Commit cc3de083 authored by George Hotz's avatar George Hotz

bls12381 system

parent f193a1b2
...@@ -26,8 +26,8 @@ import ( ...@@ -26,8 +26,8 @@ import (
"github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto"
/*"github.com/ethereum/go-ethereum/crypto/blake2b" /*"github.com/ethereum/go-ethereum/crypto/blake2b"*/
"github.com/ethereum/go-ethereum/crypto/bls12381"*/ "github.com/ethereum/go-ethereum/crypto/bls12381"
"github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/crypto/bn256"
"github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/params"
......
This diff is collapsed.
This diff is collapsed.
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"math/big"
)
// fe is base field element representation
type fe [6]uint64
// fe2 is element representation of 'fp2' which is quadratic extension of base field 'fp'
// Representation follows c[0] + c[1] * u encoding order.
type fe2 [2]fe
// fe6 is element representation of 'fp6' field which is cubic extension of 'fp2'
// Representation follows c[0] + c[1] * v + c[2] * v^2 encoding order.
type fe6 [3]fe2
// fe12 is element representation of 'fp12' field which is quadratic extension of 'fp6'
// Representation follows c[0] + c[1] * w encoding order.
type fe12 [2]fe6
func (fe *fe) setBytes(in []byte) *fe {
size := 48
l := len(in)
if l >= size {
l = size
}
padded := make([]byte, size)
copy(padded[size-l:], in[:])
var a int
for i := 0; i < 6; i++ {
a = size - i*8
fe[i] = uint64(padded[a-1]) | uint64(padded[a-2])<<8 |
uint64(padded[a-3])<<16 | uint64(padded[a-4])<<24 |
uint64(padded[a-5])<<32 | uint64(padded[a-6])<<40 |
uint64(padded[a-7])<<48 | uint64(padded[a-8])<<56
}
return fe
}
func (fe *fe) setBig(a *big.Int) *fe {
return fe.setBytes(a.Bytes())
}
func (fe *fe) setString(s string) (*fe, error) {
if s[:2] == "0x" {
s = s[2:]
}
bytes, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
return fe.setBytes(bytes), nil
}
func (fe *fe) set(fe2 *fe) *fe {
fe[0] = fe2[0]
fe[1] = fe2[1]
fe[2] = fe2[2]
fe[3] = fe2[3]
fe[4] = fe2[4]
fe[5] = fe2[5]
return fe
}
func (fe *fe) bytes() []byte {
out := make([]byte, 48)
var a int
for i := 0; i < 6; i++ {
a = 48 - i*8
out[a-1] = byte(fe[i])
out[a-2] = byte(fe[i] >> 8)
out[a-3] = byte(fe[i] >> 16)
out[a-4] = byte(fe[i] >> 24)
out[a-5] = byte(fe[i] >> 32)
out[a-6] = byte(fe[i] >> 40)
out[a-7] = byte(fe[i] >> 48)
out[a-8] = byte(fe[i] >> 56)
}
return out
}
func (fe *fe) big() *big.Int {
return new(big.Int).SetBytes(fe.bytes())
}
func (fe *fe) string() (s string) {
for i := 5; i >= 0; i-- {
s = fmt.Sprintf("%s%16.16x", s, fe[i])
}
return "0x" + s
}
func (fe *fe) zero() *fe {
fe[0] = 0
fe[1] = 0
fe[2] = 0
fe[3] = 0
fe[4] = 0
fe[5] = 0
return fe
}
func (fe *fe) one() *fe {
return fe.set(r1)
}
func (fe *fe) rand(r io.Reader) (*fe, error) {
bi, err := rand.Int(r, modulus.big())
if err != nil {
return nil, err
}
return fe.setBig(bi), nil
}
func (fe *fe) isValid() bool {
return fe.cmp(&modulus) < 0
}
func (fe *fe) isOdd() bool {
var mask uint64 = 1
return fe[0]&mask != 0
}
func (fe *fe) isEven() bool {
var mask uint64 = 1
return fe[0]&mask == 0
}
func (fe *fe) isZero() bool {
return (fe[5] | fe[4] | fe[3] | fe[2] | fe[1] | fe[0]) == 0
}
func (fe *fe) isOne() bool {
return fe.equal(r1)
}
func (fe *fe) cmp(fe2 *fe) int {
for i := 5; i >= 0; i-- {
if fe[i] > fe2[i] {
return 1
} else if fe[i] < fe2[i] {
return -1
}
}
return 0
}
func (fe *fe) equal(fe2 *fe) bool {
return fe2[0] == fe[0] && fe2[1] == fe[1] && fe2[2] == fe[2] && fe2[3] == fe[3] && fe2[4] == fe[4] && fe2[5] == fe[5]
}
func (e *fe) sign() bool {
r := new(fe)
fromMont(r, e)
return r[0]&1 == 0
}
func (fe *fe) div2(e uint64) {
fe[0] = fe[0]>>1 | fe[1]<<63
fe[1] = fe[1]>>1 | fe[2]<<63
fe[2] = fe[2]>>1 | fe[3]<<63
fe[3] = fe[3]>>1 | fe[4]<<63
fe[4] = fe[4]>>1 | fe[5]<<63
