batchbuilding_test.go 7.74 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
package benchmarks

import (
	"fmt"
	"math/big"
	"math/rand"
	"testing"
	"time"

	"github.com/ethereum-optimism/optimism/op-batcher/compressor"
	"github.com/ethereum-optimism/optimism/op-node/rollup/derive"
	"github.com/stretchr/testify/require"
)

var (

	// compressors used in the benchmark
	rc, _ = compressor.NewRatioCompressor(compressor.Config{
		TargetOutputSize: 100_000_000_000,
		ApproxComprRatio: 0.4,
	})
	sc, _ = compressor.NewShadowCompressor(compressor.Config{
		TargetOutputSize: 100_000_000_000,
	})
	nc, _ = compressor.NewNonCompressor(compressor.Config{
		TargetOutputSize: 100_000_000_000,
	})
28 29 30
	bc, _ = compressor.NewBlindCompressor(compressor.Config{
		TargetOutputSize: 100_000_000_000,
	})
31 32

	compressors = map[string]derive.Compressor{
33
		"BlindCompressor":  bc,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
		"NonCompressor":    nc,
		"RatioCompressor":  rc,
		"ShadowCompressor": sc,
	}

	// batch types used in the benchmark
	batchTypes = []uint{
		derive.SpanBatchType,
		// uncomment to include singular batches in the benchmark
		// singular batches are not included by default because they are not the target of the benchmark
		//derive.SingularBatchType,
	}
)

// a test case for the benchmark controls the number of batches and transactions per batch,
// as well as the batch type and compressor used
type BatchingBenchmarkTC struct {
	BatchType  uint
	BatchCount int
	txPerBatch int
	compKey    string
}

func (t BatchingBenchmarkTC) String() string {
	var btype string
	if t.BatchType == derive.SingularBatchType {
		btype = "Singular"
	}
	if t.BatchType == derive.SpanBatchType {
		btype = "Span"
	}
	return fmt.Sprintf("BatchType=%s, txPerBatch=%d, BatchCount=%d, Compressor=%s", btype, t.txPerBatch, t.BatchCount, t.compKey)
}

// BenchmarkChannelOut benchmarks the performance of adding singular batches to a channel out
// this exercises the compression and batching logic, as well as any batch-building logic
// Every Compressor in the compressor map is benchmarked for each test case
// The results of the Benchmark measure *only* the time to add the final batch to the channel out,
// not the time to send all the batches through the channel out
// Hint: Raise the derive.MaxRLPBytesPerChannel to 10_000_000_000 to avoid hitting limits if adding larger test cases
func BenchmarkFinalBatchChannelOut(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},

		{10, 100},
		{100, 100},
	}

	// build a set of test cases for each batch type, compressor, and target-pair
	tests := []BatchingBenchmarkTC{}
	for _, bt := range batchTypes {
		for compkey := range compressors {
			for _, t := range targets {
				tests = append(tests, BatchingBenchmarkTC{bt, t.bs, t.tpb, compkey})
			}
		}
	}

	for _, tc := range tests {
		chainID := big.NewInt(333)
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
		batches := make([]*derive.SingularBatch, tc.BatchCount)
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			batches[i] = derive.RandomSingularBatch(rng, tc.txPerBatch, chainID)
			// set the timestamp to increase with each batch
			// to leverage optimizations in the Batch Linked List
			batches[i].Timestamp = uint64(t.Add(time.Duration(i) * time.Second).Unix())
		}
		b.Run(tc.String(), func(b *testing.B) {
			// reset the compressor used in the test case
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
				compressors[tc.compKey].Reset()
114 115
				spanBatch := derive.NewSpanBatch(uint64(0), chainID)
				cout, _ := derive.NewChannelOut(tc.BatchType, compressors[tc.compKey], spanBatch)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
				// add all but the final batch to the channel out
				for i := 0; i < tc.BatchCount-1; i++ {
					_, err := cout.AddSingularBatch(batches[i], 0)
					require.NoError(b, err)
				}
				// measure the time to add the final batch
				b.StartTimer()
				// add the final batch to the channel out
				_, err := cout.AddSingularBatch(batches[tc.BatchCount-1], 0)
				require.NoError(b, err)
			}
		})
	}
}

// BenchmarkAllBatchesChannelOut benchmarks the performance of adding singular batches to a channel out
// this exercises the compression and batching logic, as well as any batch-building logic
// Every Compressor in the compressor map is benchmarked for each test case
// The results of the Benchmark measure the time to add the *all batches* to the channel out,
// not the time to send all the batches through the channel out
// Hint: Raise the derive.MaxRLPBytesPerChannel to 10_000_000_000 to avoid hitting limits
func BenchmarkAllBatchesChannelOut(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},

		{10, 100},
		{100, 100},
	}

	// build a set of test cases for each batch type, compressor, and target-pair
	tests := []BatchingBenchmarkTC{}
	for _, bt := range batchTypes {
		for compkey := range compressors {
			for _, t := range targets {
				tests = append(tests, BatchingBenchmarkTC{bt, t.bs, t.tpb, compkey})
			}
		}
	}

	for _, tc := range tests {
		chainID := big.NewInt(333)
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
		batches := make([]*derive.SingularBatch, tc.BatchCount)
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			batches[i] = derive.RandomSingularBatch(rng, tc.txPerBatch, chainID)
			// set the timestamp to increase with each batch
			// to leverage optimizations in the Batch Linked List
			batches[i].Timestamp = uint64(t.Add(time.Duration(i) * time.Second).Unix())
		}
		b.Run(tc.String(), func(b *testing.B) {
			// reset the compressor used in the test case
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
				compressors[tc.compKey].Reset()
177 178
				spanBatch := derive.NewSpanBatch(0, chainID)
				cout, _ := derive.NewChannelOut(tc.BatchType, compressors[tc.compKey], spanBatch)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
				b.StartTimer()
				// add all batches to the channel out
				for i := 0; i < tc.BatchCount; i++ {
					_, err := cout.AddSingularBatch(batches[i], 0)
					require.NoError(b, err)
				}
			}
		})
	}
}

// BenchmarkGetRawSpanBatch benchmarks the performance of building a span batch from singular batches
// this exercises the span batch building logic directly
// The adding of batches to the span batch builder is not included in the benchmark, only the final build to RawSpanBatch
func BenchmarkGetRawSpanBatch(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},
		{10000, 1},

		{10, 100},
		{100, 100},
		{1000, 100},
	}

	tests := []BatchingBenchmarkTC{}
	for _, t := range targets {
		tests = append(tests, BatchingBenchmarkTC{derive.SpanBatchType, t.bs, t.tpb, "NonCompressor"})
	}

	for _, tc := range tests {
		chainID := big.NewInt(333)
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
		batches := make([]*derive.SingularBatch, tc.BatchCount)
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			batches[i] = derive.RandomSingularBatch(rng, tc.txPerBatch, chainID)
			batches[i].Timestamp = uint64(t.Add(time.Duration(i) * time.Second).Unix())
		}
		b.Run(tc.String(), func(b *testing.B) {
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
226
				spanBatch := derive.NewSpanBatch(uint64(0), chainID)
227
				for i := 0; i < tc.BatchCount; i++ {
228 229
					err := spanBatch.AppendSingularBatch(batches[i], 0)
					require.NoError(b, err)
230 231
				}
				b.StartTimer()
232
				_, err := spanBatch.ToRawSpanBatch()
233 234 235 236 237
				require.NoError(b, err)
			}
		})
	}
}