1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
package main
import (
"bytes"
"fmt"
"math/big"
"os"
"strconv"
"github.com/ethereum/go-ethereum/accounts/abi"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/triedb"
"github.com/ethereum/go-ethereum/triedb/hashdb"
"github.com/ethereum-optimism/optimism/cannon/mipsevm/memory"
"github.com/ethereum-optimism/optimism/op-chain-ops/crossdomain"
"github.com/ethereum-optimism/optimism/op-service/eth"
"github.com/ethereum-optimism/optimism/op-service/predeploys"
)
// ABI types
var (
// Plain dynamic dynBytes type
dynBytes, _ = abi.NewType("bytes", "", nil)
bytesArgs = abi.Arguments{
{Type: dynBytes},
}
// Plain fixed bytes32 type
fixedBytes, _ = abi.NewType("bytes32", "", nil)
fixedBytesArgs = abi.Arguments{
{Type: fixedBytes},
}
uint32Type, _ = abi.NewType("uint32", "", nil)
// Plain address type
addressType, _ = abi.NewType("address", "", nil)
// Plain uint8 type
uint8Type, _ = abi.NewType("uint8", "", nil)
// Plain uint256 type
uint256Type, _ = abi.NewType("uint256", "", nil)
// Decoded nonce tuple (nonce, version)
decodedNonce, _ = abi.NewType("tuple", "DecodedNonce", []abi.ArgumentMarshaling{
{Name: "nonce", Type: "uint256"},
{Name: "version", Type: "uint256"},
})
decodedNonceArgs = abi.Arguments{
{Name: "encodedNonce", Type: decodedNonce},
}
// Decoded ecotone scalars (uint32, uint32)
decodedScalars = abi.Arguments{
{Name: "basefeeScalar", Type: uint32Type},
{Name: "blobbasefeeScalar", Type: uint32Type},
}
// WithdrawalHash slot tuple (bytes32, bytes32)
withdrawalSlot, _ = abi.NewType("tuple", "SlotHash", []abi.ArgumentMarshaling{
{Name: "withdrawalHash", Type: "bytes32"},
{Name: "zeroPadding", Type: "bytes32"},
})
withdrawalSlotArgs = abi.Arguments{
{Name: "slotHash", Type: withdrawalSlot},
}
// Prove withdrawal inputs tuple (bytes32, bytes32, bytes32, bytes32, bytes[])
proveWithdrawalInputs, _ = abi.NewType("tuple", "ProveWithdrawalInputs", []abi.ArgumentMarshaling{
{Name: "worldRoot", Type: "bytes32"},
{Name: "stateRoot", Type: "bytes32"},
{Name: "outputRoot", Type: "bytes32"},
{Name: "withdrawalHash", Type: "bytes32"},
{Name: "proof", Type: "bytes[]"},
})
proveWithdrawalInputsArgs = abi.Arguments{
{Name: "inputs", Type: proveWithdrawalInputs},
}
// cannonMemoryProof inputs tuple (bytes32, bytes)
cannonMemoryProof, _ = abi.NewType("tuple", "CannonMemoryProof", []abi.ArgumentMarshaling{
{Name: "memRoot", Type: "bytes32"},
{Name: "proof", Type: "bytes"},
})
cannonMemoryProofArgs = abi.Arguments{
{Name: "encodedCannonMemoryProof", Type: cannonMemoryProof},
}
// Gas paying token tuple (address, uint8, bytes32, bytes32)
gasPayingTokenArgs = abi.Arguments{
{Name: "token", Type: addressType},
{Name: "decimals", Type: uint8Type},
{Name: "name", Type: fixedBytes},
{Name: "symbol", Type: fixedBytes},
}
// Dependency tuple (uint256)
dependencyArgs = abi.Arguments{{Name: "chainId", Type: uint256Type}}
)
func DiffTestUtils() {
args := os.Args[2:]
variant := args[0]
// This command requires arguments
if len(args) == 0 {
panic("Error: No arguments provided")
}
switch variant {
case "decodeVersionedNonce":
// Parse input arguments
input, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
// Decode versioned nonce
nonce, version := crossdomain.DecodeVersionedNonce(input)
// ABI encode output
packArgs := struct {
Nonce *big.Int
Version *big.Int
}{
nonce,
version,
}
packed, err := decodedNonceArgs.Pack(&packArgs)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "encodeCrossDomainMessage":
// Parse input arguments
nonce, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
sender := common.HexToAddress(args[2])
target := common.HexToAddress(args[3])
value, ok := new(big.Int).SetString(args[4], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
data := common.FromHex(args[6])
// Encode cross domain message