fe[5] = fe[5]>>1 | e<<63
}
func (fe *fe) mul2() uint64 {
e := fe[5] >> 63
fe[5] = fe[5]<<1 | fe[4]>>63
fe[4] = fe[4]<<1 | fe[3]>>63
fe[3] = fe[3]<<1 | fe[2]>>63
fe[2] = fe[2]<<1 | fe[1]>>63
fe[1] = fe[1]<<1 | fe[0]>>63
fe[0] = fe[0] << 1
return e
}
func (e *fe2) zero() *fe2 {
e[0].zero()
e[1].zero()
return e
}
func (e *fe2) one() *fe2 {
e[0].one()
e[1].zero()
return e
}
func (e *fe2) set(e2 *fe2) *fe2 {
e[0].set(&e2[0])
e[1].set(&e2[1])
return e
}
func (e *fe2) rand(r io.Reader) (*fe2, error) {
a0, err := new(fe).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe).rand(r)
if err != nil {
return nil, err
}
return &fe2{*a0, *a1}, nil
}
func (e *fe2) isOne() bool {
return e[0].isOne() && e[1].isZero()
}
func (e *fe2) isZero() bool {
return e[0].isZero() && e[1].isZero()
}
func (e *fe2) equal(e2 *fe2) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1])
}
func (e *fe2) sign() bool {
r := new(fe)
if !e[0].isZero() {
fromMont(r, &e[0])
return r[0]&1 == 0
}
fromMont(r, &e[1])
return r[0]&1 == 0
}
func (e *fe6) zero() *fe6 {
e[0].zero()
e[1].zero()
e[2].zero()
return e
}
func (e *fe6) one() *fe6 {
e[0].one()
e[1].zero()
e[2].zero()
return e
}
func (e *fe6) set(e2 *fe6) *fe6 {
e[0].set(&e2[0])
e[1].set(&e2[1])
e[2].set(&e2[2])
return e
}
func (e *fe6) rand(r io.Reader) (*fe6, error) {
a0, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
a2, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
return &fe6{*a0, *a1, *a2}, nil
}
func (e *fe6) isOne() bool {
return e[0].isOne() && e[1].isZero() && e[2].isZero()
}
func (e *fe6) isZero() bool {
return e[0].isZero() && e[1].isZero() && e[2].isZero()
}
func (e *fe6) equal(e2 *fe6) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1]) && e[2].equal(&e2[2])
}
func (e *fe12) zero() *fe12 {
e[0].zero()
e[1].zero()
return e
}
func (e *fe12) one() *fe12 {
e[0].one()
e[1].zero()
return e
}
func (e *fe12) set(e2 *fe12) *fe12 {
e[0].set(&e2[0])
e[1].set(&e2[1])
return e
}
func (e *fe12) rand(r io.Reader) (*fe12, error) {
a0, err := new(fe6).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe6).rand(r)
if err != nil {
return nil, err
}
return &fe12{*a0, *a1}, nil
}
func (e *fe12) isOne() bool {
return e[0].isOne() && e[1].isZero()
}
func (e *fe12) isZero() bool {
return e[0].isZero() && e[1].isZero()
}
func (e *fe12) equal(e2 *fe12) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1])
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
func fromBytes(in []byte) (*fe, error) {
fe := &fe{}
if len(in) != 48 {
return nil, errors.New("input string should be equal 48 bytes")
}
fe.setBytes(in)
if !fe.isValid() {
return nil, errors.New("must be less than modulus")
}
toMont(fe, fe)
return fe, nil
}
func fromBig(in *big.Int) (*fe, error) {
fe := new(fe).setBig(in)
if !fe.isValid() {
return nil, errors.New("invalid input string")
}
toMont(fe, fe)
return fe, nil
}
func fromString(in string) (*fe, error) {
fe, err := new(fe).setString(in)
if err != nil {
return nil, err
}
if !fe.isValid() {
return nil, errors.New("invalid input string")
}
toMont(fe, fe)
return fe, nil
}
func toBytes(e *fe) []byte {
e2 := new(fe)
fromMont(e2, e)
return e2.bytes()
}
func toBig(e *fe) *big.Int {
e2 := new(fe)
fromMont(e2, e)
return e2.big()
}
func toString(e *fe) (s string) {
e2 := new(fe)
fromMont(e2, e)
return e2.string()
}
func toMont(c, a *fe) {
mul(c, a, r2)
}
func fromMont(c, a *fe) {
mul(c, a, &fe{1})
}
func exp(c, a *fe, e *big.Int) {
z := new(fe).set(r1)
for i := e.BitLen(); i >= 0; i-- {
mul(z, z, z)
if e.Bit(i) == 1 {
mul(z, z, a)
}
}
c.set(z)
}
func inverse(inv, e *fe) {
if e.isZero() {
inv.zero()
return
}
u := new(fe).set(&modulus)
v := new(fe).set(e)
s := &fe{1}
r := &fe{0}
var k int
var z uint64
var found = false
// Phase 1
for i := 0; i < 768; i++ {
if v.isZero() {
found = true
break
}
if u.isEven() {
