batchbuilding_test.go 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
package benchmarks

import (
	"fmt"
	"math/big"
	"math/rand"
	"testing"
	"time"

	"github.com/ethereum-optimism/optimism/op-batcher/compressor"
11
	"github.com/ethereum-optimism/optimism/op-node/rollup"
12
	"github.com/ethereum-optimism/optimism/op-node/rollup/derive"
13 14 15
	"github.com/ethereum-optimism/optimism/op-service/eth"
	"github.com/ethereum-optimism/optimism/op-service/testutils"
	"github.com/ethereum/go-ethereum/core/types"
16 17 18
	"github.com/stretchr/testify/require"
)

19 20 21 22 23 24
const (
	// a really large target output size to ensure that the compressors are never full
	targetOutput_huge = uint64(100_000_000_000)
	// this target size was determiend by the devnet sepolia batcher's configuration
	targetOuput_real = uint64(780120)
)
25

26 27 28 29 30 31
// compressorDetails is a helper struct to create compressors or supply the configuration for span batches
type compressorDetails struct {
	name         string
	compressorFn func(compressor.Config) (derive.Compressor, error)
	config       compressor.Config
}
32

33 34 35 36 37 38 39 40
func (cd compressorDetails) String() string {
	return fmt.Sprintf("%s-%s-%d", cd.name, cd.config.CompressionAlgo, cd.config.TargetOutputSize)
}
func (cd compressorDetails) Compressor() (derive.Compressor, error) {
	return cd.compressorFn(cd.config)
}

var (
41 42 43 44 45
	// batch types used in the benchmark
	batchTypes = []uint{
		derive.SpanBatchType,
	}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
	compAlgos = []derive.CompressionAlgo{
		derive.Zlib,
		derive.Brotli,
		derive.Brotli9,
		derive.Brotli11,
	}

	// compressors used in the benchmark
	// they are all configured to Zlib compression, which may be overridden in the test cases
	compressors = map[string]compressorDetails{
		"NonCompressor": {
			name:         "NonCompressor",
			compressorFn: compressor.NewNonCompressor,
			config: compressor.Config{
				TargetOutputSize: targetOutput_huge,
				CompressionAlgo:  derive.Zlib,
			},
		},
		"RatioCompressor": {
			name:         "RatioCompressor",
			compressorFn: compressor.NewRatioCompressor,
			config: compressor.Config{
				TargetOutputSize: targetOutput_huge,
				CompressionAlgo:  derive.Zlib,
			},
		},
		"ShadowCompressor": {
			name:         "ShadowCompressor",
			compressorFn: compressor.NewShadowCompressor,
			config: compressor.Config{
				TargetOutputSize: targetOutput_huge,
				CompressionAlgo:  derive.Zlib,
			},
		},
		"RealShadowCompressor": {
			name:         "ShadowCompressor",
			compressorFn: compressor.NewShadowCompressor,
			config: compressor.Config{
				TargetOutputSize: targetOuput_real,
				CompressionAlgo:  derive.Zlib,
			},
		},
	}
)
90 91

// channelOutByType returns a channel out of the given type as a helper for the benchmarks
92
func channelOutByType(b *testing.B, batchType uint, cd compressorDetails) (derive.ChannelOut, error) {
93 94 95
	rollupConfig := &rollup.Config{
		L2ChainID: big.NewInt(333),
	}
96
	if batchType == derive.SingularBatchType {
97 98
		compressor, err := cd.Compressor()
		require.NoError(b, err)
99
		return derive.NewSingularChannelOut(compressor, rollup.NewChainSpec(rollupConfig))
100 101
	}
	if batchType == derive.SpanBatchType {
102
		return derive.NewSpanChannelOut(cd.config.TargetOutputSize, cd.config.CompressionAlgo, rollup.NewChainSpec(rollupConfig))
103 104 105 106
	}
	return nil, fmt.Errorf("unsupported batch type: %d", batchType)
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
func randomBlock(cfg *rollup.Config, rng *rand.Rand, txCount int, timestamp uint64) (*types.Block, error) {
	batch := derive.RandomSingularBatch(rng, txCount, cfg.L2ChainID)
	batch.Timestamp = timestamp
	return singularBatchToBlock(cfg, batch)
}

// singularBatchToBlock converts a singular batch to a block for use in the benchmarks. This function
// should only be used for testing purposes, as the batch input doesn't contain the necessary information
// to build the full block (only non-deposit transactions and a subset of header fields are populated).
func singularBatchToBlock(rollupCfg *rollup.Config, batch *derive.SingularBatch) (*types.Block, error) {
	l1InfoTx, err := derive.L1InfoDeposit(rollupCfg, eth.SystemConfig{}, 0, &testutils.MockBlockInfo{
		InfoNum:  uint64(batch.EpochNum),
		InfoHash: batch.EpochHash,
	}, batch.Timestamp)
	if err != nil {
		return nil, fmt.Errorf("could not build L1 Info transaction: %w", err)
	}
	txs := []*types.Transaction{types.NewTx(l1InfoTx)}
	for i, opaqueTx := range batch.Transactions {
		var tx types.Transaction
		err = tx.UnmarshalBinary(opaqueTx)
		if err != nil {
			return nil, fmt.Errorf("could not decode tx %d: %w", i, err)
		}
		txs = append(txs, &tx)
	}
	return types.NewBlockWithHeader(&types.Header{
		ParentHash: batch.ParentHash,
		Time:       batch.Timestamp,
	}).WithBody(types.Body{
		Transactions: txs,
	}), nil
}

