• Mark Tyneway's avatar
    batch-submitter: allow deposit only batches · 32bd79ec
    Mark Tyneway authored
    Fixes a long standing bug that allows the batch submitter
    to send batches that only contain deposit transactions.
    Includes test coverage of the batch creation.
    
    The on chain code requires that there must be at least one
    context. A context contains information about the queue
    transactions that should be included. It makes no sense
    to error when there is a context but no sequencer txs
    because the context must be submitted to the chain.
    32bd79ec
encoding.go 11.7 KB
package sequencer

import (
	"bufio"
	"bytes"
	"compress/zlib"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"

	l2types "github.com/ethereum-optimism/optimism/l2geth/core/types"
	l2rlp "github.com/ethereum-optimism/optimism/l2geth/rlp"
)

const (
	// TxLenSize is the number of bytes used to represent the size of a
	// serialized sequencer transaction.
	TxLenSize = 3
)

var (
	// byteOrder represents the endiannes used for batch serialization
	byteOrder = binary.BigEndian
	// ErrMalformedBatch represents a batch that is not well formed
	// according to the protocol specification
	ErrMalformedBatch = errors.New("malformed batch")
)

// BatchContext denotes a range of transactions that belong the same batch. It
// is used to compress shared fields that would otherwise be repeated for each
// transaction.
type BatchContext struct {
	// NumSequencedTxs specifies the number of sequencer txs included in
	// the batch.
	NumSequencedTxs uint64 `json:"num_sequenced_txs"`

	// NumSubsequentQueueTxs specifies the number of queued txs included in
	// the batch
	NumSubsequentQueueTxs uint64 `json:"num_subsequent_queue_txs"`

	// Timestamp is the L1 timestamp of the batch.
	Timestamp uint64 `json:"timestamp"`

	// BlockNumber is the L1 BlockNumber of the batch.
	BlockNumber uint64 `json:"block_number"`
}

// IsMarkerContext returns true if the BatchContext is a marker context used to
// specify the encoding format. This is only valid if called on the first
// BatchContext in the calldata.
func (c BatchContext) IsMarkerContext() bool {
	return c.Timestamp == 0
}

// MarkerBatchType returns the BatchType specified by a marker BatchContext.
// The return value is only valid if called on the first BatchContext in the
// calldata and IsMarkerContext returns true.
func (c BatchContext) MarkerBatchType() BatchType {
	switch c.BlockNumber {
	case 0:
		return BatchTypeZlib
	default:
		return BatchTypeLegacy
	}
}

// Write encodes the BatchContext into a 16-byte stream using the following
// encoding:
//   - num_sequenced_txs:        3 bytes
//   - num_subsequent_queue_txs: 3 bytes
//   - timestamp:                5 bytes
//   - block_number:             5 bytes
//
// Note that writing to a bytes.Buffer cannot
// error, so errors are ignored here
func (c *BatchContext) Write(w *bytes.Buffer) {
	_ = writeUint64(w, c.NumSequencedTxs, 3)
	_ = writeUint64(w, c.NumSubsequentQueueTxs, 3)
	_ = writeUint64(w, c.Timestamp, 5)
	_ = writeUint64(w, c.BlockNumber, 5)
}

// Read decodes the BatchContext from the passed reader. If fewer than 16-bytes
// remain, an error is returned. Otherwise the first 16-bytes will be read using
// the expected encoding:
//   - num_sequenced_txs:        3 bytes
//   - num_subsequent_queue_txs: 3 bytes
//   - timestamp:                5 bytes
//   - block_number:             5 bytes
func (c *BatchContext) Read(r io.Reader) error {
	if err := readUint64(r, &c.NumSequencedTxs, 3); err != nil {
		return err
	}
	if err := readUint64(r, &c.NumSubsequentQueueTxs, 3); err != nil {
		return err
	}
	if err := readUint64(r, &c.Timestamp, 5); err != nil {
		return err
	}
	return readUint64(r, &c.BlockNumber, 5)
}

// BatchType represents the type of batch being submitted. When the first
// context in the batch has a timestamp of 0, the blocknumber is interpreted as
// an enum that represets the type.
type BatchType int8

const (
	// BatchTypeLegacy represets the legacy batch type.
	BatchTypeLegacy BatchType = -1

	// BatchTypeZlib represents a batch type where the transaction data is
	// compressed using zlib.
	BatchTypeZlib BatchType = 0
)