u.div2(0)
s.mul2()
} else if v.isEven() {
v.div2(0)
z += r.mul2()
} else if u.cmp(v) == 1 {
lsubAssign(u, v)
u.div2(0)
laddAssign(r, s)
s.mul2()
} else {
lsubAssign(v, u)
v.div2(0)
laddAssign(s, r)
z += r.mul2()
}
k += 1
}
if !found {
inv.zero()
return
}
if k < 381 || k > 381+384 {
inv.zero()
return
}
if r.cmp(&modulus) != -1 || z > 0 {
lsubAssign(r, &modulus)
}
u.set(&modulus)
lsubAssign(u, r)
// Phase 2
for i := k; i < 384*2; i++ {
double(u, u)
}
inv.set(u)
}
func sqrt(c, a *fe) bool {
u, v := new(fe).set(a), new(fe)
exp(c, a, pPlus1Over4)
square(v, c)
return u.equal(v)
}
func isQuadraticNonResidue(elem *fe) bool {
result := new(fe)
exp(result, elem, pMinus1Over2)
return !result.isOne()
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp12 struct {
fp12temp
fp6 *fp6
}
type fp12temp struct {
t2 [9]*fe2
t6 [5]*fe6
t12 *fe12
}
func newFp12Temp() fp12temp {
t2 := [9]*fe2{}
t6 := [5]*fe6{}
for i := 0; i < len(t2); i++ {
t2[i] = &fe2{}
}
for i := 0; i < len(t6); i++ {
t6[i] = &fe6{}
}
return fp12temp{t2, t6, &fe12{}}
}
func newFp12(fp6 *fp6) *fp12 {
t := newFp12Temp()
if fp6 == nil {
return &fp12{t, newFp6(nil)}
}
return &fp12{t, fp6}
}
func (e *fp12) fp2() *fp2 {
return e.fp6.fp2
}
func (e *fp12) fromBytes(in []byte) (*fe12, error) {
if len(in) != 576 {
return nil, errors.New("input string should be larger than 96 bytes")
}
fp6 := e.fp6
c1, err := fp6.fromBytes(in[:288])
if err != nil {
return nil, err
}
c0, err := fp6.fromBytes(in[288:])
if err != nil {
return nil, err
}
return &fe12{*c0, *c1}, nil
}
func (e *fp12) toBytes(a *fe12) []byte {
fp6 := e.fp6
out := make([]byte, 576)
copy(out[:288], fp6.toBytes(&a[1]))
copy(out[288:], fp6.toBytes(&a[0]))
return out
}
func (e *fp12) new() *fe12 {
return new(fe12)
}
func (e *fp12) zero() *fe12 {
return new(fe12)
}
func (e *fp12) one() *fe12 {
return new(fe12).one()
}
func (e *fp12) add(c, a, b *fe12) {
fp6 := e.fp6
fp6.add(&c[0], &a[0], &b[0])
fp6.add(&c[1], &a[1], &b[1])
}
func (e *fp12) double(c, a *fe12) {
fp6 := e.fp6
fp6.double(&c[0], &a[0])
fp6.double(&c[1], &a[1])
}
func (e *fp12) sub(c, a, b *fe12) {
fp6 := e.fp6
fp6.sub(&c[0], &a[0], &b[0])
fp6.sub(&c[1], &a[1], &b[1])
}
func (e *fp12) neg(c, a *fe12) {
fp6 := e.fp6
fp6.neg(&c[0], &a[0])
fp6.neg(&c[1], &a[1])
}
func (e *fp12) conjugate(c, a *fe12) {
fp6 := e.fp6
c[0].set(&a[0])
fp6.neg(&c[1], &a[1])
}
func (e *fp12) square(c, a *fe12) {
fp6, t := e.fp6, e.t6
fp6.add(t[0], &a[0], &a[1])
fp6.mul(t[2], &a[0], &a[1])
fp6.mulByNonResidue(t[1], &a[1])
fp6.addAssign(t[1], &a[0])
fp6.mulByNonResidue(t[3], t[2])
fp6.mulAssign(t[0], t[1])
fp6.subAssign(t[0], t[2])
fp6.sub(&c[0], t[0], t[3])
fp6.double(&c[1], t[2])
}
func (e *fp12) cyclotomicSquare(c, a *fe12) {
t, fp2 := e.t2, e.fp2()
e.fp4Square(t[3], t[4], &a[0][0], &a[1][1])
fp2.sub(t[2], t[3], &a[0][0])
fp2.doubleAssign(t[2])
fp2.add(&c[0][0], t[2], t[3])
fp2.add(t[2], t[4], &a[1][1])
fp2.doubleAssign(t[2])
fp2.add(&c[1][1], t[2], t[4])
e.fp4Square(t[3], t[4], &a[1][0], &a[0][2])
e.fp4Square(t[5], t[6], &a[0][1], &a[1][2])
fp2.sub(t[2], t[3], &a[0][1])
fp2.doubleAssign(t[2])
fp2.add(&c[0][1], t[2], t[3])
fp2.add(t[2], t[4], &a[1][2])
fp2.doubleAssign(t[2])
fp2.add(&c[1][2], t[2], t[4])
fp2.mulByNonResidue(t[3], t[6])
fp2.add(t[2], t[3], &a[1][0])
fp2.doubleAssign(t[2])
fp2.add(&c[1][0], t[2], t[3])
fp2.sub(t[2], t[5], &a[0][2])
fp2.doubleAssign(t[2])
fp2.add(&c[0][2], t[2], t[5])
}
func (e *fp12) mul(c, a, b *fe12) {
t, fp6 := e.t6, e.fp6
fp6.mul(t[1], &a[0], &b[0])
fp6.mul(t[2], &a[1], &b[1])
fp6.add(t[0], t[1], t[2])
fp6.mulByNonResidue(t[2], t[2])
fp6.add(t[3], t[1], t[2])
fp6.add(t[1], &a[0], &a[1])
fp6.add(t[2], &b[0], &b[1])
fp6.mulAssign(t[1], t[2])
c[0].set(t[3])
fp6.sub(&c[1], t[1], t[0])
}
func (e *fp12) mulAssign(a, b *fe12) {
t, fp6 := e.t6, e.fp6
