• Mark Tyneway's avatar
    go-batch-submitter: enable typed batch support · fe680568
    Mark Tyneway authored
    Allow the go batch submitter to submit typed batches.
    The env var `BATCH_SUBMITTER_SEQUENCER_BATCH_TYPE=zlib`
    can be set to enable the submission of zlib compressed
    batches. If that env var is not set, then legacy batches
    will be submitted instead.
    fe680568
encoding.go 10.6 KB
package sequencer

import (
	"bufio"
	"bytes"
	"compress/zlib"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"

	l2types "github.com/ethereum-optimism/optimism/l2geth/core/types"
	l2rlp "github.com/ethereum-optimism/optimism/l2geth/rlp"
)

const (
	// TxLenSize is the number of bytes used to represent the size of a
	// serialized sequencer transaction.
	TxLenSize = 3
)

var (
	// byteOrder represents the endiannes used for batch serialization
	byteOrder = binary.BigEndian
	// ErrMalformedBatch represents a batch that is not well formed
	// according to the protocol specification
	ErrMalformedBatch = errors.New("malformed batch")
)

// BatchContext denotes a range of transactions that belong the same batch. It
// is used to compress shared fields that would otherwise be repeated for each
// transaction.
type BatchContext struct {
	// NumSequencedTxs specifies the number of sequencer txs included in
	// the batch.
	NumSequencedTxs uint64 `json:"num_sequenced_txs"`

	// NumSubsequentQueueTxs specifies the number of queued txs included in
	// the batch
	NumSubsequentQueueTxs uint64 `json:"num_subsequent_queue_txs"`

	// Timestamp is the L1 timestamp of the batch.
	Timestamp uint64 `json:"timestamp"`

	// BlockNumber is the L1 BlockNumber of the batch.
	BlockNumber uint64 `json:"block_number"`
}

// Write encodes the BatchContext into a 16-byte stream using the following
// encoding:
//  - num_sequenced_txs:        3 bytes
//  - num_subsequent_queue_txs: 3 bytes
//  - timestamp:                5 bytes
//  - block_number:             5 bytes
//
// Note that writing to a bytes.Buffer cannot
// error, so errors are ignored here
func (c *BatchContext) Write(w *bytes.Buffer) {
	_ = writeUint64(w, c.NumSequencedTxs, 3)
	_ = writeUint64(w, c.NumSubsequentQueueTxs, 3)
	_ = writeUint64(w, c.Timestamp, 5)
	_ = writeUint64(w, c.BlockNumber, 5)
}

// Read decodes the BatchContext from the passed reader. If fewer than 16-bytes
// remain, an error is returned. Otherwise the first 16-bytes will be read using
// the expected encoding:
//  - num_sequenced_txs:        3 bytes
//  - num_subsequent_queue_txs: 3 bytes
//  - timestamp:                5 bytes
//  - block_number:             5 bytes
func (c *BatchContext) Read(r io.Reader) error {
	if err := readUint64(r, &c.NumSequencedTxs, 3); err != nil {
		return err
	}
	if err := readUint64(r, &c.NumSubsequentQueueTxs, 3); err != nil {
		return err
	}
	if err := readUint64(r, &c.Timestamp, 5); err != nil {
		return err
	}
	return readUint64(r, &c.BlockNumber, 5)
}

// BatchType represents the type of batch being
// submitted. When the first context in the batch
// has a timestamp of 0, the blocknumber is interpreted
// as an enum that represets the type
type BatchType int8

// Implements the Stringer interface for BatchType
func (b BatchType) String() string {
	switch b {
	case BatchTypeLegacy:
		return "LEGACY"
	case BatchTypeZlib:
		return "ZLIB"
	default:
		return ""
	}
}

// BatchTypeFromString returns the BatchType
// enum based on a human readable string
func BatchTypeFromString(s string) BatchType {
	switch s {
	case "zlib", "ZLIB":
		return BatchTypeZlib
	case "legacy", "LEGACY":
		return BatchTypeLegacy
	default:
		return BatchTypeLegacy
	}
}

const (
	// BatchTypeLegacy represets the legacy batch type
	BatchTypeLegacy BatchType = -1
	// BatchTypeZlib represents a batch type where the
	// transaction data is compressed using zlib
	BatchTypeZlib BatchType = 0
)

