state.go 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
package driver

import (
	"bytes"
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"
	gosync "sync"
	"time"

	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/log"

	"github.com/ethereum-optimism/optimism/op-node/rollup"
	"github.com/ethereum-optimism/optimism/op-node/rollup/derive"
	"github.com/ethereum-optimism/optimism/op-service/backoff"
	"github.com/ethereum-optimism/optimism/op-service/eth"
)

// Deprecated: use eth.SyncStatus instead.
type SyncStatus = eth.SyncStatus

// sealingDuration defines the expected time it takes to seal the block
const sealingDuration = time.Millisecond * 50

type Driver struct {
	l1State L1StateIface

	// The derivation pipeline is reset whenever we reorg.
	// The derivation pipeline determines the new l2Safe.
	derivation DerivationPipeline

	// Requests to block the event loop for synchronous execution to avoid reading an inconsistent state
	stateReq chan chan struct{}

	// Upon receiving a channel in this channel, the derivation pipeline is forced to be reset.
	// It tells the caller that the reset occurred by closing the passed in channel.
	forceReset chan chan struct{}

	// Upon receiving a hash in this channel, the sequencer is started at the given hash.
	// It tells the caller that the sequencer started by closing the passed in channel (or returning an error).
	startSequencer chan hashAndErrorChannel

	// Upon receiving a channel in this channel, the sequencer is stopped.
	// It tells the caller that the sequencer stopped by returning the latest sequenced L2 block hash.
	stopSequencer chan chan hashAndError

	// Upon receiving a channel in this channel, the current sequencer status is queried.
	// It tells the caller the status by outputting a boolean to the provided channel:
	// true when the sequencer is active, false when it is not.
	sequencerActive chan chan bool

	// sequencerNotifs is notified when the sequencer is started or stopped
	sequencerNotifs SequencerStateListener

	// Rollup config: rollup chain configuration
	config *rollup.Config

	// Driver config: verifier and sequencer settings
	driverConfig *Config

	// L1 Signals:
	//
	// Not all L1 blocks, or all changes, have to be signalled:
	// the derivation process traverses the chain and handles reorgs as necessary,
	// the driver just needs to be aware of the *latest* signals enough so to not
	// lag behind actionable data.
	l1HeadSig      chan eth.L1BlockRef
	l1SafeSig      chan eth.L1BlockRef
	l1FinalizedSig chan eth.L1BlockRef

	// Interface to signal the L2 block range to sync.
	altSync AltSync

	// L2 Signals:

	unsafeL2Payloads chan *eth.ExecutionPayload

	l1        L1Chain
	l2        L2Chain
	sequencer SequencerIface
	network   Network // may be nil, network for is optional

	metrics     Metrics
	log         log.Logger
	snapshotLog log.Logger
	done        chan struct{}

	wg gosync.WaitGroup
}

// Start starts up the state loop.
// The loop will have been started iff err is not nil.
func (s *Driver) Start() error {
	s.derivation.Reset()

	log.Info("Starting driver", "sequencerEnabled", s.driverConfig.SequencerEnabled, "sequencerStopped", s.driverConfig.SequencerStopped)
	if s.driverConfig.SequencerEnabled {
		// Notify the initial sequencer state
		// This ensures persistence can write the state correctly and that the state file exists
		var err error
		if s.driverConfig.SequencerStopped {
			err = s.sequencerNotifs.SequencerStopped()
		} else {
			err = s.sequencerNotifs.SequencerStarted()
		}
		if err != nil {
			return fmt.Errorf("persist initial sequencer state: %w", err)
		}
	}

	s.wg.Add(1)
	go s.eventLoop()

	return nil
}

func (s *Driver) Close() error {
	s.done <- struct{}{}
	s.wg.Wait()
	return nil
}

// OnL1Head signals the driver that the L1 chain changed the "unsafe" block,
// also known as head of the chain, or "latest".
func (s *Driver) OnL1Head(ctx context.Context, unsafe eth.L1BlockRef) error {
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.l1HeadSig <- unsafe:
		return nil
	}
}

