precompile.go 20.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
package script

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"
	"math/big"
	"reflect"
	"strings"

	"github.com/ethereum/go-ethereum/accounts/abi"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/common/hexutil"
	"github.com/ethereum/go-ethereum/core/vm"
	"github.com/ethereum/go-ethereum/crypto"
)

var setterFnSig = "set(bytes4,address)"
var setterFnBytes4 = bytes4(setterFnSig)

// precompileFunc is a prepared function to perform a method call / field read with ABI decoding/encoding.
type precompileFunc struct {
	goName       string
	abiSignature string
	fn           func(input []byte) ([]byte, error)
}

// bytes4 computes a 4-byte method-selector ID of a solidity method signature
func bytes4(sig string) [4]byte {
	return [4]byte(crypto.Keccak256([]byte(sig))[:4])
}

// big-endian uint64 to bytes32
func b32(v uint64) []byte {
	out := make([]byte, 32)
	binary.BigEndian.PutUint64(out[24:], v)
	return out
}

// leftPad32 to multiple of 32 bytes
func leftPad32(data []byte) []byte {
	out := bytes.Clone(data)
	if len(out)%32 == 0 {
		return out
	}
	return append(make([]byte, 32-(len(out)%32)), out...)
}

// rightPad32 to multiple of 32 bytes
func rightPad32(data []byte) []byte {
	out := bytes.Clone(data)
	if len(out)%32 == 0 {
		return out
	}
	return append(out, make([]byte, 32-(len(out)%32))...)
}

type settableField struct {
	name  string
	value *reflect.Value
}

// Precompile is a wrapper around a Go object, making it a precompile.
type Precompile[E any] struct {
	Precompile E

	fieldsOnly bool

	fieldSetter bool
	settable    map[[4]byte]*settableField

	// abiMethods is effectively the jump-table for 4-byte ABI calls to the precompile.
	abiMethods map[[4]byte]*precompileFunc
}

var _ vm.PrecompiledContract = (*Precompile[struct{}])(nil)

type PrecompileOption[E any] func(p *Precompile[E])

func WithFieldsOnly[E any](p *Precompile[E]) {
	p.fieldsOnly = true
}

func WithFieldSetter[E any](p *Precompile[E]) {
	p.fieldSetter = true
}

// NewPrecompile wraps a Go object into a Precompile.
// All exported fields and methods will have a corresponding ABI interface.
// Fields with a tag `evm:"-"` will be ignored, or can override their ABI name to x with this tag: `evm:"x"`.
// Field names and method names are adjusted to start with a lowercase character in the ABI signature.
// Method names may end with a `_X` where X must be the 4byte selector (this is sanity-checked),
// to support multiple variants of the same method with different ABI input parameters.
// Methods may return an error, which will result in a revert, rather than become an ABI encoded arg, if not nil.
// All precompile methods have 0 gas cost.
func NewPrecompile[E any](e E, opts ...PrecompileOption[E]) (*Precompile[E], error) {
	out := &Precompile[E]{
		Precompile:  e,
		abiMethods:  make(map[[4]byte]*precompileFunc),
		fieldsOnly:  false,
		fieldSetter: false,
		settable:    make(map[[4]byte]*settableField),
	}
	for _, opt := range opts {
		opt(out)
	}
	elemVal := reflect.ValueOf(e)
	// setup methods (and if pointer, the indirect methods also)
	if err := out.setupMethods(&elemVal); err != nil {
		return nil, fmt.Errorf("failed to setup methods of precompile: %w", err)
	}
	// setup fields and embedded types (if a struct)
	if err := out.setupFields(&elemVal); err != nil {
		return nil, fmt.Errorf("failed to setup fields of precompile: %w", err)
	}
	// create setter that can handle of the fields
	out.setupFieldSetter()
	return out, nil
}