fp6.mul(t[1], &a[0], &b[0])
fp6.mul(t[2], &a[1], &b[1])
fp6.add(t[0], t[1], t[2])
fp6.mulByNonResidue(t[2], t[2])
fp6.add(t[3], t[1], t[2])
fp6.add(t[1], &a[0], &a[1])
fp6.add(t[2], &b[0], &b[1])
fp6.mulAssign(t[1], t[2])
a[0].set(t[3])
fp6.sub(&a[1], t[1], t[0])
}
func (e *fp12) fp4Square(c0, c1, a0, a1 *fe2) {
t, fp2 := e.t2, e.fp2()
fp2.square(t[0], a0)
fp2.square(t[1], a1)
fp2.mulByNonResidue(t[2], t[1])
fp2.add(c0, t[2], t[0])
fp2.add(t[2], a0, a1)
fp2.squareAssign(t[2])
fp2.subAssign(t[2], t[0])
fp2.sub(c1, t[2], t[1])
}
func (e *fp12) inverse(c, a *fe12) {
fp6, t := e.fp6, e.t6
fp6.square(t[0], &a[0])
fp6.square(t[1], &a[1])
fp6.mulByNonResidue(t[1], t[1])
fp6.sub(t[1], t[0], t[1])
fp6.inverse(t[0], t[1])
fp6.mul(&c[0], &a[0], t[0])
fp6.mulAssign(t[0], &a[1])
fp6.neg(&c[1], t[0])
}
func (e *fp12) mulBy014Assign(a *fe12, c0, c1, c4 *fe2) {
fp2, fp6, t, t2 := e.fp2(), e.fp6, e.t6, e.t2[0]
fp6.mulBy01(t[0], &a[0], c0, c1)
fp6.mulBy1(t[1], &a[1], c4)
fp2.add(t2, c1, c4)
fp6.add(t[2], &a[1], &a[0])
fp6.mulBy01Assign(t[2], c0, t2)
fp6.subAssign(t[2], t[0])
fp6.sub(&a[1], t[2], t[1])
fp6.mulByNonResidue(t[1], t[1])
fp6.add(&a[0], t[1], t[0])
}
func (e *fp12) exp(c, a *fe12, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp12) cyclotomicExp(c, a *fe12, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.cyclotomicSquare(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp12) frobeniusMap(c, a *fe12, power uint) {
fp6 := e.fp6
fp6.frobeniusMap(&c[0], &a[0], power)
fp6.frobeniusMap(&c[1], &a[1], power)
switch power {
case 0:
return
case 6:
fp6.neg(&c[1], &c[1])
default:
fp6.mulByBaseField(&c[1], &c[1], &frobeniusCoeffs12[power])
}
}
func (e *fp12) frobeniusMapAssign(a *fe12, power uint) {
fp6 := e.fp6
fp6.frobeniusMapAssign(&a[0], power)
fp6.frobeniusMapAssign(&a[1], power)
switch power {
case 0:
return
case 6:
fp6.neg(&a[1], &a[1])
default:
fp6.mulByBaseField(&a[1], &a[1], &frobeniusCoeffs12[power])
}
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp2Temp struct {
t [4]*fe
}
type fp2 struct {
fp2Temp
}
func newFp2Temp() fp2Temp {
t := [4]*fe{}
for i := 0; i < len(t); i++ {
t[i] = &fe{}
}
return fp2Temp{t}
}
func newFp2() *fp2 {
t := newFp2Temp()
return &fp2{t}
}
func (e *fp2) fromBytes(in []byte) (*fe2, error) {
if len(in) != 96 {
return nil, errors.New("length of input string should be 96 bytes")
}
c1, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
c0, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
return &fe2{*c0, *c1}, nil
}
func (e *fp2) toBytes(a *fe2) []byte {
out := make([]byte, 96)
copy(out[:48], toBytes(&a[1]))
copy(out[48:], toBytes(&a[0]))
return out
}
func (e *fp2) new() *fe2 {
return new(fe2).zero()
}
func (e *fp2) zero() *fe2 {
return new(fe2).zero()
}
func (e *fp2) one() *fe2 {
return new(fe2).one()
}
func (e *fp2) add(c, a, b *fe2) {
add(&c[0], &a[0], &b[0])
add(&c[1], &a[1], &b[1])
}
func (e *fp2) addAssign(a, b *fe2) {
addAssign(&a[0], &b[0])
addAssign(&a[1], &b[1])
}
func (e *fp2) ladd(c, a, b *fe2) {
ladd(&c[0], &a[0], &b[0])
ladd(&c[1], &a[1], &b[1])
}
func (e *fp2) double(c, a *fe2) {
double(&c[0], &a[0])
double(&c[1], &a[1])
}
func (e *fp2) doubleAssign(a *fe2) {
doubleAssign(&a[0])
doubleAssign(&a[1])
}
func (e *fp2) ldouble(c, a *fe2) {
ldouble(&c[0], &a[0])
ldouble(&c[1], &a[1])
}
func (e *fp2) sub(c, a, b *fe2) {
sub(&c[0], &a[0], &b[0])
sub(&c[1], &a[1], &b[1])
}
func (e *fp2) subAssign(c, a *fe2) {
subAssign(&c[0], &a[0])
subAssign(&c[1], &a[1])
}
func (e *fp2) neg(c, a *fe2) {
neg(&c[0], &a[0])
neg(&c[1], &a[1])
}
func (e *fp2) mul(c, a, b *fe2) {
t := e.t
mul(t[1], &a[0], &b[0])
mul(t[2], &a[1], &b[1])
add(t[0], &a[0], &a[1])
add(t[3], &b[0], &b[1])
sub(&c[0], t[1], t[2])
addAssign(t[1], t[2])
mul(t[0], t[0], t[3])
sub(&c[1], t[0], t[1])
}
func (e *fp2) mulAssign(a, b *fe2) {