// OnL1Safe signals the driver that the L1 chain changed the "safe",
// also known as the justified checkpoint (as seen on L1 beacon-chain).
func (s *Driver) OnL1Safe(ctx context.Context, safe eth.L1BlockRef) error {
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.l1SafeSig <- safe:
		return nil
	}
}

func (s *Driver) OnL1Finalized(ctx context.Context, finalized eth.L1BlockRef) error {
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.l1FinalizedSig <- finalized:
		return nil
	}
}

func (s *Driver) OnUnsafeL2Payload(ctx context.Context, payload *eth.ExecutionPayload) error {
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.unsafeL2Payloads <- payload:
		return nil
	}
}

// the eventLoop responds to L1 changes and internal timers to produce L2 blocks.
func (s *Driver) eventLoop() {
	defer s.wg.Done()
	s.log.Info("State loop started")

	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

	// stepReqCh is used to request that the driver attempts to step forward by one L1 block.
	stepReqCh := make(chan struct{}, 1)

	// channel, nil by default (not firing), but used to schedule re-attempts with delay
	var delayedStepReq <-chan time.Time

	// keep track of consecutive failed attempts, to adjust the backoff time accordingly
	bOffStrategy := backoff.Exponential()
	stepAttempts := 0

	// step requests a derivation step to be taken. Won't deadlock if the channel is full.
	step := func() {
		select {
		case stepReqCh <- struct{}{}:
		// Don't deadlock if the channel is already full
		default:
		}
	}

	// reqStep requests a derivation step nicely, with a delay if this is a reattempt, or not at all if we already scheduled a reattempt.
	reqStep := func() {
		if stepAttempts > 0 {
			// if this is not the first attempt, we re-schedule with a backoff, *without blocking other events*
			if delayedStepReq == nil {
				delay := bOffStrategy.Duration(stepAttempts)
				s.log.Debug("scheduling re-attempt with delay", "attempts", stepAttempts, "delay", delay)
				delayedStepReq = time.After(delay)
			} else {
				s.log.Debug("ignoring step request, already scheduled re-attempt after previous failure", "attempts", stepAttempts)
			}
		} else {
			step()
		}
	}

	// We call reqStep right away to finish syncing to the tip of the chain if we're behind.
	// reqStep will also be triggered when the L1 head moves forward or if there was a reorg on the
	// L1 chain that we need to handle.
	reqStep()

	sequencerTimer := time.NewTimer(0)
	var sequencerCh <-chan time.Time
	planSequencerAction := func() {
		delay := s.sequencer.PlanNextSequencerAction()
		sequencerCh = sequencerTimer.C
		if len(sequencerCh) > 0 { // empty if not already drained before resetting
			<-sequencerCh
		}
		sequencerTimer.Reset(delay)
	}

	// Create a ticker to check if there is a gap in the engine queue. Whenever
	// there is, we send requests to sync source to retrieve the missing payloads.
	syncCheckInterval := time.Duration(s.config.BlockTime) * time.Second * 2
	altSyncTicker := time.NewTicker(syncCheckInterval)
	defer altSyncTicker.Stop()
	lastUnsafeL2 := s.derivation.UnsafeL2Head()

	for {
		// If we are sequencing, and the L1 state is ready, update the trigger for the next sequencer action.
		// This may adjust at any time based on fork-choice changes or previous errors.
		// And avoid sequencing if the derivation pipeline indicates the engine is not ready.
		if s.driverConfig.SequencerEnabled && !s.driverConfig.SequencerStopped &&
			s.l1State.L1Head() != (eth.L1BlockRef{}) && s.derivation.EngineReady() {
			if s.driverConfig.SequencerMaxSafeLag > 0 && s.derivation.SafeL2Head().Number+s.driverConfig.SequencerMaxSafeLag <= s.derivation.UnsafeL2Head().Number {
				// If the safe head has fallen behind by a significant number of blocks, delay creating new blocks
				// until the safe lag is below SequencerMaxSafeLag.
				if sequencerCh != nil {
					s.log.Warn(
						"Delay creating new block since safe lag exceeds limit",
						"safe_l2", s.derivation.SafeL2Head(),
						"unsafe_l2", s.derivation.UnsafeL2Head(),
					)
					sequencerCh = nil
				}
			} else if s.sequencer.BuildingOnto().ID() != s.derivation.UnsafeL2Head().ID() {
				// If we are sequencing, and the L1 state is ready, update the trigger for the next sequencer action.
				// This may adjust at any time based on fork-choice changes or previous errors.
				//
				// update sequencer time if the head changed
				planSequencerAction()
			}
		} else {
			sequencerCh = nil
		}