// BatchTypeFromString returns the BatchType enum based on a human readable
// string.
func BatchTypeFromString(s string) BatchType {
	switch s {
	case "zlib", "ZLIB":
		return BatchTypeZlib
	case "legacy", "LEGACY":
		return BatchTypeLegacy
	default:
		return BatchTypeLegacy
	}
}

// String implements the Stringer interface for BatchType.
func (b BatchType) String() string {
	switch b {
	case BatchTypeLegacy:
		return "LEGACY"
	case BatchTypeZlib:
		return "ZLIB"
	default:
		return ""
	}
}

// MarkerContext returns the marker context, if any, for the given batch type.
func (b BatchType) MarkerContext() *BatchContext {
	switch b {

	// No marker context for legacy encoding.
	case BatchTypeLegacy:
		return nil

	// Zlib marker context sets block number equal to zero.
	case BatchTypeZlib:
		return &BatchContext{
			Timestamp:   0,
			BlockNumber: 0,
		}

	default:
		return nil
	}
}

// AppendSequencerBatchParams holds the raw data required to submit a batch of
// L2 txs to L1 CTC contract. Rather than encoding the objects using the
// standard ABI encoding, a custom encoding is and provided in the call data to
// optimize for gas fees, since batch submission of L2 txs is a primary cost
// driver.
type AppendSequencerBatchParams struct {
	// ShouldStartAtElement specifies the intended starting sequence number
	// of the provided transaction. Upon submission, this should match the
	// CTC's expected value otherwise the transaction will revert.
	ShouldStartAtElement uint64

	// TotalElementsToAppend indicates the number of L2 txs represented by
	// this batch. This includes both sequencer and queued txs.
	TotalElementsToAppend uint64

	// Contexts aggregates redundant L1 block numbers and L1 timestamps for
	// the txns encoded in the Tx slice. Further, they specify consecutive
	// tx windows in Txs and implicitly allow one to compute how many
	// (omitted) queued txs are in a given window.
	Contexts []BatchContext

	// Txs contains all sequencer txs that will be recorded in the L1 CTC
	// contract.
	Txs []*CachedTx
}

// Write encodes the AppendSequencerBatchParams using the following format:
//   - should_start_at_element:        5 bytes
//   - total_elements_to_append:       3 bytes
//   - num_contexts:                   3 bytes
//   - num_contexts * batch_context: num_contexts * 16 bytes
//   - [num txs omitted]
//   - tx_len:                       3 bytes
//   - tx_bytes:                     tx_len bytes
//
// Typed batches include a dummy context as the first context
// where the timestamp is 0. The blocknumber is interpreted
// as an enum that defines the type. It is impossible to have
// a timestamp of 0 in practice, so this safely can indicate
// that the batch is typed.
// Type 0 batches have a dummy context where the blocknumber is
// set to 0. The transaction data is compressed with zlib before
// submitting the transaction to the chain. The fields should_start_at_element,
// total_elements_to_append, num_contexts and the contexts themselves
// are not altered.
//
// Note that writing to a bytes.Buffer cannot
// error, so errors are ignored here
func (p *AppendSequencerBatchParams) Write(
	w *bytes.Buffer,
	batchType BatchType,
) error {

	_ = writeUint64(w, p.ShouldStartAtElement, 5)
	_ = writeUint64(w, p.TotalElementsToAppend, 3)

	// There must be contexts if there are transactions
	if len(p.Contexts) == 0 && len(p.Txs) != 0 {
		return ErrMalformedBatch
	}

	// copy the contexts as to not malleate the struct
	// when it is a typed batch
	contexts := make([]BatchContext, 0, len(p.Contexts)+1)
	// Add the marker context, if any, for non-legacy encodings.
	markerContext := batchType.MarkerContext()
	if markerContext != nil {
		contexts = append(contexts, *markerContext)
	}
	contexts = append(contexts, p.Contexts...)