t := e.t
mul(t[1], &a[0], &b[0])
mul(t[2], &a[1], &b[1])
add(t[0], &a[0], &a[1])
add(t[3], &b[0], &b[1])
sub(&a[0], t[1], t[2])
addAssign(t[1], t[2])
mul(t[0], t[0], t[3])
sub(&a[1], t[0], t[1])
}
func (e *fp2) square(c, a *fe2) {
t := e.t
ladd(t[0], &a[0], &a[1])
sub(t[1], &a[0], &a[1])
ldouble(t[2], &a[0])
mul(&c[0], t[0], t[1])
mul(&c[1], t[2], &a[1])
}
func (e *fp2) squareAssign(a *fe2) {
t := e.t
ladd(t[0], &a[0], &a[1])
sub(t[1], &a[0], &a[1])
ldouble(t[2], &a[0])
mul(&a[0], t[0], t[1])
mul(&a[1], t[2], &a[1])
}
func (e *fp2) mulByNonResidue(c, a *fe2) {
t := e.t
sub(t[0], &a[0], &a[1])
add(&c[1], &a[0], &a[1])
c[0].set(t[0])
}
func (e *fp2) mulByB(c, a *fe2) {
t := e.t
double(t[0], &a[0])
double(t[1], &a[1])
doubleAssign(t[0])
doubleAssign(t[1])
sub(&c[0], t[0], t[1])
add(&c[1], t[0], t[1])
}
func (e *fp2) inverse(c, a *fe2) {
t := e.t
square(t[0], &a[0])
square(t[1], &a[1])
addAssign(t[0], t[1])
inverse(t[0], t[0])
mul(&c[0], &a[0], t[0])
mul(t[0], t[0], &a[1])
neg(&c[1], t[0])
}
func (e *fp2) mulByFq(c, a *fe2, b *fe) {
mul(&c[0], &a[0], b)
mul(&c[1], &a[1], b)
}
func (e *fp2) exp(c, a *fe2, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp2) frobeniusMap(c, a *fe2, power uint) {
c[0].set(&a[0])
if power%2 == 1 {
neg(&c[1], &a[1])
return
}
c[1].set(&a[1])
}
func (e *fp2) frobeniusMapAssign(a *fe2, power uint) {
if power%2 == 1 {
neg(&a[1], &a[1])
return
}
}
func (e *fp2) sqrt(c, a *fe2) bool {
u, x0, a1, alpha := &fe2{}, &fe2{}, &fe2{}, &fe2{}
u.set(a)
e.exp(a1, a, pMinus3Over4)
e.square(alpha, a1)
e.mul(alpha, alpha, a)
e.mul(x0, a1, a)
if alpha.equal(negativeOne2) {
neg(&c[0], &x0[1])
c[1].set(&x0[0])
return true
}
e.add(alpha, alpha, e.one())
e.exp(alpha, alpha, pMinus1Over2)
e.mul(c, alpha, x0)
e.square(alpha, c)
return alpha.equal(u)
}
func (e *fp2) isQuadraticNonResidue(a *fe2) bool {
// https://github.com/leovt/constructible/wiki/Taking-Square-Roots-in-quadratic-extension-Fields
c0, c1 := new(fe), new(fe)
square(c0, &a[0])
square(c1, &a[1])
add(c1, c1, c0)
return isQuadraticNonResidue(c1)
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp6Temp struct {
t [6]*fe2
}
type fp6 struct {
fp2 *fp2
fp6Temp
}
func newFp6Temp() fp6Temp {
t := [6]*fe2{}
for i := 0; i < len(t); i++ {
t[i] = &fe2{}
}
return fp6Temp{t}
}
func newFp6(f *fp2) *fp6 {
t := newFp6Temp()
if f == nil {
return &fp6{newFp2(), t}
}
return &fp6{f, t}
}
func (e *fp6) fromBytes(b []byte) (*fe6, error) {
if len(b) < 288 {
return nil, errors.New("input string should be larger than 288 bytes")
}
fp2 := e.fp2
u2, err := fp2.fromBytes(b[:96])
if err != nil {
return nil, err
}
u1, err := fp2.fromBytes(b[96:192])
if err != nil {
return nil, err
}
u0, err := fp2.fromBytes(b[192:])
if err != nil {
return nil, err
}
return &fe6{*u0, *u1, *u2}, nil
}
func (e *fp6) toBytes(a *fe6) []byte {
fp2 := e.fp2
out := make([]byte, 288)
copy(out[:96], fp2.toBytes(&a[2]))
copy(out[96:192], fp2.toBytes(&a[1]))
copy(out[192:], fp2.toBytes(&a[0]))
return out
}
func (e *fp6) new() *fe6 {
return new(fe6)
}
func (e *fp6) zero() *fe6 {
return new(fe6)
}
func (e *fp6) one() *fe6 {
return new(fe6).one()
}
func (e *fp6) add(c, a, b *fe6) {
fp2 := e.fp2
fp2.add(&c[0], &a[0], &b[0])
fp2.add(&c[1], &a[1], &b[1])
fp2.add(&c[2], &a[2], &b[2])
}
func (e *fp6) addAssign(a, b *fe6) {
fp2 := e.fp2
fp2.addAssign(&a[0], &b[0])
fp2.addAssign(&a[1], &b[1])
fp2.addAssign(&a[2], &b[2])
}
func (e *fp6) double(c, a *fe6) {
fp2 := e.fp2
fp2.double(&c[0], &a[0])
fp2.double(&c[1], &a[1])
fp2.double(&c[2], &a[2])
}
func (e *fp6) doubleAssign(a *fe6) {
fp2 := e.fp2
fp2.doubleAssign(&a[0])
fp2.doubleAssign(&a[1])
fp2.doubleAssign(&a[2])
}
func (e *fp6) sub(c, a, b *fe6) {
fp2 := e.fp2
fp2.sub(&c[0], &a[0], &b[0])
fp2.sub(&c[1], &a[1], &b[1])
fp2.sub(&c[2], &a[2], &b[2])
}
