1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
package derive
import (
"bytes"
"encoding/binary"
"fmt"
"math/big"
"github.com/ethereum-optimism/optimism/op-node/eth"
"github.com/ethereum-optimism/optimism/op-node/rollup"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/holiman/uint256"
)
var (
DepositEventABI = "TransactionDeposited(address,address,uint256,uint256,uint64,bool,bytes)"
DepositEventABIHash = crypto.Keccak256Hash([]byte(DepositEventABI))
L1InfoFuncSignature = "setL1BlockValues(uint64,uint64,uint256,bytes32,uint64)"
L1InfoFuncBytes4 = crypto.Keccak256([]byte(L1InfoFuncSignature))[:4]
L1InfoPredeployAddr = common.HexToAddress("0x4200000000000000000000000000000000000015")
L1InfoDepositerAddress = common.HexToAddress("0xdeaddeaddeaddeaddeaddeaddeaddeaddead0001")
)
type UserDepositSource struct {
L1BlockHash common.Hash
LogIndex uint64
}
const (
UserDepositSourceDomain = 0
L1InfoDepositSourceDomain = 1
)
func (dep *UserDepositSource) SourceHash() common.Hash {
var input [32 * 2]byte
copy(input[:32], dep.L1BlockHash[:])
binary.BigEndian.PutUint64(input[32*2-8:], dep.LogIndex)
depositIDHash := crypto.Keccak256Hash(input[:])
var domainInput [32 * 2]byte
binary.BigEndian.PutUint64(domainInput[32-8:32], UserDepositSourceDomain)
copy(domainInput[32:], depositIDHash[:])
return crypto.Keccak256Hash(domainInput[:])
}
type L1InfoDepositSource struct {
L1BlockHash common.Hash
SeqNumber uint64
}
func (dep *L1InfoDepositSource) SourceHash() common.Hash {
var input [32 * 2]byte
copy(input[:32], dep.L1BlockHash[:])
binary.BigEndian.PutUint64(input[32*2-8:], dep.SeqNumber)
depositIDHash := crypto.Keccak256Hash(input[:])
var domainInput [32 * 2]byte
binary.BigEndian.PutUint64(domainInput[32-8:32], L1InfoDepositSourceDomain)
copy(domainInput[32:], depositIDHash[:])
return crypto.Keccak256Hash(domainInput[:])
}
// UnmarshalLogEvent decodes an EVM log entry emitted by the deposit contract into typed deposit data.
//
// parse log data for:
// event TransactionDeposited(
// address indexed from,
// address indexed to,
// uint256 mint,
// uint256 value,
// uint64 gasLimit,
// bool isCreation,
// data data
// );
//
// Additionally, the event log-index and
func UnmarshalLogEvent(ev *types.Log) (*types.DepositTx, error) {
if len(ev.Topics) != 3 {
return nil, fmt.Errorf("expected 3 event topics (event identity, indexed from, indexed to)")
}
if ev.Topics[0] != DepositEventABIHash {
return nil, fmt.Errorf("invalid deposit event selector: %s, expected %s", ev.Topics[0], DepositEventABIHash)
}
if len(ev.Data) < 6*32 {
return nil, fmt.Errorf("deposit event data too small (%d bytes): %x", len(ev.Data), ev.Data)
}
var dep types.DepositTx
source := UserDepositSource{
L1BlockHash: ev.BlockHash,
LogIndex: uint64(ev.Index),
}
dep.SourceHash = source.SourceHash()
// indexed 0
dep.From = common.BytesToAddress(ev.Topics[1][12:])
// indexed 1
to := common.BytesToAddress(ev.Topics[2][12:])
// unindexed data
offset := uint64(0)
dep.Mint = new(big.Int).SetBytes(ev.Data[offset : offset+32])
// 0 mint is represented as nil to skip minting code
if dep.Mint.Cmp(new(big.Int)) == 0 {
dep.Mint = nil
}
offset += 32
dep.Value = new(big.Int).SetBytes(ev.Data[offset : offset+32])
offset += 32
gas := new(big.Int).SetBytes(ev.Data[offset : offset+32])
if !gas.IsUint64() {
return nil, fmt.Errorf("bad gas value: %x", ev.Data[offset:offset+32])
}
offset += 32
dep.Gas = gas.Uint64()
// isCreation: If the boolean byte is 1 then dep.To will stay nil,
// and it will create a contract using L2 account nonce to determine the created address.
