• Inphi's avatar
    cannon: Fix GC emulation of Go programs (#11704) · 7ff5e6ed
    Inphi authored
    * cannon: Fix GC emulation of Go programs
    
    Improves Linux/MIPS32 emulation for Go programs that utilize the garbage
    collector and goroutine scheduling.
    
    This adds support for the following syscalls:
    
    - getpid - used by the go scheduler
    - clock_gettime - used by the go scheduler and for GC assists and to properly emulate
      time related operations such as `time.Sleep`.
    
    Note on GC assists:
    
    The Go GC relies on `clock_gettime` for GC "assists", whereby a mutator can perform a little bit
    of GC without waiting for the scheduler to do so.
    A monotonic clock (runtime.nanotime) is used to compute the current goroutine's compute budget.
    By modeling a MIPS32 CPU that runs at some clock speed (ex: 10 MHz), we can provide a consistent
    emulation of monotonic time needed by the Go runtime.
    All other clock_gettime flags are handled as unimplemented syscalls.
    
    * fix unsupported syscalls test
    
    * fix some review comments
    
    * address review comments
    
    * update snapshots
    
    * fuzz invalid memory proof
    
    * reduce test runtime
    
    * tweak realtime emulation
    
    * reduce test runtime
    
    * set a high timeout for heavy fuzz tests
    
    * simplify fuzz
    
    * fix heavy tests
    7ff5e6ed
differential-testing.go 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
package main

import (
	"bytes"
	"fmt"
	"math/big"
	"os"
	"strconv"

	"github.com/ethereum/go-ethereum/accounts/abi"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/common/hexutil"
	"github.com/ethereum/go-ethereum/core/rawdb"
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/crypto"
	"github.com/ethereum/go-ethereum/trie"
	"github.com/ethereum/go-ethereum/triedb"
	"github.com/ethereum/go-ethereum/triedb/hashdb"

	"github.com/ethereum-optimism/optimism/cannon/mipsevm/memory"
	"github.com/ethereum-optimism/optimism/op-chain-ops/crossdomain"
	"github.com/ethereum-optimism/optimism/op-service/eth"
	"github.com/ethereum-optimism/optimism/op-service/predeploys"
)

// ABI types
var (
	// Plain dynamic dynBytes type
	dynBytes, _ = abi.NewType("bytes", "", nil)
	bytesArgs   = abi.Arguments{
		{Type: dynBytes},
	}

	// Plain fixed bytes32 type
	fixedBytes, _  = abi.NewType("bytes32", "", nil)
	fixedBytesArgs = abi.Arguments{
		{Type: fixedBytes},
	}

	uint32Type, _ = abi.NewType("uint32", "", nil)

	// Plain address type
	addressType, _ = abi.NewType("address", "", nil)

	// Plain uint8 type
	uint8Type, _ = abi.NewType("uint8", "", nil)

	// Plain uint256 type
	uint256Type, _ = abi.NewType("uint256", "", nil)

	// Decoded nonce tuple (nonce, version)
	decodedNonce, _ = abi.NewType("tuple", "DecodedNonce", []abi.ArgumentMarshaling{
		{Name: "nonce", Type: "uint256"},
		{Name: "version", Type: "uint256"},
	})
	decodedNonceArgs = abi.Arguments{
		{Name: "encodedNonce", Type: decodedNonce},
	}

	// Decoded ecotone scalars (uint32, uint32)
	decodedScalars = abi.Arguments{
		{Name: "basefeeScalar", Type: uint32Type},
		{Name: "blobbasefeeScalar", Type: uint32Type},
	}

	// WithdrawalHash slot tuple (bytes32, bytes32)
	withdrawalSlot, _ = abi.NewType("tuple", "SlotHash", []abi.ArgumentMarshaling{
		{Name: "withdrawalHash", Type: "bytes32"},
		{Name: "zeroPadding", Type: "bytes32"},
	})
	withdrawalSlotArgs = abi.Arguments{
		{Name: "slotHash", Type: withdrawalSlot},
	}