encoded, err := encodeCrossDomainMessage(nonce, sender, target, value, gasLimit, data)
checkErr(err, "Error encoding cross domain message")
// Pack encoded cross domain message
packed, err := bytesArgs.Pack(&encoded)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "hashCrossDomainMessage":
// Parse input arguments
nonce, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
sender := common.HexToAddress(args[2])
target := common.HexToAddress(args[3])
value, ok := new(big.Int).SetString(args[4], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
data := common.FromHex(args[6])
// Encode cross domain message
encoded, err := encodeCrossDomainMessage(nonce, sender, target, value, gasLimit, data)
checkErr(err, "Error encoding cross domain message")
// Hash encoded cross domain message
hash := crypto.Keccak256Hash(encoded)
// Pack hash
packed, err := fixedBytesArgs.Pack(&hash)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "hashDepositTransaction":
// Parse input arguments
l1BlockHash := common.HexToHash(args[1])
logIndex, ok := new(big.Int).SetString(args[2], 10)
checkOk(ok)
from := common.HexToAddress(args[3])
to := common.HexToAddress(args[4])
mint, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
value, ok := new(big.Int).SetString(args[6], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[7], 10)
checkOk(ok)
data := common.FromHex(args[8])
// Create deposit transaction
depositTx := makeDepositTx(from, to, value, mint, gasLimit, false, data, l1BlockHash, logIndex)
// RLP encode deposit transaction
encoded, err := types.NewTx(&depositTx).MarshalBinary()
checkErr(err, "Error encoding deposit transaction")
// Hash encoded deposit transaction
hash := crypto.Keccak256Hash(encoded)
// Pack hash
packed, err := fixedBytesArgs.Pack(&hash)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "encodeDepositTransaction":
// Parse input arguments
from := common.HexToAddress(args[1])
to := common.HexToAddress(args[2])
value, ok := new(big.Int).SetString(args[3], 10)
checkOk(ok)
mint, ok := new(big.Int).SetString(args[4], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
isCreate := args[6] == "true"
data := common.FromHex(args[7])
l1BlockHash := common.HexToHash(args[8])
logIndex, ok := new(big.Int).SetString(args[9], 10)
checkOk(ok)
depositTx := makeDepositTx(from, to, value, mint, gasLimit, isCreate, data, l1BlockHash, logIndex)
// RLP encode deposit transaction
encoded, err := types.NewTx(&depositTx).MarshalBinary()
checkErr(err, "Failed to RLP encode deposit transaction")
// Pack rlp encoded deposit transaction
packed, err := bytesArgs.Pack(&encoded)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "hashWithdrawal":
// Parse input arguments
nonce, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
sender := common.HexToAddress(args[2])
target := common.HexToAddress(args[3])
value, ok := new(big.Int).SetString(args[4], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
data := common.FromHex(args[6])
// Hash withdrawal
hash, err := hashWithdrawal(nonce, sender, target, value, gasLimit, data)
checkErr(err, "Error hashing withdrawal")
// Pack hash
packed, err := fixedBytesArgs.Pack(&hash)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "hashOutputRootProof":
// Parse input arguments
version := common.HexToHash(args[1])
stateRoot := common.HexToHash(args[2])
messagePasserStorageRoot := common.HexToHash(args[3])
latestBlockHash := common.HexToHash(args[4])
// Hash the output root proof
hash, err := hashOutputRootProof(version, stateRoot, messagePasserStorageRoot, latestBlockHash)
checkErr(err, "Error hashing output root proof")
// Pack hash
packed, err := fixedBytesArgs.Pack(&hash)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "getProveWithdrawalTransactionInputs":
// Parse input arguments
nonce, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
sender := common.HexToAddress(args[2])