func (e *fp6) subAssign(a, b *fe6) {
fp2 := e.fp2
fp2.subAssign(&a[0], &b[0])
fp2.subAssign(&a[1], &b[1])
fp2.subAssign(&a[2], &b[2])
}
func (e *fp6) neg(c, a *fe6) {
fp2 := e.fp2
fp2.neg(&c[0], &a[0])
fp2.neg(&c[1], &a[1])
fp2.neg(&c[2], &a[2])
}
func (e *fp6) mul(c, a, b *fe6) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], &b[0])
fp2.mul(t[1], &a[1], &b[1])
fp2.mul(t[2], &a[2], &b[2])
fp2.add(t[3], &a[1], &a[2])
fp2.add(t[4], &b[1], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[1], t[2])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.add(t[5], t[0], t[3])
fp2.add(t[3], &a[0], &a[1])
fp2.add(t[4], &b[0], &b[1])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[1])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[4], t[2])
fp2.add(&c[1], t[3], t[4])
fp2.add(t[3], &a[0], &a[2])
fp2.add(t[4], &b[0], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[2])
fp2.subAssign(t[3], t[4])
fp2.add(&c[2], t[1], t[3])
c[0].set(t[5])
}
func (e *fp6) mulAssign(a, b *fe6) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], &b[0])
fp2.mul(t[1], &a[1], &b[1])
fp2.mul(t[2], &a[2], &b[2])
fp2.add(t[3], &a[1], &a[2])
fp2.add(t[4], &b[1], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[1], t[2])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.add(t[5], t[0], t[3])
fp2.add(t[3], &a[0], &a[1])
fp2.add(t[4], &b[0], &b[1])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[1])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[4], t[2])
fp2.add(&a[1], t[3], t[4])
fp2.add(t[3], &a[0], &a[2])
fp2.add(t[4], &b[0], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[2])
fp2.subAssign(t[3], t[4])
fp2.add(&a[2], t[1], t[3])
a[0].set(t[5])
}
func (e *fp6) square(c, a *fe6) {
fp2, t := e.fp2, e.t
fp2.square(t[0], &a[0])
fp2.mul(t[1], &a[0], &a[1])
fp2.doubleAssign(t[1])
fp2.sub(t[2], &a[0], &a[1])
fp2.addAssign(t[2], &a[2])
fp2.squareAssign(t[2])
fp2.mul(t[3], &a[1], &a[2])
fp2.doubleAssign(t[3])
fp2.square(t[4], &a[2])
fp2.mulByNonResidue(t[5], t[3])
fp2.add(&c[0], t[0], t[5])
fp2.mulByNonResidue(t[5], t[4])
fp2.add(&c[1], t[1], t[5])
fp2.addAssign(t[1], t[2])
fp2.addAssign(t[1], t[3])
fp2.addAssign(t[0], t[4])
fp2.sub(&c[2], t[1], t[0])
}
func (e *fp6) mulBy01Assign(a *fe6, b0, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], b0)
fp2.mul(t[1], &a[1], b1)
fp2.add(t[5], &a[1], &a[2])
fp2.mul(t[2], b1, t[5])
fp2.subAssign(t[2], t[1])
fp2.mulByNonResidue(t[2], t[2])
fp2.add(t[5], &a[0], &a[2])
fp2.mul(t[3], b0, t[5])
fp2.subAssign(t[3], t[0])
fp2.add(&a[2], t[3], t[1])
fp2.add(t[4], b0, b1)
fp2.add(t[5], &a[0], &a[1])
fp2.mulAssign(t[4], t[5])
fp2.subAssign(t[4], t[0])
fp2.sub(&a[1], t[4], t[1])
fp2.add(&a[0], t[2], t[0])
}
func (e *fp6) mulBy01(c, a *fe6, b0, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], b0)
fp2.mul(t[1], &a[1], b1)
fp2.add(t[2], &a[1], &a[2])
fp2.mulAssign(t[2], b1)
fp2.subAssign(t[2], t[1])
fp2.mulByNonResidue(t[2], t[2])
fp2.add(t[3], &a[0], &a[2])
fp2.mulAssign(t[3], b0)
fp2.subAssign(t[3], t[0])
fp2.add(&c[2], t[3], t[1])
fp2.add(t[4], b0, b1)
fp2.add(t[3], &a[0], &a[1])
fp2.mulAssign(t[4], t[3])
fp2.subAssign(t[4], t[0])
fp2.sub(&c[1], t[4], t[1])
fp2.add(&c[0], t[2], t[0])
}
func (e *fp6) mulBy1(c, a *fe6, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[2], b1)
fp2.mul(&c[2], &a[1], b1)
fp2.mul(&c[1], &a[0], b1)
fp2.mulByNonResidue(&c[0], t[0])
}
func (e *fp6) mulByNonResidue(c, a *fe6) {
fp2, t := e.fp2, e.t
t[0].set(&a[0])
fp2.mulByNonResidue(&c[0], &a[2])
c[2].set(&a[1])
c[1].set(t[0])
}
func (e *fp6) mulByBaseField(c, a *fe6, b *fe2) {
fp2 := e.fp2
fp2.mul(&c[0], &a[0], b)
fp2.mul(&c[1], &a[1], b)
fp2.mul(&c[2], &a[2], b)
}
func (e *fp6) exp(c, a *fe6, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp6) inverse(c, a *fe6) {
fp2, t := e.fp2, e.t
fp2.square(t[0], &a[0])