		// If the engine is not ready, or if the L2 head is actively changing, then reset the alt-sync:
		// there is no need to request L2 blocks when we are syncing already.
		if head := s.derivation.UnsafeL2Head(); head != lastUnsafeL2 || !s.derivation.EngineReady() {
			lastUnsafeL2 = head
			altSyncTicker.Reset(syncCheckInterval)
		}

		select {
		case <-sequencerCh:
			payload, err := s.sequencer.RunNextSequencerAction(ctx)
			if err != nil {
				s.log.Error("Sequencer critical error", "err", err)
				return
			}
			if s.network != nil && payload != nil {
				// Publishing of unsafe data via p2p is optional.
				// Errors are not severe enough to change/halt sequencing but should be logged and metered.
				if err := s.network.PublishL2Payload(ctx, payload); err != nil {
					s.log.Warn("failed to publish newly created block", "id", payload.ID(), "err", err)
					s.metrics.RecordPublishingError()
				}
			}
			planSequencerAction() // schedule the next sequencer action to keep the sequencing looping
		case <-altSyncTicker.C:
			// Check if there is a gap in the current unsafe payload queue.
			ctx, cancel := context.WithTimeout(ctx, time.Second*2)
			err := s.checkForGapInUnsafeQueue(ctx)
			cancel()
			if err != nil {
				s.log.Warn("failed to check for unsafe L2 blocks to sync", "err", err)
			}
		case payload := <-s.unsafeL2Payloads:
			s.snapshot("New unsafe payload")
			s.log.Info("Optimistically queueing unsafe L2 execution payload", "id", payload.ID())
			s.derivation.AddUnsafePayload(payload)
			s.metrics.RecordReceivedUnsafePayload(payload)
			reqStep()