if ev.Data[offset+31] == 0 {
dep.To = &to
}
offset += 32
// dynamic fields are encoded in three parts. The fixed size portion is the offset of the start of the
// data. The first 32 bytes of a `bytes` object is the length of the bytes. Then are the actual bytes
// padded out to 32 byte increments.
var dataOffset uint256.Int
dataOffset.SetBytes(ev.Data[offset : offset+32])
offset += 32
if !dataOffset.Eq(uint256.NewInt(offset)) {
return nil, fmt.Errorf("incorrect data offset: %v", dataOffset[0])
}
var dataLen uint256.Int
dataLen.SetBytes(ev.Data[offset : offset+32])
offset += 32
if !dataLen.IsUint64() {
return nil, fmt.Errorf("data too large: %s", dataLen.String())
}
// The data may be padded to a multiple of 32 bytes
maxExpectedLen := uint64(len(ev.Data)) - offset
dataLenU64 := dataLen.Uint64()
if dataLenU64 > maxExpectedLen {
return nil, fmt.Errorf("data length too long: %d, expected max %d", dataLenU64, maxExpectedLen)
}
// remaining bytes fill the data
dep.Data = ev.Data[offset : offset+dataLenU64]
return &dep, nil
}
type L1Info interface {
Hash() common.Hash
ParentHash() common.Hash
Root() common.Hash // state-root
NumberU64() uint64
Time() uint64
// MixDigest field, reused for randomness after The Merge (Bellatrix hardfork)
MixDigest() common.Hash
BaseFee() *big.Int
ID() eth.BlockID
BlockRef() eth.L1BlockRef
ReceiptHash() common.Hash
}
// L1InfoDeposit creates a L1 Info deposit transaction based on the L1 block,
// and the L2 block-height difference with the start of the epoch.
func L1InfoDeposit(seqNumber uint64, block L1Info) (*types.DepositTx, error) {
infoDat := L1BlockInfo{
Number: block.NumberU64(),
Time: block.Time(),
BaseFee: block.BaseFee(),
BlockHash: block.Hash(),
SequenceNumber: seqNumber,
}
data, err := infoDat.MarshalBinary()
if err != nil {
return nil, err
}
source := L1InfoDepositSource{
L1BlockHash: block.Hash(),
SeqNumber: seqNumber,
}
// Uses ~30k normal case
// Uses ~70k on first transaction
// Round up to 75k to ensure that we always have enough gas.
return &types.DepositTx{
SourceHash: source.SourceHash(),
From: L1InfoDepositerAddress,
To: &L1InfoPredeployAddr,
Mint: nil,
Value: big.NewInt(0),
Gas: 75_000,
Data: data,
}, nil
}
// UserDeposits transforms the L2 block-height and L1 receipts into the transaction inputs for a full L2 block
func UserDeposits(receipts []*types.Receipt, depositContractAddr common.Address) ([]*types.DepositTx, []error) {
var out []*types.DepositTx
var errs []error
for i, rec := range receipts {
if rec.Status != types.ReceiptStatusSuccessful {
continue
}
for j, log := range rec.Logs {
if log.Address == depositContractAddr && len(log.Topics) > 0 && log.Topics[0] == DepositEventABIHash {
dep, err := UnmarshalLogEvent(log)
if err != nil {
errs = append(errs, fmt.Errorf("malformatted L1 deposit log in receipt %d, log %d: %w", i, j, err))
} else {
out = append(out, dep)
}
}
}
}
return out, errs
}
func BatchesFromEVMTransactions(config *rollup.Config, txLists []types.Transactions) ([]*BatchData, []error) {
var out []*BatchData
var errs []error
l1Signer := config.L1Signer()
for i, txs := range txLists {
for j, tx := range txs {
if to := tx.To(); to != nil && *to == config.BatchInboxAddress {
seqDataSubmitter, err := l1Signer.Sender(tx) // optimization: only derive sender if To is correct
if err != nil {
errs = append(errs, fmt.Errorf("invalid signature: tx list: %d, tx: %d, err: %w", i, j, err))
continue // bad signature, ignore
}
// some random L1 user might have sent a transaction to our batch inbox, ignore them
if seqDataSubmitter != config.BatchSenderAddress {
errs = append(errs, fmt.Errorf("unauthorized batch submitter: tx list: %d, tx: %d", i, j))
continue // not an authorized batch submitter, ignore
}
batches, err := DecodeBatches(config, bytes.NewReader(tx.Data()))
if err != nil {
errs = append(errs, fmt.Errorf("invalid batch: tx list: %d, tx: %d, err: %w", i, j, err))
continue
}
out = append(out, batches...)