	// Prove withdrawal inputs tuple (bytes32, bytes32, bytes32, bytes32, bytes[])
	proveWithdrawalInputs, _ = abi.NewType("tuple", "ProveWithdrawalInputs", []abi.ArgumentMarshaling{
		{Name: "worldRoot", Type: "bytes32"},
		{Name: "stateRoot", Type: "bytes32"},
		{Name: "outputRoot", Type: "bytes32"},
		{Name: "withdrawalHash", Type: "bytes32"},
		{Name: "proof", Type: "bytes[]"},
	})
	proveWithdrawalInputsArgs = abi.Arguments{
		{Name: "inputs", Type: proveWithdrawalInputs},
	}

	// cannonMemoryProof inputs tuple (bytes32, bytes)
	cannonMemoryProof, _ = abi.NewType("tuple", "CannonMemoryProof", []abi.ArgumentMarshaling{
		{Name: "memRoot", Type: "bytes32"},
		{Name: "proof", Type: "bytes"},
	})
	cannonMemoryProofArgs = abi.Arguments{
		{Name: "encodedCannonMemoryProof", Type: cannonMemoryProof},
	}

	// Gas paying token tuple (address, uint8, bytes32, bytes32)
	gasPayingTokenArgs = abi.Arguments{
		{Name: "token", Type: addressType},
		{Name: "decimals", Type: uint8Type},
		{Name: "name", Type: fixedBytes},
		{Name: "symbol", Type: fixedBytes},
	}

	// Dependency tuple (uint256)
	dependencyArgs = abi.Arguments{{Name: "chainId", Type: uint256Type}}
)

func DiffTestUtils() {
	args := os.Args[2:]
	variant := args[0]

	// This command requires arguments
	if len(args) == 0 {
		panic("Error: No arguments provided")
	}

	switch variant {
	case "decodeVersionedNonce":
		// Parse input arguments
		input, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)

		// Decode versioned nonce
		nonce, version := crossdomain.DecodeVersionedNonce(input)

		// ABI encode output
		packArgs := struct {
			Nonce   *big.Int
			Version *big.Int
		}{
			nonce,
			version,
		}
		packed, err := decodedNonceArgs.Pack(&packArgs)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "encodeCrossDomainMessage":
		// Parse input arguments
		nonce, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)
		sender := common.HexToAddress(args[2])
		target := common.HexToAddress(args[3])
		value, ok := new(big.Int).SetString(args[4], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		data := common.FromHex(args[6])

		// Encode cross domain message
		encoded, err := encodeCrossDomainMessage(nonce, sender, target, value, gasLimit, data)
		checkErr(err, "Error encoding cross domain message")

		// Pack encoded cross domain message
		packed, err := bytesArgs.Pack(&encoded)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "hashCrossDomainMessage":
		// Parse input arguments
		nonce, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)
		sender := common.HexToAddress(args[2])
		target := common.HexToAddress(args[3])
		value, ok := new(big.Int).SetString(args[4], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		data := common.FromHex(args[6])

		// Encode cross domain message
		encoded, err := encodeCrossDomainMessage(nonce, sender, target, value, gasLimit, data)
		checkErr(err, "Error encoding cross domain message")

		// Hash encoded cross domain message
		hash := crypto.Keccak256Hash(encoded)

		// Pack hash
		packed, err := fixedBytesArgs.Pack(&hash)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "hashDepositTransaction":
		// Parse input arguments
		l1BlockHash := common.HexToHash(args[1])
		logIndex, ok := new(big.Int).SetString(args[2], 10)
		checkOk(ok)
		from := common.HexToAddress(args[3])
		to := common.HexToAddress(args[4])
		mint, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		value, ok := new(big.Int).SetString(args[6], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[7], 10)
		checkOk(ok)
		data := common.FromHex(args[8])

		// Create deposit transaction
		depositTx := makeDepositTx(from, to, value, mint, gasLimit, false, data, l1BlockHash, logIndex)

		// RLP encode deposit transaction
		encoded, err := types.NewTx(&depositTx).MarshalBinary()
		checkErr(err, "Error encoding deposit transaction")

		// Hash encoded deposit transaction
		hash := crypto.Keccak256Hash(encoded)