fp2.mul(t[1], &a[1], &a[2])
fp2.mulByNonResidue(t[1], t[1])
fp2.subAssign(t[0], t[1])
fp2.square(t[1], &a[1])
fp2.mul(t[2], &a[0], &a[2])
fp2.subAssign(t[1], t[2])
fp2.square(t[2], &a[2])
fp2.mulByNonResidue(t[2], t[2])
fp2.mul(t[3], &a[0], &a[1])
fp2.subAssign(t[2], t[3])
fp2.mul(t[3], &a[2], t[2])
fp2.mul(t[4], &a[1], t[1])
fp2.addAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.mul(t[4], &a[0], t[0])
fp2.addAssign(t[3], t[4])
fp2.inverse(t[3], t[3])
fp2.mul(&c[0], t[0], t[3])
fp2.mul(&c[1], t[2], t[3])
fp2.mul(&c[2], t[1], t[3])
}
func (e *fp6) frobeniusMap(c, a *fe6, power uint) {
fp2 := e.fp2
fp2.frobeniusMap(&c[0], &a[0], power)
fp2.frobeniusMap(&c[1], &a[1], power)
fp2.frobeniusMap(&c[2], &a[2], power)
switch power % 6 {
case 0:
return
case 3:
neg(&c[0][0], &a[1][1])
c[1][1].set(&a[1][0])
fp2.neg(&a[2], &a[2])
default:
fp2.mul(&c[1], &c[1], &frobeniusCoeffs61[power%6])
fp2.mul(&c[2], &c[2], &frobeniusCoeffs62[power%6])
}
}
func (e *fp6) frobeniusMapAssign(a *fe6, power uint) {
fp2 := e.fp2
fp2.frobeniusMapAssign(&a[0], power)
fp2.frobeniusMapAssign(&a[1], power)
fp2.frobeniusMapAssign(&a[2], power)
t := e.t
switch power % 6 {
case 0:
return
case 3:
neg(&t[0][0], &a[1][1])
a[1][1].set(&a[1][0])
a[1][0].set(&t[0][0])
fp2.neg(&a[2], &a[2])
default:
fp2.mulAssign(&a[1], &frobeniusCoeffs61[power%6])
fp2.mulAssign(&a[2], &frobeniusCoeffs62[power%6])
}
}
This diff is collapsed.
This diff is collapsed.
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
// E is type for target group element
type E = fe12
// GT is type for target multiplicative group GT.
type GT struct {
fp12 *fp12
}
func (e *E) Set(e2 *E) *E {
return e.set(e2)
}
// One sets a new target group element to one
func (e *E) One() *E {
e = new(fe12).one()
return e
}
// IsOne returns true if given element equals to one
func (e *E) IsOne() bool {
return e.isOne()
}
// Equal returns true if given two element is equal, otherwise returns false
func (g *E) Equal(g2 *E) bool {
return g.equal(g2)
}
// NewGT constructs new target group instance.
func NewGT() *GT {
fp12 := newFp12(nil)
return &GT{fp12}
}
// Q returns group order in big.Int.
func (g *GT) Q() *big.Int {
return new(big.Int).Set(q)
}
// FromBytes expects 576 byte input and returns target group element
// FromBytes returns error if given element is not on correct subgroup.
func (g *GT) FromBytes(in []byte) (*E, error) {
e, err := g.fp12.fromBytes(in)
if err != nil {
return nil, err
}
if !g.IsValid(e) {
return e, errors.New("invalid element")
}
return e, nil
}
// ToBytes serializes target group element.
func (g *GT) ToBytes(e *E) []byte {
return g.fp12.toBytes(e)
}
// IsValid checks whether given target group element is in correct subgroup.
func (g *GT) IsValid(e *E) bool {
r := g.New()
g.fp12.exp(r, e, q)
return r.isOne()
}
// New initializes a new target group element which is equal to one
func (g *GT) New() *E {
return new(E).One()
}
// Add adds two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Add(c, a, b *E) {
g.fp12.add(c, a, b)
}
// Sub subtracts two field element `a` and `b`, and assigns the result to the element in first argument.
func (g *GT) Sub(c, a, b *E) {
g.fp12.sub(c, a, b)
}
// Mul multiplies two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Mul(c, a, b *E) {
g.fp12.mul(c, a, b)
}
// Square squares an element `a` and assigns the result to the element in first argument.
func (g *GT) Square(c, a *E) {
g.fp12.cyclotomicSquare(c, a)
}
// Exp exponents an element `a` by a scalar `s` and assigns the result to the element in first argument.
func (g *GT) Exp(c, a *E, s *big.Int) {
g.fp12.cyclotomicExp(c, a, s)
}
// Inverse inverses an element `a` and assigns the result to the element in first argument.
func (g *GT) Inverse(c, a *E) {
g.fp12.inverse(c, a)
}
This diff is collapsed.
