

// MarshalText implements encoding.TextMarshaler.
func (n *Node) MarshalText() ([]byte, error) {
	return []byte(n.String()), nil
}

// UnmarshalText implements encoding.TextUnmarshaler.
func (n *Node) UnmarshalText(text []byte) error {
	dec, err := Parse(ValidSchemes, string(text))
	if err == nil {
		*n = *dec
	}
	return err
}

// ID is a unique identifier for each node.
type ID [32]byte

// Bytes returns a byte slice representation of the ID
func (n ID) Bytes() []byte {
	return n[:]
}

// ID prints as a long hexadecimal number.
func (n ID) String() string {
	return fmt.Sprintf("%x", n[:])
}

// The Go syntax representation of a ID is a call to HexID.
func (n ID) GoString() string {
	return fmt.Sprintf("enode.HexID(\"%x\")", n[:])
}

// TerminalString returns a shortened hex string for terminal logging.
func (n ID) TerminalString() string {
	return hex.EncodeToString(n[:8])
}

// MarshalText implements the encoding.TextMarshaler interface.
func (n ID) MarshalText() ([]byte, error) {
	return []byte(hex.EncodeToString(n[:])), nil
}

// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (n *ID) UnmarshalText(text []byte) error {
	id, err := parseID(string(text))
	if err != nil {
		return err
	}
	*n = id
	return nil
}

// HexID converts a hex string to an ID.
// The string may be prefixed with 0x.
// It panics if the string is not a valid ID.
func HexID(in string) ID {
	id, err := parseID(in)
	if err != nil {
		panic(err)
	}
	return id
}

func parseID(in string) (ID, error) {
	var id ID
	b, err := hex.DecodeString(strings.TrimPrefix(in, "0x"))
	if err != nil {
		return id, err
	} else if len(b) != len(id) {
		return id, fmt.Errorf("wrong length, want %d hex chars", len(id)*2)
	}
	copy(id[:], b)
	return id, nil
}

// DistCmp compares the distances a->target and b->target.
// Returns -1 if a is closer to target, 1 if b is closer to target
// and 0 if they are equal.
func DistCmp(target, a, b ID) int {
	for i := range target {
		da := a[i] ^ target[i]
		db := b[i] ^ target[i]
		if da > db {
			return 1
		} else if da < db {
			return -1
		}
	}
	return 0
}

// LogDist returns the logarithmic distance between a and b, log2(a ^ b).
func LogDist(a, b ID) int {
	lz := 0
	for i := range a {
		x := a[i] ^ b[i]
		if x == 0 {
			lz += 8
		} else {
			lz += bits.LeadingZeros8(x)
			break
		}
	}
	return len(a)*8 - lz
}

// RandomID returns a random ID b such that logdist(a, b) == n.
func RandomID(a ID, n int) (b ID) {
	if n == 0 {
		return a
	}
	// flip bit at position n, fill the rest with random bits
	b = a
	pos := len(a) - n/8 - 1
	bit := byte(0x01) << (byte(n%8) - 1)
	if bit == 0 {
		pos++
		bit = 0x80
	}
	b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
	for i := pos + 1; i < len(a); i++ {
		b[i] = byte(rand.Intn(255))
	}
	return b
}