target := common.HexToAddress(args[3])
value, ok := new(big.Int).SetString(args[4], 10)
checkOk(ok)
gasLimit, ok := new(big.Int).SetString(args[5], 10)
checkOk(ok)
data := common.FromHex(args[6])
wdHash, err := hashWithdrawal(nonce, sender, target, value, gasLimit, data)
checkErr(err, "Error hashing withdrawal")
// Compute the storage slot the withdrawalHash will be stored in
slot := struct {
WithdrawalHash common.Hash
ZeroPadding common.Hash
}{
WithdrawalHash: wdHash,
ZeroPadding: common.Hash{},
}
packed, err := withdrawalSlotArgs.Pack(&slot)
checkErr(err, "Error packing withdrawal slot")
// Compute the storage slot the withdrawalHash will be stored in
hash := crypto.Keccak256Hash(packed)
// Create a secure trie for state
state, err := trie.NewStateTrie(
trie.TrieID(types.EmptyRootHash),
triedb.NewDatabase(rawdb.NewMemoryDatabase(), &triedb.Config{HashDB: hashdb.Defaults}),
)
checkErr(err, "Error creating secure trie")
// Put a "true" bool in the storage slot
err = state.UpdateStorage(common.Address{}, hash.Bytes(), []byte{0x01})
checkErr(err, "Error updating storage")
// Create a secure trie for the world state
world, err := trie.NewStateTrie(
trie.TrieID(types.EmptyRootHash),
triedb.NewDatabase(rawdb.NewMemoryDatabase(), &triedb.Config{HashDB: hashdb.Defaults}),
)
checkErr(err, "Error creating secure trie")
// Put the put the rlp encoded account in the world trie
account := types.StateAccount{
Nonce: 0,
Balance: common.U2560,
Root: state.Hash(),
}
writer := new(bytes.Buffer)
checkErr(account.EncodeRLP(writer), "Error encoding account")
err = world.UpdateStorage(common.Address{}, predeploys.L2ToL1MessagePasserAddr.Bytes(), writer.Bytes())
checkErr(err, "Error updating storage")
// Get the proof
var proof proofList
checkErr(state.Prove(predeploys.L2ToL1MessagePasserAddr.Bytes(), &proof), "Error getting proof")
// Get the output root
outputRoot, err := hashOutputRootProof(common.Hash{}, world.Hash(), state.Hash(), common.Hash{})
checkErr(err, "Error hashing output root proof")
// Pack the output
output := struct {
WorldRoot common.Hash
StateRoot common.Hash
OutputRoot common.Hash
WithdrawalHash common.Hash
Proof proofList
}{
WorldRoot: world.Hash(),
StateRoot: state.Hash(),
OutputRoot: outputRoot,
WithdrawalHash: wdHash,
Proof: proof,
}
packed, err = proveWithdrawalInputsArgs.Pack(&output)
checkErr(err, "Error encoding output")
// Print the output
fmt.Print(hexutil.Encode(packed[32:]))
case "cannonMemoryProof":
// <pc, insn, [memAddr, memValue], [memAddr2, memValue2]>
// Generates a memory proof of `memAddr` for a trie containing memValue and memValue2
mem := memory.NewMemory()
if len(args) != 3 && len(args) != 5 && len(args) != 7 {
panic("Error: cannonMemoryProofWithProof requires 2, 4, or 6 arguments")
}
pc, err := strconv.ParseUint(args[1], 10, 32)
checkErr(err, "Error decoding addr")
insn, err := strconv.ParseUint(args[2], 10, 32)
checkErr(err, "Error decoding insn")
mem.SetMemory(uint32(pc), uint32(insn))
var insnProof, memProof [896]byte
if len(args) >= 5 {
memAddr, err := strconv.ParseUint(args[3], 10, 32)
checkErr(err, "Error decoding memAddr")
memValue, err := strconv.ParseUint(args[4], 10, 32)
checkErr(err, "Error decoding memValue")
mem.SetMemory(uint32(memAddr), uint32(memValue))
memProof = mem.MerkleProof(uint32(memAddr))
}
if len(args) == 7 {
memAddr, err := strconv.ParseUint(args[5], 10, 32)
checkErr(err, "Error decoding memAddr")
memValue, err := strconv.ParseUint(args[6], 10, 32)
checkErr(err, "Error decoding memValue")
mem.SetMemory(uint32(memAddr), uint32(memValue))
memProof = mem.MerkleProof(uint32(memAddr))
}
insnProof = mem.MerkleProof(uint32(pc))
output := struct {
MemRoot common.Hash
Proof []byte
}{
MemRoot: mem.MerkleRoot(),
Proof: append(insnProof[:], memProof[:]...),
}
packed, err := cannonMemoryProofArgs.Pack(&output)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed[32:]))