		// Pack hash
		packed, err := fixedBytesArgs.Pack(&hash)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "encodeDepositTransaction":
		// Parse input arguments
		from := common.HexToAddress(args[1])
		to := common.HexToAddress(args[2])
		value, ok := new(big.Int).SetString(args[3], 10)
		checkOk(ok)
		mint, ok := new(big.Int).SetString(args[4], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		isCreate := args[6] == "true"
		data := common.FromHex(args[7])
		l1BlockHash := common.HexToHash(args[8])
		logIndex, ok := new(big.Int).SetString(args[9], 10)
		checkOk(ok)

		depositTx := makeDepositTx(from, to, value, mint, gasLimit, isCreate, data, l1BlockHash, logIndex)

		// RLP encode deposit transaction
		encoded, err := types.NewTx(&depositTx).MarshalBinary()
		checkErr(err, "Failed to RLP encode deposit transaction")
		// Pack rlp encoded deposit transaction
		packed, err := bytesArgs.Pack(&encoded)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "hashWithdrawal":
		// Parse input arguments
		nonce, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)
		sender := common.HexToAddress(args[2])
		target := common.HexToAddress(args[3])
		value, ok := new(big.Int).SetString(args[4], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		data := common.FromHex(args[6])

		// Hash withdrawal
		hash, err := hashWithdrawal(nonce, sender, target, value, gasLimit, data)
		checkErr(err, "Error hashing withdrawal")

		// Pack hash
		packed, err := fixedBytesArgs.Pack(&hash)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "hashOutputRootProof":
		// Parse input arguments
		version := common.HexToHash(args[1])
		stateRoot := common.HexToHash(args[2])
		messagePasserStorageRoot := common.HexToHash(args[3])
		latestBlockHash := common.HexToHash(args[4])

		// Hash the output root proof
		hash, err := hashOutputRootProof(version, stateRoot, messagePasserStorageRoot, latestBlockHash)
		checkErr(err, "Error hashing output root proof")

		// Pack hash
		packed, err := fixedBytesArgs.Pack(&hash)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "getProveWithdrawalTransactionInputs":
		// Parse input arguments
		nonce, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)
		sender := common.HexToAddress(args[2])
		target := common.HexToAddress(args[3])
		value, ok := new(big.Int).SetString(args[4], 10)
		checkOk(ok)
		gasLimit, ok := new(big.Int).SetString(args[5], 10)
		checkOk(ok)
		data := common.FromHex(args[6])

		wdHash, err := hashWithdrawal(nonce, sender, target, value, gasLimit, data)
		checkErr(err, "Error hashing withdrawal")

		// Compute the storage slot the withdrawalHash will be stored in
		slot := struct {
			WithdrawalHash common.Hash
			ZeroPadding    common.Hash
		}{
			WithdrawalHash: wdHash,
			ZeroPadding:    common.Hash{},
		}
		packed, err := withdrawalSlotArgs.Pack(&slot)
		checkErr(err, "Error packing withdrawal slot")

		// Compute the storage slot the withdrawalHash will be stored in
		hash := crypto.Keccak256Hash(packed)

		// Create a secure trie for state
		state, err := trie.NewStateTrie(
			trie.TrieID(types.EmptyRootHash),
			triedb.NewDatabase(rawdb.NewMemoryDatabase(), &triedb.Config{HashDB: hashdb.Defaults}),
		)
		checkErr(err, "Error creating secure trie")

		// Put a "true" bool in the storage slot
		err = state.UpdateStorage(common.Address{}, hash.Bytes(), []byte{0x01})
		checkErr(err, "Error updating storage")

		// Create a secure trie for the world state
		world, err := trie.NewStateTrie(
			trie.TrieID(types.EmptyRootHash),
			triedb.NewDatabase(rawdb.NewMemoryDatabase(), &triedb.Config{HashDB: hashdb.Defaults}),
		)
		checkErr(err, "Error creating secure trie")

		// Put the put the rlp encoded account in the world trie
		account := types.StateAccount{
			Nonce:   0,
			Balance: common.U2560,
			Root:    state.Hash(),
		}
		writer := new(bytes.Buffer)
		checkErr(account.EncodeRLP(writer), "Error encoding account")
		err = world.UpdateStorage(common.Address{}, predeploys.L2ToL1MessagePasserAddr.Bytes(), writer.Bytes())
		checkErr(err, "Error updating storage")