		case newL1Head := <-s.l1HeadSig:
			s.l1State.HandleNewL1HeadBlock(newL1Head)
			reqStep() // a new L1 head may mean we have the data to not get an EOF again.
		case newL1Safe := <-s.l1SafeSig:
			s.l1State.HandleNewL1SafeBlock(newL1Safe)
			// no step, justified L1 information does not do anything for L2 derivation or status
		case newL1Finalized := <-s.l1FinalizedSig:
			s.l1State.HandleNewL1FinalizedBlock(newL1Finalized)
			s.derivation.Finalize(newL1Finalized)
			reqStep() // we may be able to mark more L2 data as finalized now
		case <-delayedStepReq:
			delayedStepReq = nil
			step()
		case <-stepReqCh:
			s.metrics.SetDerivationIdle(false)
			s.log.Debug("Derivation process step", "onto_origin", s.derivation.Origin(), "attempts", stepAttempts)
			err := s.derivation.Step(context.Background())
			stepAttempts += 1 // count as attempt by default. We reset to 0 if we are making healthy progress.
			if err == io.EOF {
				s.log.Debug("Derivation process went idle", "progress", s.derivation.Origin(), "err", err)
				stepAttempts = 0
				s.metrics.SetDerivationIdle(true)
				continue
			} else if err != nil && errors.Is(err, derive.EngineP2PSyncing) {
				s.log.Debug("Derivation process went idle because the engine is syncing", "progress", s.derivation.Origin(), "sync_target", s.derivation.EngineSyncTarget(), "err", err)
				stepAttempts = 0
				s.metrics.SetDerivationIdle(true)
				continue
			} else if err != nil && errors.Is(err, derive.ErrReset) {
				// If the pipeline corrupts, e.g. due to a reorg, simply reset it
				s.log.Warn("Derivation pipeline is reset", "err", err)
				s.derivation.Reset()
				s.metrics.RecordPipelineReset()
				continue
			} else if err != nil && errors.Is(err, derive.ErrTemporary) {
				s.log.Warn("Derivation process temporary error", "attempts", stepAttempts, "err", err)
				reqStep()
				continue
			} else if err != nil && errors.Is(err, derive.ErrCritical) {
				s.log.Error("Derivation process critical error", "err", err)
				return
			} else if err != nil && errors.Is(err, derive.NotEnoughData) {
				stepAttempts = 0 // don't do a backoff for this error
				reqStep()
				continue
			} else if err != nil {
				s.log.Error("Derivation process error", "attempts", stepAttempts, "err", err)
				reqStep()
				continue
			} else {
				stepAttempts = 0
				reqStep() // continue with the next step if we can
			}
		case respCh := <-s.stateReq:
			respCh <- struct{}{}
		case respCh := <-s.forceReset:
			s.log.Warn("Derivation pipeline is manually reset")
			s.derivation.Reset()
			s.metrics.RecordPipelineReset()
			close(respCh)
		case resp := <-s.startSequencer:
			unsafeHead := s.derivation.UnsafeL2Head().Hash
			if !s.driverConfig.SequencerStopped {
				resp.err <- errors.New("sequencer already running")
			} else if !bytes.Equal(unsafeHead[:], resp.hash[:]) {
				resp.err <- fmt.Errorf("block hash does not match: head %s, received %s", unsafeHead.String(), resp.hash.String())
			} else {
				if err := s.sequencerNotifs.SequencerStarted(); err != nil {
					resp.err <- fmt.Errorf("sequencer start notification: %w", err)
					continue
				}
				s.log.Info("Sequencer has been started")
				s.driverConfig.SequencerStopped = false
				close(resp.err)
				planSequencerAction() // resume sequencing
			}
		case respCh := <-s.stopSequencer:
			if s.driverConfig.SequencerStopped {
				respCh <- hashAndError{err: errors.New("sequencer not running")}
			} else {
				if err := s.sequencerNotifs.SequencerStopped(); err != nil {
					respCh <- hashAndError{err: fmt.Errorf("sequencer start notification: %w", err)}
					continue
				}
				s.log.Warn("Sequencer has been stopped")
				s.driverConfig.SequencerStopped = true
				respCh <- hashAndError{hash: s.derivation.UnsafeL2Head().Hash}
			}
		case respCh := <-s.sequencerActive:
			respCh <- !s.driverConfig.SequencerStopped
		case <-s.done:
			return
		}
	}
}

// ResetDerivationPipeline forces a reset of the derivation pipeline.
// It waits for the reset to occur. It simply unblocks the caller rather
// than fully cancelling the reset request upon a context cancellation.
func (s *Driver) ResetDerivationPipeline(ctx context.Context) error {
	respCh := make(chan struct{}, 1)
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.forceReset <- respCh:
		select {
		case <-ctx.Done():
			return ctx.Err()
		case <-respCh:
			return nil
		}
	}
}

func (s *Driver) StartSequencer(ctx context.Context, blockHash common.Hash) error {
	if !s.driverConfig.SequencerEnabled {
		return errors.New("sequencer is not enabled")
	}
	h := hashAndErrorChannel{
		hash: blockHash,
		err:  make(chan error, 1),
	}
	select {
	case <-ctx.Done():
		return ctx.Err()
	case s.startSequencer <- h:
		select {
		case <-ctx.Done():
			return ctx.Err()
		case e := <-h.err:
			return e
		}
	}
}

func (s *Driver) StopSequencer(ctx context.Context) (common.Hash, error) {
	if !s.driverConfig.SequencerEnabled {
		return common.Hash{}, errors.New("sequencer is not enabled")
	}
	respCh := make(chan hashAndError, 1)
	select {
	case <-ctx.Done():
		return common.Hash{}, ctx.Err()
	case s.stopSequencer <- respCh:
		select {
		case <-ctx.Done():
			return common.Hash{}, ctx.Err()
		case he := <-respCh:
			return he.hash, he.err
		}
	}
}

func (s *Driver) SequencerActive(ctx context.Context) (bool, error) {
	if !s.driverConfig.SequencerEnabled {
		return false, nil
	}
	respCh := make(chan bool, 1)
	select {
	case <-ctx.Done():
		return false, ctx.Err()
	case s.sequencerActive <- respCh:
		select {
		case <-ctx.Done():
			return false, ctx.Err()
		case active := <-respCh:
			return active, nil
		}
	}
}