// AppendSequencerBatchParams holds the raw data required to submit a batch of
// L2 txs to L1 CTC contract. Rather than encoding the objects using the
// standard ABI encoding, a custom encoding is and provided in the call data to
// optimize for gas fees, since batch submission of L2 txs is a primary cost
// driver.
type AppendSequencerBatchParams struct {
	// ShouldStartAtElement specifies the intended starting sequence number
	// of the provided transaction. Upon submission, this should match the
	// CTC's expected value otherwise the transaction will revert.
	ShouldStartAtElement uint64

	// TotalElementsToAppend indicates the number of L2 txs represented by
	// this batch. This includes both sequencer and queued txs.
	TotalElementsToAppend uint64

	// Contexts aggregates redundant L1 block numbers and L1 timestamps for
	// the txns encoded in the Tx slice. Further, they specify consecutive
	// tx windows in Txs and implicitly allow one to compute how many
	// (ommitted) queued txs are in a given window.
	Contexts []BatchContext

	// Txs contains all sequencer txs that will be recorded in the L1 CTC
	// contract.
	Txs []*CachedTx

	// The type of the batch
	Type BatchType
}

// Write encodes the AppendSequencerBatchParams using the following format:
//  - should_start_at_element:        5 bytes
//  - total_elements_to_append:       3 bytes
//  - num_contexts:                   3 bytes
//    - num_contexts * batch_context: num_contexts * 16 bytes
//  - [num txs ommitted]
//    - tx_len:                       3 bytes
//    - tx_bytes:                     tx_len bytes
//
// Typed batches include a dummy context as the first context
// where the timestamp is 0. The blocknumber is interpreted
// as an enum that defines the type. It is impossible to have
// a timestamp of 0 in practice, so this safely can indicate
// that the batch is typed.
// Type 0 batches have a dummy context where the blocknumber is
// set to 0. The transaction data is compressed with zlib before
// submitting the transaction to the chain. The fields should_start_at_element,
// total_elements_to_append, num_contexts and the contexts themselves
// are not altered.
//
// Note that writing to a bytes.Buffer cannot
// error, so errors are ignored here
func (p *AppendSequencerBatchParams) Write(w *bytes.Buffer) error {
	_ = writeUint64(w, p.ShouldStartAtElement, 5)
	_ = writeUint64(w, p.TotalElementsToAppend, 3)

	// There must be contexts if there are transactions
	if len(p.Contexts) == 0 && len(p.Txs) != 0 {
		return ErrMalformedBatch
	}

	// There must be transactions if there are contexts
	if len(p.Txs) == 0 && len(p.Contexts) != 0 {
		return ErrMalformedBatch
	}

	// copy the contexts as to not malleate the struct
	// when it is a typed batch
	contexts := make([]BatchContext, 0, len(p.Contexts)+1)
	if p.Type == BatchTypeZlib {
		// All zero values for the single batch context
		// is desired here as blocknumber 0 means it is a zlib batch
		contexts = append(contexts, BatchContext{})
	}
	contexts = append(contexts, p.Contexts...)

	// Write number of contexts followed by each fixed-size BatchContext.
	_ = writeUint64(w, uint64(len(contexts)), 3)
	for _, context := range contexts {
		context.Write(w)
	}

	switch p.Type {
	case BatchTypeLegacy:
		// Write each length-prefixed tx.
		for _, tx := range p.Txs {
			_ = writeUint64(w, uint64(tx.Size()), TxLenSize)
			_, _ = w.Write(tx.RawTx()) // can't fail for bytes.Buffer
		}
	case BatchTypeZlib:
		zw := zlib.NewWriter(w)
		for _, tx := range p.Txs {
			if err := writeUint64(zw, uint64(tx.Size()), TxLenSize); err != nil {
				return err
			}
			if _, err := zw.Write(tx.RawTx()); err != nil {
				return err
			}
		}
		if err := zw.Close(); err != nil {
			return err
		}