		// Get the proof
		var proof proofList
		checkErr(state.Prove(predeploys.L2ToL1MessagePasserAddr.Bytes(), &proof), "Error getting proof")

		// Get the output root
		outputRoot, err := hashOutputRootProof(common.Hash{}, world.Hash(), state.Hash(), common.Hash{})
		checkErr(err, "Error hashing output root proof")

		// Pack the output
		output := struct {
			WorldRoot      common.Hash
			StateRoot      common.Hash
			OutputRoot     common.Hash
			WithdrawalHash common.Hash
			Proof          proofList
		}{
			WorldRoot:      world.Hash(),
			StateRoot:      state.Hash(),
			OutputRoot:     outputRoot,
			WithdrawalHash: wdHash,
			Proof:          proof,
		}
		packed, err = proveWithdrawalInputsArgs.Pack(&output)
		checkErr(err, "Error encoding output")

		// Print the output
		fmt.Print(hexutil.Encode(packed[32:]))
	case "cannonMemoryProof":
		// <pc, insn, [memAddr, memValue], [memAddr2, memValue2]>
		// Generates a memory proof of `memAddr` for a trie containing memValue and memValue2
		mem := memory.NewMemory()
		if len(args) != 3 && len(args) != 5 && len(args) != 7 {
			panic("Error: cannonMemoryProofWithProof requires 2, 4, or 6 arguments")
		}
		pc, err := strconv.ParseUint(args[1], 10, 32)
		checkErr(err, "Error decoding addr")
		insn, err := strconv.ParseUint(args[2], 10, 32)
		checkErr(err, "Error decoding insn")
		mem.SetMemory(uint32(pc), uint32(insn))

		var insnProof, memProof [896]byte
		if len(args) >= 5 {
			memAddr, err := strconv.ParseUint(args[3], 10, 32)
			checkErr(err, "Error decoding memAddr")
			memValue, err := strconv.ParseUint(args[4], 10, 32)
			checkErr(err, "Error decoding memValue")
			mem.SetMemory(uint32(memAddr), uint32(memValue))
			memProof = mem.MerkleProof(uint32(memAddr))
		}
		if len(args) == 7 {
			memAddr, err := strconv.ParseUint(args[5], 10, 32)
			checkErr(err, "Error decoding memAddr")
			memValue, err := strconv.ParseUint(args[6], 10, 32)
			checkErr(err, "Error decoding memValue")
			mem.SetMemory(uint32(memAddr), uint32(memValue))
			memProof = mem.MerkleProof(uint32(memAddr))
		}
		insnProof = mem.MerkleProof(uint32(pc))

		output := struct {
			MemRoot common.Hash
			Proof   []byte
		}{
			MemRoot: mem.MerkleRoot(),
			Proof:   append(insnProof[:], memProof[:]...),
		}
		packed, err := cannonMemoryProofArgs.Pack(&output)
		checkErr(err, "Error encoding output")
		fmt.Print(hexutil.Encode(packed[32:]))
	case "cannonMemoryProof2":
		// <pc, insn, [memAddr, memValue], memAddr2>
		// Generates a memory proof of memAddr2 for a trie containing memValue
		mem := memory.NewMemory()
		if len(args) != 6 {
			panic("Error: cannonMemoryProofWithProof2 requires 5 arguments")
		}
		pc, err := strconv.ParseUint(args[1], 10, 32)
		checkErr(err, "Error decoding addr")
		insn, err := strconv.ParseUint(args[2], 10, 32)
		checkErr(err, "Error decoding insn")
		mem.SetMemory(uint32(pc), uint32(insn))

		var memProof [896]byte
		memAddr, err := strconv.ParseUint(args[3], 10, 32)
		checkErr(err, "Error decoding memAddr")
		memValue, err := strconv.ParseUint(args[4], 10, 32)
		checkErr(err, "Error decoding memValue")
		mem.SetMemory(uint32(memAddr), uint32(memValue))