case "cannonMemoryProof2":
// <pc, insn, [memAddr, memValue], memAddr2>
// Generates a memory proof of memAddr2 for a trie containing memValue
mem := memory.NewMemory()
if len(args) != 6 {
panic("Error: cannonMemoryProofWithProof2 requires 5 arguments")
}
pc, err := strconv.ParseUint(args[1], 10, 32)
checkErr(err, "Error decoding addr")
insn, err := strconv.ParseUint(args[2], 10, 32)
checkErr(err, "Error decoding insn")
mem.SetMemory(uint32(pc), uint32(insn))
var memProof [896]byte
memAddr, err := strconv.ParseUint(args[3], 10, 32)
checkErr(err, "Error decoding memAddr")
memValue, err := strconv.ParseUint(args[4], 10, 32)
checkErr(err, "Error decoding memValue")
mem.SetMemory(uint32(memAddr), uint32(memValue))
memAddr2, err := strconv.ParseUint(args[5], 10, 32)
checkErr(err, "Error decoding memAddr")
memProof = mem.MerkleProof(uint32(memAddr2))
output := struct {
MemRoot common.Hash
Proof []byte
}{
MemRoot: mem.MerkleRoot(),
Proof: memProof[:],
}
packed, err := cannonMemoryProofArgs.Pack(&output)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed[32:]))
case "cannonMemoryProofWrongLeaf":
// <pc, insn, memAddr, memValue>
mem := memory.NewMemory()
if len(args) != 5 {
panic("Error: cannonMemoryProofWrongLeaf requires 4 arguments")
}
pc, err := strconv.ParseUint(args[1], 10, 32)
checkErr(err, "Error decoding addr")
insn, err := strconv.ParseUint(args[2], 10, 32)
checkErr(err, "Error decoding insn")
mem.SetMemory(uint32(pc), uint32(insn))
var insnProof, memProof [896]byte
memAddr, err := strconv.ParseUint(args[3], 10, 32)
checkErr(err, "Error decoding memAddr")
memValue, err := strconv.ParseUint(args[4], 10, 32)
checkErr(err, "Error decoding memValue")
mem.SetMemory(uint32(memAddr), uint32(memValue))
// Compute a valid proof for the root, but for the wrong leaves.
memProof = mem.MerkleProof(uint32(memAddr + 32))
insnProof = mem.MerkleProof(uint32(pc + 32))
output := struct {
MemRoot common.Hash
Proof []byte
}{
MemRoot: mem.MerkleRoot(),
Proof: append(insnProof[:], memProof[:]...),
}
packed, err := cannonMemoryProofArgs.Pack(&output)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed[32:]))
case "encodeScalarEcotone":
basefeeScalar, err := strconv.ParseUint(args[1], 10, 32)
checkErr(err, "Error decoding basefeeScalar")
blobbasefeeScalar, err := strconv.ParseUint(args[2], 10, 32)
checkErr(err, "Error decoding blobbasefeeScalar")
encoded := eth.EncodeScalar(eth.EcotoneScalars{
BaseFeeScalar: uint32(basefeeScalar),
BlobBaseFeeScalar: uint32(blobbasefeeScalar),
})
fmt.Print(hexutil.Encode(encoded[:]))
case "decodeScalarEcotone":
scalar := common.HexToHash(args[1])
scalars, err := eth.DecodeScalar([32]byte(scalar[:]))
checkErr(err, "Error decoding scalar")
packed, err := decodedScalars.Pack(scalars.BaseFeeScalar, scalars.BlobBaseFeeScalar)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "encodeGasPayingToken":
// Parse input arguments
token := common.HexToAddress(args[1])
decimals, err := strconv.ParseUint(args[2], 10, 8)
checkErr(err, "Error decoding decimals")
name := common.HexToHash(args[3])
symbol := common.HexToHash(args[4])
// Encode gas paying token
encoded, err := gasPayingTokenArgs.Pack(token, uint8(decimals), name, symbol)
checkErr(err, "Error encoding gas paying token")
// Pack encoded gas paying token
packed, err := bytesArgs.Pack(&encoded)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
case "encodeDependency":
// Parse input arguments
chainId, ok := new(big.Int).SetString(args[1], 10)
checkOk(ok)
// Encode dependency
encoded, err := dependencyArgs.Pack(chainId)
checkErr(err, "Error encoding dependency")
// Pack encoded dependency
packed, err := bytesArgs.Pack(&encoded)
checkErr(err, "Error encoding output")
fmt.Print(hexutil.Encode(packed))
default:
panic(fmt.Errorf("Unknown command: %s", args[0]))
}
}