// setupMethods iterates through all exposed methods of val, and sets them all up as ABI methods.
func (p *Precompile[E]) setupMethods(val *reflect.Value) error {
	if p.fieldsOnly {
		return nil
	}
	typ := val.Type()
	methodCount := val.NumMethod()
	for i := 0; i < methodCount; i++ {
		methodDef := typ.Method(i)
		if !methodDef.IsExported() {
			continue
		}
		if err := p.setupMethod(val, &methodDef); err != nil {
			return fmt.Errorf("failed to set up call-handler for method %d (%s): %w", i, methodDef.Name, err)
		}
	}
	return nil
}

// makeArgs infers a list of ABI types, from a list of Go arguments.
func makeArgs(argCount int, getType func(i int) reflect.Type) (abi.Arguments, error) {
	out := make(abi.Arguments, argCount)
	for i := 0; i < argCount; i++ {
		argType := getType(i)
		abiTyp, err := goTypeToABIType(argType)
		if err != nil {
			return nil, fmt.Errorf("failed to determine ABI type of input arg %d: %w", i, err)
		}
		out[i] = abi.Argument{
			Name: fmt.Sprintf("arg_%d", i),
			Type: abiTyp,
		}
	}
	return out, nil
}

// makeArgTypes turns a slice of ABI argument types into a slice of ABI stringified types
func makeArgTypes(args abi.Arguments) []string {
	out := make([]string, len(args))
	for i := 0; i < len(args); i++ {
		out[i] = args[i].Type.String()
	}
	return out
}

// makeArgAllocators returns a lice of Go object allocator functions, for each of the arguments.
func makeArgAllocators(argCount int, getType func(i int) reflect.Type) []func() any {
	out := make([]func() interface{}, argCount)
	for i := 0; i < argCount; i++ {
		argType := getType(i)
		out[i] = func() interface{} {
			return reflect.New(argType).Elem().Interface()
		}
	}
	return out
}

// hasTrailingError checks if the last returned argument type, if any, is a Go error.
func hasTrailingError(argCount int, getType func(i int) reflect.Type) bool {
	if argCount == 0 {
		return false
	}
	lastTyp := getType(argCount - 1)
	return lastTyp.Kind() == reflect.Interface && lastTyp.Implements(typeFor[error]())
}

// setupMethod takes a method definition, attached to selfVal,
// and builds an ABI method to handle the input decoding and output encoding around the inner Go function.
func (p *Precompile[E]) setupMethod(selfVal *reflect.Value, methodDef *reflect.Method) error {
	methodName := methodDef.Name

	abiFunctionName := methodName
	// Solidity allows multiple functions with the same name, but different input params.
	// So cut off the suffix after the last "_", to allow the different variants to be defined in Go.
	variantSuffixIndex := strings.LastIndexByte(methodName, '_')
	variantSuffix := ""
	if variantSuffixIndex >= 0 {
		abiFunctionName = methodName[:variantSuffixIndex]
		variantSuffix = methodName[variantSuffixIndex+1:] // strip out the underscore
	}
	if len(abiFunctionName) == 0 {
		return fmt.Errorf("ABI method name of %s must not be empty", methodDef.Name)
	}
	if lo := strings.ToLower(abiFunctionName[:1]); lo != abiFunctionName[:1] {
		abiFunctionName = lo + abiFunctionName[1:]
	}
	// Prepare ABI definitions of call parameters.
	inArgCount := methodDef.Type.NumIn() - 1
	if inArgCount < 0 {
		return errors.New("expected method with receiver as first argument")
	}
	getInArg := func(i int) reflect.Type {
		return methodDef.Type.In(i + 1) // +1 to account for the receiver
	}
	inArgs, err := makeArgs(inArgCount, getInArg)
	if err != nil {
		return fmt.Errorf("failed to preserve input args: %w", err)
	}
	inArgTypes := makeArgTypes(inArgs)
	methodSig := fmt.Sprintf("%v(%v)", abiFunctionName, strings.Join(inArgTypes, ","))
	byte4Sig := bytes4(methodSig)
	if variantSuffix != "" {
		if expected := fmt.Sprintf("%x", byte4Sig); expected != variantSuffix {
			return fmt.Errorf("expected variant suffix %s for ABI method %s (Go: %s), but got %s",
				expected, methodSig, methodDef.Name, variantSuffix)
		}
	}
	if m, ok := p.abiMethods[byte4Sig]; ok {
		return fmt.Errorf("method %s conflicts with existing ABI method %s (Go: %s), signature: %x",
			methodDef.Name, m.abiSignature, m.goName, byte4Sig)
	}