// syncStatus returns the current sync status, and should only be called synchronously with
// the driver event loop to avoid retrieval of an inconsistent status.
func (s *Driver) syncStatus() *eth.SyncStatus {
	return &eth.SyncStatus{
		CurrentL1:          s.derivation.Origin(),
		CurrentL1Finalized: s.derivation.FinalizedL1(),
		HeadL1:             s.l1State.L1Head(),
		SafeL1:             s.l1State.L1Safe(),
		FinalizedL1:        s.l1State.L1Finalized(),
		UnsafeL2:           s.derivation.UnsafeL2Head(),
		SafeL2:             s.derivation.SafeL2Head(),
		FinalizedL2:        s.derivation.Finalized(),
		UnsafeL2SyncTarget: s.derivation.UnsafeL2SyncTarget(),
		EngineSyncTarget:   s.derivation.EngineSyncTarget(),
	}
}

// SyncStatus blocks the driver event loop and captures the syncing status.
// If the event loop is too busy and the context expires, a context error is returned.
func (s *Driver) SyncStatus(ctx context.Context) (*eth.SyncStatus, error) {
	wait := make(chan struct{})
	select {
	case s.stateReq <- wait:
		resp := s.syncStatus()
		<-wait
		return resp, nil
	case <-ctx.Done():
		return nil, ctx.Err()
	}
}

// BlockRefWithStatus blocks the driver event loop and captures the syncing status,
// along with an L2 block reference by number consistent with that same status.
// If the event loop is too busy and the context expires, a context error is returned.
func (s *Driver) BlockRefWithStatus(ctx context.Context, num uint64) (eth.L2BlockRef, *eth.SyncStatus, error) {
	wait := make(chan struct{})
	select {
	case s.stateReq <- wait:
		resp := s.syncStatus()
		ref, err := s.l2.L2BlockRefByNumber(ctx, num)
		<-wait
		return ref, resp, err
	case <-ctx.Done():
		return eth.L2BlockRef{}, nil, ctx.Err()
	}
}

// deferJSONString helps avoid a JSON-encoding performance hit if the snapshot logger does not run
type deferJSONString struct {
	x any
}

func (v deferJSONString) String() string {
	out, _ := json.Marshal(v.x)
	return string(out)
}

func (s *Driver) snapshot(event string) {
	s.snapshotLog.Info("Rollup State Snapshot",
		"event", event,
		"l1Head", deferJSONString{s.l1State.L1Head()},
		"l1Current", deferJSONString{s.derivation.Origin()},
		"l2Head", deferJSONString{s.derivation.UnsafeL2Head()},
		"l2Safe", deferJSONString{s.derivation.SafeL2Head()},
		"l2FinalizedHead", deferJSONString{s.derivation.Finalized()})
}

type hashAndError struct {
	hash common.Hash
	err  error
}

type hashAndErrorChannel struct {
	hash common.Hash
	err  chan error
}

// checkForGapInUnsafeQueue checks if there is a gap in the unsafe queue and attempts to retrieve the missing payloads from an alt-sync method.
// WARNING: This is only an outgoing signal, the blocks are not guaranteed to be retrieved.
// Results are received through OnUnsafeL2Payload.
func (s *Driver) checkForGapInUnsafeQueue(ctx context.Context) error {
	start := s.derivation.UnsafeL2Head()
	end := s.derivation.UnsafeL2SyncTarget()
	// Check if we have missing blocks between the start and end. Request them if we do.
	if end == (eth.L2BlockRef{}) {
		s.log.Debug("requesting sync with open-end range", "start", start)
		return s.altSync.RequestL2Range(ctx, start, eth.L2BlockRef{})
	} else if end.Number > start.Number+1 {
		s.log.Debug("requesting missing unsafe L2 block range", "start", start, "end", end, "size", end.Number-start.Number)
		return s.altSync.RequestL2Range(ctx, start, end)
	}
	return nil
}