	// Write number of contexts followed by each fixed-size BatchContext.
	_ = writeUint64(w, uint64(len(contexts)), 3)
	for _, context := range contexts {
		context.Write(w)
	}

	switch batchType {
	case BatchTypeLegacy:
		// Write each length-prefixed tx.
		for _, tx := range p.Txs {
			_ = writeUint64(w, uint64(tx.Size()), TxLenSize)
			_, _ = w.Write(tx.RawTx()) // can't fail for bytes.Buffer
		}
	case BatchTypeZlib:
		zw := zlib.NewWriter(w)
		for _, tx := range p.Txs {
			if err := writeUint64(zw, uint64(tx.Size()), TxLenSize); err != nil {
				return err
			}
			if _, err := zw.Write(tx.RawTx()); err != nil {
				return err
			}
		}
		if err := zw.Close(); err != nil {
			return err
		}

	default:
		return fmt.Errorf("Unknown batch type: %s", batchType)
	}

	return nil
}

// Serialize performs the same encoding as Write, but returns the resulting
// bytes slice.
func (p *AppendSequencerBatchParams) Serialize(
	batchType BatchType,
) ([]byte, error) {

	var buf bytes.Buffer
	if err := p.Write(&buf, batchType); err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// Read decodes the AppendSequencerBatchParams from a bytes stream. If the byte
// stream does not terminate cleanly with an EOF while reading a tx_len, this
// method will return an error. Otherwise, the stream will be parsed according
// to the following format:
//   - should_start_at_element:        5 bytes
//   - total_elements_to_append:       3 bytes
//   - num_contexts:                   3 bytes
//   - num_contexts * batch_context: num_contexts * 16 bytes
//   - [num txs omitted]
//   - tx_len:                       3 bytes
//   - tx_bytes:                     tx_len bytes
func (p *AppendSequencerBatchParams) Read(r io.Reader) error {
	if err := readUint64(r, &p.ShouldStartAtElement, 5); err != nil {
		return err
	}
	if err := readUint64(r, &p.TotalElementsToAppend, 3); err != nil {
		return err
	}

	// Read number of contexts and deserialize each one.
	var numContexts uint64
	if err := readUint64(r, &numContexts, 3); err != nil {
		return err
	}

	// Assume that it is a legacy batch at first, this will be overwrritten if
	// we detect a marker context.
	var batchType = BatchTypeLegacy
	// Ensure that contexts is never nil
	p.Contexts = make([]BatchContext, 0)
	for i := uint64(0); i < numContexts; i++ {
		var batchContext BatchContext
		if err := batchContext.Read(r); err != nil {
			return err
		}

		if i == 0 && batchContext.IsMarkerContext() {
			batchType = batchContext.MarkerBatchType()
			continue
		}

		p.Contexts = append(p.Contexts, batchContext)
	}

	// Define a closure to clean up the reader used by the specified encoding.
	var closeReader func() error
	switch batchType {

	// The legacy serialization does not require clsing, so we instatiate a
	// dummy closure.
	case BatchTypeLegacy:
		closeReader = func() error { return nil }

	// The zlib serialization requires decompression before reading the
	// plaintext bytes, and also requires proper cleanup.
	case BatchTypeZlib:
		zr, err := zlib.NewReader(r)
		if err != nil {
			return err
		}
		closeReader = zr.Close

		r = bufio.NewReader(zr)
	}

	// Deserialize any transactions. Since the number of txs is omitted
	// from the encoding, loop until the stream is consumed.
	for {
		var txLen uint64
		err := readUint64(r, &txLen, TxLenSize)
		// Getting an EOF when reading the txLen expected for a cleanly
		// encoded object. Silence the error and return success if
		// the batch is well formed.
		if err == io.EOF {
			if len(p.Contexts) == 0 && len(p.Txs) != 0 {
				return ErrMalformedBatch
			}
			return closeReader()
		} else if err != nil {
			return err
		}

		tx := new(l2types.Transaction)
		if err := tx.DecodeRLP(l2rlp.NewStream(r, txLen)); err != nil {
			return err
		}

		p.Txs = append(p.Txs, NewCachedTx(tx))
	}
}

// writeUint64 writes a the bottom `n` bytes of `val` to `w`.
func writeUint64(w io.Writer, val uint64, n uint) error {
	if n < 1 || n > 8 {
		panic(fmt.Sprintf("invalid number of bytes %d must be 1-8", n))
	}

	const maxUint64 uint64 = math.MaxUint64
	maxVal := maxUint64 >> (8 * (8 - n))
	if val > maxVal {
		panic(fmt.Sprintf("cannot encode %d in %d byte value", val, n))
	}

	var buf [8]byte
	byteOrder.PutUint64(buf[:], val)
	_, err := w.Write(buf[8-n:])
	return err
}

// readUint64 reads `n` bytes from `r` and returns them in the lower `n` bytes
// of `val`.
func readUint64(r io.Reader, val *uint64, n uint) error {
	var buf [8]byte
	if _, err := r.Read(buf[8-n:]); err != nil {
		return err
	}
	*val = byteOrder.Uint64(buf[:])
	return nil
}