	outArgCount := methodDef.Type.NumOut()
	// A Go method may return an error, which we do not ABI-encode, but rather forward as revert.
	errReturn := hasTrailingError(outArgCount, methodDef.Type.Out)
	if errReturn {
		outArgCount -= 1
	}

	// Prepare ABI definitions of return parameters.
	outArgs, err := makeArgs(outArgCount, methodDef.Type.Out)
	if err != nil {
		return fmt.Errorf("failed to prepare output arg types: %w", err)
	}

	inArgAllocators := makeArgAllocators(inArgCount, getInArg)
	fn := makeFn(selfVal, &methodDef.Func, errReturn, inArgs, outArgs, inArgAllocators)

	p.abiMethods[byte4Sig] = &precompileFunc{
		goName:       methodName,
		abiSignature: methodSig,
		fn:           fn,
	}
	return nil
}

// abiToValues turns serialized ABI input data into values, which are written to the given dest slice.
// The ABI decoding happens following the given args ABI type definitions.
// Values are allocated with the given respective allocator functions.
func abiToValues(args abi.Arguments, allocators []func() any, dest []reflect.Value, input []byte) error {
	// sanity check that we have as many allocators as result destination slots
	if len(allocators) != len(dest) {
		return fmt.Errorf("have %d allocators, but %d destinations", len(allocators), len(dest))
	}
	// Unpack the ABI data into default Go types
	inVals, err := args.UnpackValues(input)
	if err != nil {
		return fmt.Errorf("failed to decode input: %x\nerr: %w", input, err)
	}
	// Sanity check that the ABI util returned the expected number of inputs
	if len(inVals) != len(allocators) {
		return fmt.Errorf("expected %d args, got %d", len(allocators), len(inVals))
	}
	for i, inAlloc := range allocators {
		argSrc := inVals[i]
		argDest := inAlloc()
		argDest, err = convertType(argSrc, argDest)
		if err != nil {
			return fmt.Errorf("failed to convert arg %d from Go type %T to %T: %w", i, argSrc, argDest, err)
		}
		dest[i] = reflect.ValueOf(argDest)
	}
	return nil
}

// makeFn is a helper function to perform a method call:
// - ABI decoding of input
// - type conversion of inputs
// - actual function Go call
// - handling of error return value
// - and ABI encoding of outputs
func makeFn(selfVal, methodVal *reflect.Value, errReturn bool, inArgs, outArgs abi.Arguments, inArgAllocators []func() any) func(input []byte) ([]byte, error) {
	return func(input []byte) ([]byte, error) {
		// Convert each default Go type into the expected opinionated Go type
		callArgs := make([]reflect.Value, 1+len(inArgAllocators))
		callArgs[0] = *selfVal
		err := abiToValues(inArgs, inArgAllocators, callArgs[1:], input)
		if err != nil {
			return nil, err
		}
		// Call the precompile Go function
		returnReflectVals := methodVal.Call(callArgs)
		// Collect the return values
		returnVals := make([]interface{}, len(returnReflectVals))
		for i := range returnReflectVals {
			returnVals[i] = returnReflectVals[i].Interface()
		}
		if errReturn {
			errIndex := len(returnVals) - 1
			if errV := returnVals[errIndex]; errV != nil {
				if err, ok := errV.(error); ok {
					return nil, err
				}
			}
			returnVals = returnVals[:errIndex]
		}
		// Encode the return values
		out, err := outArgs.PackValues(returnVals)
		if err != nil {
			return nil, fmt.Errorf("failed to encode return data: %w", err)
		}
		return out, nil
	}
}