		memAddr2, err := strconv.ParseUint(args[5], 10, 32)
		checkErr(err, "Error decoding memAddr")
		memProof = mem.MerkleProof(uint32(memAddr2))

		output := struct {
			MemRoot common.Hash
			Proof   []byte
		}{
			MemRoot: mem.MerkleRoot(),
			Proof:   memProof[:],
		}
		packed, err := cannonMemoryProofArgs.Pack(&output)
		checkErr(err, "Error encoding output")
		fmt.Print(hexutil.Encode(packed[32:]))
	case "cannonMemoryProofWrongLeaf":
		// <pc, insn, memAddr, memValue>
		mem := memory.NewMemory()
		if len(args) != 5 {
			panic("Error: cannonMemoryProofWrongLeaf requires 4 arguments")
		}
		pc, err := strconv.ParseUint(args[1], 10, 32)
		checkErr(err, "Error decoding addr")
		insn, err := strconv.ParseUint(args[2], 10, 32)
		checkErr(err, "Error decoding insn")
		mem.SetMemory(uint32(pc), uint32(insn))

		var insnProof, memProof [896]byte
		memAddr, err := strconv.ParseUint(args[3], 10, 32)
		checkErr(err, "Error decoding memAddr")
		memValue, err := strconv.ParseUint(args[4], 10, 32)
		checkErr(err, "Error decoding memValue")
		mem.SetMemory(uint32(memAddr), uint32(memValue))

		// Compute a valid proof for the root, but for the wrong leaves.
		memProof = mem.MerkleProof(uint32(memAddr + 32))
		insnProof = mem.MerkleProof(uint32(pc + 32))

		output := struct {
			MemRoot common.Hash
			Proof   []byte
		}{
			MemRoot: mem.MerkleRoot(),
			Proof:   append(insnProof[:], memProof[:]...),
		}
		packed, err := cannonMemoryProofArgs.Pack(&output)
		checkErr(err, "Error encoding output")
		fmt.Print(hexutil.Encode(packed[32:]))
	case "encodeScalarEcotone":
		basefeeScalar, err := strconv.ParseUint(args[1], 10, 32)
		checkErr(err, "Error decoding basefeeScalar")
		blobbasefeeScalar, err := strconv.ParseUint(args[2], 10, 32)
		checkErr(err, "Error decoding blobbasefeeScalar")

		encoded := eth.EncodeScalar(eth.EcotoneScalars{
			BaseFeeScalar:     uint32(basefeeScalar),
			BlobBaseFeeScalar: uint32(blobbasefeeScalar),
		})
		fmt.Print(hexutil.Encode(encoded[:]))
	case "decodeScalarEcotone":
		scalar := common.HexToHash(args[1])
		scalars, err := eth.DecodeScalar([32]byte(scalar[:]))
		checkErr(err, "Error decoding scalar")

		packed, err := decodedScalars.Pack(scalars.BaseFeeScalar, scalars.BlobBaseFeeScalar)
		checkErr(err, "Error encoding output")
		fmt.Print(hexutil.Encode(packed))
	case "encodeGasPayingToken":
		// Parse input arguments
		token := common.HexToAddress(args[1])
		decimals, err := strconv.ParseUint(args[2], 10, 8)
		checkErr(err, "Error decoding decimals")
		name := common.HexToHash(args[3])
		symbol := common.HexToHash(args[4])

		// Encode gas paying token
		encoded, err := gasPayingTokenArgs.Pack(token, uint8(decimals), name, symbol)
		checkErr(err, "Error encoding gas paying token")

		// Pack encoded gas paying token
		packed, err := bytesArgs.Pack(&encoded)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	case "encodeDependency":
		// Parse input arguments
		chainId, ok := new(big.Int).SetString(args[1], 10)
		checkOk(ok)

		// Encode dependency
		encoded, err := dependencyArgs.Pack(chainId)
		checkErr(err, "Error encoding dependency")

		// Pack encoded dependency
		packed, err := bytesArgs.Pack(&encoded)
		checkErr(err, "Error encoding output")

		fmt.Print(hexutil.Encode(packed))
	default:
		panic(fmt.Errorf("Unknown command: %s", args[0]))
	}
}