	default:
		return fmt.Errorf("Unknown batch type: %s", p.Type)
	}

	return nil
}

// Serialize performs the same encoding as Write, but returns the resulting
// bytes slice.
func (p *AppendSequencerBatchParams) Serialize() ([]byte, error) {
	var buf bytes.Buffer
	if err := p.Write(&buf); err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// Read decodes the AppendSequencerBatchParams from a bytes stream. If the byte
// stream does not terminate cleanly with an EOF while reading a tx_len, this
// method will return an error. Otherwise, the stream will be parsed according
// to the following format:
//  - should_start_at_element:        5 bytes
//  - total_elements_to_append:       3 bytes
//  - num_contexts:                   3 bytes
//    - num_contexts * batch_context: num_contexts * 16 bytes
//  - [num txs ommitted]
//    - tx_len:                       3 bytes
//    - tx_bytes:                     tx_len bytes
func (p *AppendSequencerBatchParams) Read(r io.Reader) error {
	if err := readUint64(r, &p.ShouldStartAtElement, 5); err != nil {
		return err
	}
	if err := readUint64(r, &p.TotalElementsToAppend, 3); err != nil {
		return err
	}

	// Read number of contexts and deserialize each one.
	var numContexts uint64
	if err := readUint64(r, &numContexts, 3); err != nil {
		return err
	}

	// Ensure that contexts is never nil
	p.Contexts = make([]BatchContext, 0)
	for i := uint64(0); i < numContexts; i++ {
		var batchContext BatchContext
		if err := batchContext.Read(r); err != nil {
			return err
		}

		p.Contexts = append(p.Contexts, batchContext)
	}

	// Assume that it is a legacy batch at first
	p.Type = BatchTypeLegacy

	// Handle backwards compatible batch types
	if len(p.Contexts) > 0 && p.Contexts[0].Timestamp == 0 {
		switch p.Contexts[0].BlockNumber {
		case 0:
			// zlib compressed transaction data
			p.Type = BatchTypeZlib
			// remove the first dummy context
			p.Contexts = p.Contexts[1:]
			numContexts--

			zr, err := zlib.NewReader(r)
			if err != nil {
				return err
			}
			defer zr.Close()

			r = bufio.NewReader(zr)
		}
	}

	// Deserialize any transactions. Since the number of txs is ommitted
	// from the encoding, loop until the stream is consumed.
	for {
		var txLen uint64
		err := readUint64(r, &txLen, TxLenSize)
		// Getting an EOF when reading the txLen expected for a cleanly
		// encoded object. Silence the error and return success if
		// the batch is well formed.
		if err == io.EOF {
			if len(p.Contexts) == 0 && len(p.Txs) != 0 {
				return ErrMalformedBatch
			}
			if len(p.Txs) == 0 && len(p.Contexts) != 0 {
				return ErrMalformedBatch
			}
			return nil
		} else if err != nil {
			return err
		}

		tx := new(l2types.Transaction)
		if err := tx.DecodeRLP(l2rlp.NewStream(r, txLen)); err != nil {
			return err
		}

		p.Txs = append(p.Txs, NewCachedTx(tx))
	}

}

// writeUint64 writes a the bottom `n` bytes of `val` to `w`.
func writeUint64(w io.Writer, val uint64, n uint) error {
	if n < 1 || n > 8 {
		panic(fmt.Sprintf("invalid number of bytes %d must be 1-8", n))
	}

	const maxUint64 uint64 = math.MaxUint64
	maxVal := maxUint64 >> (8 * (8 - n))
	if val > maxVal {
		panic(fmt.Sprintf("cannot encode %d in %d byte value", val, n))
	}

	var buf [8]byte
	byteOrder.PutUint64(buf[:], val)
	_, err := w.Write(buf[8-n:])
	return err
}

// readUint64 reads `n` bytes from `r` and returns them in the lower `n` bytes
// of `val`.
func readUint64(r io.Reader, val *uint64, n uint) error {
	var buf [8]byte
	if _, err := r.Read(buf[8-n:]); err != nil {
		return err
	}
	*val = byteOrder.Uint64(buf[:])
	return nil
}