// convertType is a helper to run the Geth type conversion util,
// forcing one Go type into another approximately equivalent Go type
// (handling pointers and underlying equivalent types).
func convertType(src, dest any) (out any, err error) {
	defer func() {
		if rErr := recover(); rErr != nil {
			err = fmt.Errorf("ConvertType fail: %v", rErr)
		}
	}()
	out = abi.ConvertType(src, dest) // no error return, just panics if invalid.
	return
}

// goTypeToABIType infers the geth ABI type definition from a Go reflect type definition.
func goTypeToABIType(typ reflect.Type) (abi.Type, error) {
	solType, internalType, err := goTypeToSolidityType(typ)
	if err != nil {
		return abi.Type{}, err
	}
	return abi.NewType(solType, internalType, nil)
}

// ABIInt256 is an alias for big.Int that is represented as int256 in ABI method signature,
// since big.Int interpretation defaults to uint256.
type ABIInt256 big.Int

var abiInt256Type = typeFor[ABIInt256]()

// goTypeToSolidityType converts a Go type to the solidity ABI type definition.
// The "internalType" is a quirk of the Geth ABI utils, for nested structures.
// Unfortunately we have to convert to string, not directly to ABI type structure,
// as it is the only way to initialize Geth ABI types.
func goTypeToSolidityType(typ reflect.Type) (typeDef, internalType string, err error) {
	switch typ.Kind() {
	case reflect.Int, reflect.Uint:
		return "", "", fmt.Errorf("ints must have explicit size, type not valid: %s", typ)
	case reflect.Bool, reflect.String, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
		reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return strings.ToLower(typ.Kind().String()), "", nil
	case reflect.Array:
		if typ.Elem().Kind() == reflect.Uint8 {
			if typ.Len() == 20 && typ.Name() == "Address" {
				return "address", "", nil
			}
			if typ.Len() > 32 {
				return "", "", fmt.Errorf("byte array too large: %d", typ.Len())
			}
			return fmt.Sprintf("bytes%d", typ.Len()), "", nil
		}
		elemTyp, internalTyp, err := goTypeToSolidityType(typ.Elem())
		if err != nil {
			return "", "", fmt.Errorf("unrecognized slice-elem type: %w", err)
		}
		if internalTyp != "" {
			return "", "", fmt.Errorf("nested internal types not supported: %w", err)
		}
		return fmt.Sprintf("%s[%d]", elemTyp, typ.Len()), "", nil
	case reflect.Slice:
		if typ.Elem().Kind() == reflect.Uint8 {
			return "bytes", "", nil
		}
		elemABITyp, internalTyp, err := goTypeToSolidityType(typ.Elem())
		if err != nil {
			return "", "", fmt.Errorf("unrecognized slice-elem type: %w", err)
		}
		if internalTyp != "" {
			return "", "", fmt.Errorf("nested internal types not supported: %w", err)
		}
		return elemABITyp + "[]", "", nil
	case reflect.Struct:
		if typ.AssignableTo(abiInt256Type) {
			return "int256", "", nil
		}
		if typ.ConvertibleTo(typeFor[big.Int]()) {
			return "uint256", "", nil
		}
		// We can parse into abi.TupleTy in the future, if necessary
		return "", "", fmt.Errorf("structs are not supported, cannot handle type %s", typ)
	case reflect.Pointer:
		elemABITyp, internalTyp, err := goTypeToSolidityType(typ.Elem())
		if err != nil {
			return "", "", fmt.Errorf("unrecognized pointer-elem type: %w", err)
		}
		return elemABITyp, internalTyp, nil
	default:
		return "", "", fmt.Errorf("unrecognized typ: %s", typ)
	}
}