}
}
}
return out, errs
}
func FilterBatches(config *rollup.Config, epoch rollup.Epoch, minL2Time uint64, maxL2Time uint64, batches []*BatchData) (out []*BatchData) {
uniqueTime := make(map[uint64]struct{})
for _, batch := range batches {
if !ValidBatch(batch, config, epoch, minL2Time, maxL2Time) {
continue
}
// Check if we have already seen a batch for this L2 block
if _, ok := uniqueTime[batch.Timestamp]; ok {
// block already exists, batch is duplicate (first batch persists, others are ignored)
continue
}
uniqueTime[batch.Timestamp] = struct{}{}
out = append(out, batch)
}
return
}
func ValidBatch(batch *BatchData, config *rollup.Config, epoch rollup.Epoch, minL2Time uint64, maxL2Time uint64) bool {
if batch.Epoch != epoch {
// Batch was tagged for past or future epoch,
// i.e. it was included too late or depends on the given L1 block to be processed first.
return false
}
if (batch.Timestamp-config.Genesis.L2Time)%config.BlockTime != 0 {
return false // bad timestamp, not a multiple of the block time
}
if batch.Timestamp < minL2Time {
return false // old batch
}
// limit timestamp upper bound to avoid huge amount of empty blocks
if batch.Timestamp >= maxL2Time {
return false // too far in future
}
for _, txBytes := range batch.Transactions {
if len(txBytes) == 0 {
return false // transaction data must not be empty
}
if txBytes[0] == types.DepositTxType {
return false // sequencers may not embed any deposits into batch data
}
}
return true
}
type L2Info interface {
Time() uint64
}
// FillMissingBatches turns a collection of batches to the input batches for a series of blocks
func FillMissingBatches(batches []*BatchData, epoch, blockTime, minL2Time, nextL1Time uint64) []*BatchData {
m := make(map[uint64]*BatchData)
// The number of L2 blocks per sequencing window is variable, we do not immediately fill to maxL2Time:
// - ensure at least 1 block
// - fill up to the next L1 block timestamp, if higher, to keep up with L1 time
// - fill up to the last valid batch, to keep up with L2 time
newHeadL2Timestamp := minL2Time
if nextL1Time > newHeadL2Timestamp+blockTime {
newHeadL2Timestamp = nextL1Time - blockTime
}
for _, b := range batches {
m[b.BatchV1.Timestamp] = b
if b.Timestamp > newHeadL2Timestamp {
newHeadL2Timestamp = b.Timestamp
}
}
var out []*BatchData
for t := minL2Time; t <= newHeadL2Timestamp; t += blockTime {
b, ok := m[t]
if ok {
out = append(out, b)
} else {
out = append(out, &BatchData{
BatchV1{
Epoch: rollup.Epoch(epoch),
Timestamp: t,
},
})
}
}
return out
}
// L1InfoDepositBytes returns a serialized L1-info attributes transaction.
func L1InfoDepositBytes(seqNumber uint64, l1Info L1Info) (hexutil.Bytes, error) {
dep, err := L1InfoDeposit(seqNumber, l1Info)
if err != nil {
return nil, fmt.Errorf("failed to create L1 info tx: %v", err)
}
l1Tx := types.NewTx(dep)
opaqueL1Tx, err := l1Tx.MarshalBinary()
if err != nil {
return nil, fmt.Errorf("failed to encode L1 info tx: %v", err)
}
return opaqueL1Tx, nil
}
func DeriveDeposits(receipts []*types.Receipt, depositContractAddr common.Address) ([]hexutil.Bytes, []error) {
userDeposits, errs := UserDeposits(receipts, depositContractAddr)
encodedTxs := make([]hexutil.Bytes, 0, len(userDeposits))
for i, tx := range userDeposits {
opaqueTx, err := types.NewTx(tx).MarshalBinary()
if err != nil {
errs = append(errs, fmt.Errorf("failed to encode user tx %d", i))
} else {
encodedTxs = append(encodedTxs, opaqueTx)
}
}
return encodedTxs, errs
}