141 142 143 144 145 146
// a test case for the benchmark controls the number of batches and transactions per batch,
// as well as the batch type and compressor used
type BatchingBenchmarkTC struct {
	BatchType  uint
	BatchCount int
	txPerBatch int
147
	cd         compressorDetails
148 149 150 151 152 153 154 155 156 157
}

func (t BatchingBenchmarkTC) String() string {
	var btype string
	if t.BatchType == derive.SingularBatchType {
		btype = "Singular"
	}
	if t.BatchType == derive.SpanBatchType {
		btype = "Span"
	}
158
	return fmt.Sprintf("BatchType=%s, txPerBatch=%d, BatchCount=%d, Compressor=%s", btype, t.txPerBatch, t.BatchCount, t.cd.String())
159 160 161 162 163 164 165
}

// BenchmarkChannelOut benchmarks the performance of adding singular batches to a channel out
// this exercises the compression and batching logic, as well as any batch-building logic
// Every Compressor in the compressor map is benchmarked for each test case
// The results of the Benchmark measure *only* the time to add the final batch to the channel out,
// not the time to send all the batches through the channel out
166
// Hint: Raise the rollup.MaxRLPBytesPerChannel to 10_000_000_000 to avoid hitting limits if adding larger test cases
167 168
func BenchmarkFinalBatchChannelOut(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
169
	// they will be multiplied by various compressors
170 171 172 173 174 175 176 177 178 179
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},

		{10, 100},
		{100, 100},
	}

180
	// make test-cases for every batch type, compressor, compressorAlgo, and target-pair
181 182
	tests := []BatchingBenchmarkTC{}
	for _, bt := range batchTypes {
183 184 185 186 187 188 189
		for _, compDetails := range compressors {
			for _, algo := range compAlgos {
				for _, t := range targets {
					cd := compDetails
					cd.config.CompressionAlgo = algo
					tests = append(tests, BatchingBenchmarkTC{bt, t.bs, t.tpb, cd})
				}
190 191 192 193 194
			}
		}
	}

	for _, tc := range tests {
195
		cfg := &rollup.Config{L2ChainID: big.NewInt(333)}
196 197
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
198
		blocks := make([]*types.Block, tc.BatchCount)
199 200 201 202
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			// set the timestamp to increase with each batch
			// to leverage optimizations in the Batch Linked List
203 204 205
			var err error
			blocks[i], err = randomBlock(cfg, rng, tc.txPerBatch, uint64(t.Add(time.Duration(i)*time.Second).Unix()))
			require.NoError(b, err)
206
		}
207 208 209 210 211 212 213 214
		b.Run(tc.String(), func(b *testing.B) {
			// reset the compressor used in the test case
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
				cout, _ := channelOutByType(b, tc.BatchType, tc.cd)
				// add all but the final batch to the channel out
				for i := 0; i < tc.BatchCount-1; i++ {
215
					_, err := cout.AddBlock(cfg, blocks[i])
216 217
					require.NoError(b, err)
				}
218 219 220
				// measure the time to add the final batch
				b.StartTimer()
				// add the final batch to the channel out
221
				_, err := cout.AddBlock(cfg, blocks[tc.BatchCount-1])
222 223 224
				require.NoError(b, err)
			}
		})
225

226 227 228
	}
}

229 230 231 232 233
// BenchmarkIncremental fills a channel out incrementally with batches
// each increment is counted as its own benchmark
// Hint: use -benchtime=1x to run the benchmarks for a single iteration
// it is not currently designed to use b.N
func BenchmarkIncremental(b *testing.B) {
234
	cfg := &rollup.Config{L2ChainID: big.NewInt(333)}
235 236 237 238 239
	rng := rand.New(rand.NewSource(0x543331))
	// use the real compressor for this benchmark
	// use batchCount as the number of batches to add in each benchmark iteration
	// and use txPerBatch as the number of transactions per batch
	tcs := []BatchingBenchmarkTC{
240 241 242 243 244 245 246 247 248 249 250 251 252 253
		{derive.SpanBatchType, 5, 1, compressorDetails{
			name: "RealThreshold",
			config: compressor.Config{
				TargetOutputSize: targetOuput_real,
				CompressionAlgo:  derive.Zlib,
			},
		}},
		{derive.SpanBatchType, 5, 1, compressorDetails{
			name: "RealThreshold",
			config: compressor.Config{
				TargetOutputSize: targetOuput_real,
				CompressionAlgo:  derive.Brotli10,
			},
		}},
254
	}
255 256 257 258 259 260 261 262 263 264 265 266
	for _, tc := range tcs {
		cout, err := channelOutByType(b, tc.BatchType, tc.cd)
		if err != nil {
			b.Fatal(err)
		}
		done := false
		for base := 0; !done; base += tc.BatchCount {
			rangeName := fmt.Sprintf("Incremental %s: %d-%d", tc.String(), base, base+tc.BatchCount)
			b.Run(rangeName, func(b *testing.B) {
				b.StopTimer()
				// prepare the batches
				t := time.Now()
267
				blocks := make([]*types.Block, tc.BatchCount)
268 269 270
				for i := 0; i < tc.BatchCount; i++ {
					// set the timestamp to increase with each batch
					// to leverage optimizations in the Batch Linked List
271 272 273 274 275 276
					t = t.Add(time.Second)
					blocks[i], err = randomBlock(cfg, rng, tc.txPerBatch, uint64(t.Unix()))
					if err != nil {
						done = true
						return
					}
277 278 279
				}
				b.StartTimer()
				for i := 0; i < tc.BatchCount; i++ {
280
					_, err := cout.AddBlock(cfg, blocks[i])
281 282 283
					if err != nil {
						done = true
						return
284
					}
285 286
				}
			})
287 288 289 290
		}
	}
}