// setupFields registers all exported non-ignored fields as public ABI getters.
// Fields and methods of embedded structs are registered along the way.
func (p *Precompile[E]) setupFields(val *reflect.Value) error {
	if val.Kind() == reflect.Pointer {
		if val.IsNil() {
			return fmt.Errorf("cannot setupFields of nil value (type: %s)", val.Type())
		}
		inner := val.Elem()
		if err := p.setupFields(&inner); err != nil {
			return fmt.Errorf("failed to setupFields of inner pointer type: %w", err)
		}
		return nil
	}
	if val.Kind() != reflect.Struct {
		return nil // ignore non-struct types
	}
	typ := val.Type()
	fieldCount := val.NumField()
	for i := 0; i < fieldCount; i++ {
		fieldTyp := typ.Field(i)
		if !fieldTyp.IsExported() {
			continue
		}
		// With the "evm" struct tag set to "-", exposed fields can explicitly be ignored,
		// and will not be translated into getter functions on the precompile or further exposed.
		if tag, ok := fieldTyp.Tag.Lookup("evm"); ok && tag == "-" {
			continue
		}
		fieldVal := val.Field(i)
		if fieldTyp.Anonymous {
			// process methods and inner fields of embedded fields
			if err := p.setupMethods(&fieldVal); err != nil {
				return fmt.Errorf("failed to setup methods of embedded field %s (type: %s): %w",
					fieldTyp.Name, fieldTyp.Type, err)
			}
			if err := p.setupFields(&fieldVal); err != nil {
				return fmt.Errorf("failed to setup fields of embedded field %s (type %s): %w",
					fieldTyp.Name, fieldTyp.Type, err)
			}
			continue
		}
		if err := p.setupStructField(&fieldTyp, &fieldVal); err != nil {
			return fmt.Errorf("failed to setup struct field %s (type %s): %w", fieldTyp.Name, fieldTyp.Type, err)
		}
	}
	return nil
}

// setupStructField registers a struct field as a public-getter ABI method.
func (p *Precompile[E]) setupStructField(fieldDef *reflect.StructField, fieldVal *reflect.Value) error {
	abiFunctionName := fieldDef.Name
	if len(abiFunctionName) == 0 {
		return fmt.Errorf("ABI name of %s must not be empty", fieldDef.Name)
	}
	if lo := strings.ToLower(abiFunctionName[:1]); lo != abiFunctionName[:1] {
		abiFunctionName = lo + abiFunctionName[1:]
	}
	// The tag can override the field name
	if v, ok := fieldDef.Tag.Lookup("evm"); ok {
		abiFunctionName = v
	}
	// The ABI signature of public fields in solidity is simply a getter function of the same name.
	// The return type is not part of the ABI signature. So we just append "()" to turn it into a function.
	methodSig := abiFunctionName + "()"
	byte4Sig := bytes4(methodSig)
	if m, ok := p.abiMethods[byte4Sig]; ok {
		return fmt.Errorf("struct field %s conflicts with existing ABI method %s (Go: %s), signature: %x",
			fieldDef.Name, m.abiSignature, m.goName, byte4Sig)
	}
	// Determine the type to ABI-encode the Go field value into
	abiTyp, err := goTypeToABIType(fieldDef.Type)
	if err != nil {
		return fmt.Errorf("failed to determine ABI type of struct field of type %s: %w", fieldDef.Type, err)
	}
	outArgs := abi.Arguments{
		{
			Name: abiFunctionName,
			Type: abiTyp,
		},
	}
	// Create the getter ABI method, that will take the field value, encode it, and return it.
	fn := func(input []byte) ([]byte, error) {
		if len(input) != 0 { // 4 byte selector is already trimmed
			return nil, fmt.Errorf("unexpected input: %x", input)
		}
		v := fieldVal.Interface()
		if abiVal, ok := v.(interface{ ToABI() []byte }); ok {
			return abiVal.ToABI(), nil
		}
		if bigInt, ok := v.(*hexutil.Big); ok { // We can change this to use convertType later, if we need more generic type handling.
			v = (*big.Int)(bigInt)
		}
		outData, err := outArgs.PackValues([]any{v})
		if err != nil {
			return nil, fmt.Errorf("method %s failed to pack return data: %w", methodSig, err)
		}
		return outData, nil
	}
	p.abiMethods[byte4Sig] = &precompileFunc{
		goName:       fieldDef.Name,
		abiSignature: methodSig,
		fn:           fn,
	}
	// register field as settable
	if p.fieldSetter && fieldDef.Type.AssignableTo(typeFor[common.Address]()) {
		p.settable[byte4Sig] = &settableField{
			name:  fieldDef.Name,
			value: fieldVal,
		}
	}
	return nil
}