291 292 293 294 295
// BenchmarkAllBatchesChannelOut benchmarks the performance of adding singular batches to a channel out
// this exercises the compression and batching logic, as well as any batch-building logic
// Every Compressor in the compressor map is benchmarked for each test case
// The results of the Benchmark measure the time to add the *all batches* to the channel out,
// not the time to send all the batches through the channel out
296
// Hint: Raise the rollup.MaxRLPBytesPerChannel to 10_000_000_000 to avoid hitting limits
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
func BenchmarkAllBatchesChannelOut(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},

		{10, 100},
		{100, 100},
	}

	// build a set of test cases for each batch type, compressor, and target-pair
	tests := []BatchingBenchmarkTC{}
	for _, bt := range batchTypes {
312 313 314 315 316 317 318
		for _, compDetails := range compressors {
			for _, algo := range compAlgos {
				for _, t := range targets {
					cd := compDetails
					cd.config.CompressionAlgo = algo
					tests = append(tests, BatchingBenchmarkTC{bt, t.bs, t.tpb, cd})
				}
319 320 321 322
			}
		}
	}

323
	for _, tc := range tests {
324
		cfg := &rollup.Config{L2ChainID: big.NewInt(333)}
325 326
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
327
		blocks := make([]*types.Block, tc.BatchCount)
328 329 330 331
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			// set the timestamp to increase with each batch
			// to leverage optimizations in the Batch Linked List
332 333 334
			var err error
			blocks[i], err = randomBlock(cfg, rng, tc.txPerBatch, uint64(t.Add(time.Duration(i)*time.Second).Unix()))
			require.NoError(b, err)
335
		}
336 337 338 339 340 341 342 343 344
		b.Run(tc.String(), func(b *testing.B) {
			// reset the compressor used in the test case
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
				cout, _ := channelOutByType(b, tc.BatchType, tc.cd)
				b.StartTimer()
				// add all batches to the channel out
				for i := 0; i < tc.BatchCount; i++ {
345
					_, err := cout.AddBlock(cfg, blocks[i])
346 347 348 349
					require.NoError(b, err)
				}
			}
		})
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	}
}

// BenchmarkGetRawSpanBatch benchmarks the performance of building a span batch from singular batches
// this exercises the span batch building logic directly
// The adding of batches to the span batch builder is not included in the benchmark, only the final build to RawSpanBatch
func BenchmarkGetRawSpanBatch(b *testing.B) {
	// Targets define the number of batches and transactions per batch to test
	type target struct{ bs, tpb int }
	targets := []target{
		{10, 1},
		{100, 1},
		{1000, 1},
		{10000, 1},

		{10, 100},
		{100, 100},
		{1000, 100},
	}

	tests := []BatchingBenchmarkTC{}
	for _, t := range targets {
372
		tests = append(tests, BatchingBenchmarkTC{derive.SpanBatchType, t.bs, t.tpb, compressors["NonCompressor"]})
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	}

	for _, tc := range tests {
		chainID := big.NewInt(333)
		rng := rand.New(rand.NewSource(0x543331))
		// pre-generate batches to keep the benchmark from including the random generation
		batches := make([]*derive.SingularBatch, tc.BatchCount)
		t := time.Now()
		for i := 0; i < tc.BatchCount; i++ {
			batches[i] = derive.RandomSingularBatch(rng, tc.txPerBatch, chainID)
			batches[i].Timestamp = uint64(t.Add(time.Duration(i) * time.Second).Unix())
		}
		b.Run(tc.String(), func(b *testing.B) {
			for bn := 0; bn < b.N; bn++ {
				// don't measure the setup time
				b.StopTimer()
389
				spanBatch := derive.NewSpanBatch(uint64(0), chainID)
390
				for i := 0; i < tc.BatchCount; i++ {
391 392
					err := spanBatch.AppendSingularBatch(batches[i], 0)
					require.NoError(b, err)
393 394
				}
				b.StartTimer()
395
				_, err := spanBatch.ToRawSpanBatch()
396 397 398 399 400
				require.NoError(b, err)
			}
		})
	}
}