func (p *Precompile[E]) setupFieldSetter() {
	if !p.fieldSetter {
		return
	}
	p.abiMethods[setterFnBytes4] = &precompileFunc{
		goName:       "__fieldSetter___",
		abiSignature: setterFnSig,
		fn: func(input []byte) ([]byte, error) {
			if len(input) != 32*2 {
				return nil, fmt.Errorf("cannot set address field to %d bytes", len(input))
			}
			if [32 - 4]byte(input[4:32]) != ([32 - 4]byte{}) {
				return nil, fmt.Errorf("unexpected selector content, input: %x", input[:])
			}
			selector := [4]byte(input[:4])
			f, ok := p.settable[selector]
			if !ok {
				return nil, fmt.Errorf("unknown address field selector 0x%x", selector)
			}
			addr := common.Address(input[32*2-20 : 32*2])
			f.value.Set(reflect.ValueOf(addr))
			return nil, nil
		},
	}
}

// RequiredGas is part of the vm.PrecompiledContract interface, and all system precompiles use 0 gas.
func (p *Precompile[E]) RequiredGas(input []byte) uint64 {
	return 0
}

// Run implements the vm.PrecompiledContract interface.
// This takes the ABI calldata, finds the applicable method by selector, and then runs that method with the data.
func (p *Precompile[E]) Run(input []byte) ([]byte, error) {
	if len(input) < 4 {
		return encodeRevert(fmt.Errorf("expected at least 4 bytes, but got '%x'", input))
	}
	sig := [4]byte(input[:4])
	params := input[4:]
	fn, ok := p.abiMethods[sig]
	if !ok {
		return encodeRevert(fmt.Errorf("unrecognized 4 byte signature: %x", sig))
	}
	out, err := fn.fn(params)
	if err != nil {
		return encodeRevert(fmt.Errorf("failed to run %s, ABI: %q, err: %w", fn.goName, fn.abiSignature, err))
	}
	return out, nil
}

// revertSelector is the ABI signature of a default error type in solidity.
var revertSelector = crypto.Keccak256([]byte("Error(string)"))[:4]

func encodeRevert(outErr error) ([]byte, error) {
	outErrStr := []byte(outErr.Error())
	out := make([]byte, 0, 4+32*2+len(outErrStr)+32)
	out = append(out, revertSelector...)              // selector
	out = append(out, b32(0x20)...)                   // offset to string
	out = append(out, b32(uint64(len(outErrStr)))...) // length of string
	out = append(out, rightPad32(outErrStr)...)       // the error message string
	return out, vm.ErrExecutionReverted               // Geth EVM will pick this up as a revert with return-data
}

// typeFor returns the [Type] that represents the type argument T.
// Note: not available yet in Go 1.21, but part of std-lib later.
func typeFor[T any]() reflect.Type {
	return reflect.TypeOf((*T)(nil)).Elem()
}