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
type pair struct {
g1 *PointG1
g2 *PointG2
}
func newPair(g1 *PointG1, g2 *PointG2) pair {
return pair{g1, g2}
}
// Engine is BLS12-381 elliptic curve pairing engine
type Engine struct {
G1 *G1
G2 *G2
fp12 *fp12
fp2 *fp2
pairingEngineTemp
pairs []pair
}
// NewPairingEngine creates new pairing engine instance.
func NewPairingEngine() *Engine {
fp2 := newFp2()
fp6 := newFp6(fp2)
fp12 := newFp12(fp6)
g1 := NewG1()
g2 := newG2(fp2)
return &Engine{
fp2: fp2,
fp12: fp12,
G1: g1,
G2: g2,
pairingEngineTemp: newEngineTemp(),
}
}
type pairingEngineTemp struct {
t2 [10]*fe2
t12 [9]fe12
}
func newEngineTemp() pairingEngineTemp {
t2 := [10]*fe2{}
for i := 0; i < 10; i++ {
t2[i] = &fe2{}
}
t12 := [9]fe12{}
return pairingEngineTemp{t2, t12}
}
// AddPair adds a g1, g2 point pair to pairing engine
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
p := newPair(g1, g2)
if !e.isZero(p) {
e.affine(p)
e.pairs = append(e.pairs, p)
}
return e
}
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
e.G1.Neg(g1, g1)
e.AddPair(g1, g2)
return e
}
// Reset deletes added pairs.
func (e *Engine) Reset() *Engine {
e.pairs = []pair{}
return e
}
func (e *Engine) isZero(p pair) bool {
return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
}
func (e *Engine) affine(p pair) {
e.G1.Affine(p.g1)
e.G2.Affine(p.g2)
}
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &r[0], &r[1])
fp2.mulByFq(t[0], t[0], twoInv)
fp2.square(t[1], &r[1])
fp2.square(t[2], &r[2])
fp2.double(t[7], t[2])
fp2.add(t[7], t[7], t[2])
fp2.mulByB(t[3], t[7])
fp2.double(t[4], t[3])
fp2.add(t[4], t[4], t[3])
fp2.add(t[5], t[1], t[4])
fp2.mulByFq(t[5], t[5], twoInv)
fp2.add(t[6], &r[1], &r[2])
fp2.square(t[6], t[6])
fp2.add(t[7], t[2], t[1])
fp2.sub(t[6], t[6], t[7])
fp2.sub(&coeff[0], t[3], t[1])
fp2.square(t[7], &r[0])
fp2.sub(t[4], t[1], t[4])
fp2.mul(&r[0], t[4], t[0])
fp2.square(t[2], t[3])
fp2.double(t[3], t[2])
fp2.add(t[3], t[3], t[2])
fp2.square(t[5], t[5])
fp2.sub(&r[1], t[5], t[3])
fp2.mul(&r[2], t[1], t[6])
fp2.double(t[0], t[7])
fp2.add(&coeff[1], t[0], t[7])
fp2.neg(&coeff[2], t[6])
}
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &q[1], &r[2])
fp2.neg(t[0], t[0])
fp2.add(t[0], t[0], &r[1])
fp2.mul(t[1], &q[0], &r[2])
fp2.neg(t[1], t[1])
fp2.add(t[1], t[1], &r[0])
fp2.square(t[2], t[0])
fp2.square(t[3], t[1])
fp2.mul(t[4], t[1], t[3])
fp2.mul(t[2], &r[2], t[2])
fp2.mul(t[3], &r[0], t[3])
fp2.double(t[5], t[3])
fp2.sub(t[5], t[4], t[5])
fp2.add(t[5], t[5], t[2])
fp2.mul(&r[0], t[1], t[5])
fp2.sub(t[2], t[3], t[5])
fp2.mul(t[2], t[2], t[0])
fp2.mul(t[3], &r[1], t[4])
fp2.sub(&r[1], t[2], t[3])
fp2.mul(&r[2], &r[2], t[4])
fp2.mul(t[2], t[1], &q[1])
fp2.mul(t[3], t[0], &q[0])
fp2.sub(&coeff[0], t[3], t[2])
fp2.neg(&coeff[1], t[0])
coeff[2].set(t[1])
}
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
// Algorithm 5 in https://eprint.iacr.org/2019/077.pdf
if e.G2.IsZero(twistPoint) {
return
}
r := new(PointG2).Set(twistPoint)
j := 0
for i := x.BitLen() - 2; i >= 0; i-- {
e.doublingStep(&ellCoeffs[j], r)
if x.Bit(i) != 0 {
j++
ellCoeffs[j] = fe6{}
e.additionStep(&ellCoeffs[j], r, twistPoint)
}
j++
}
}
func (e *Engine) millerLoop(f *fe12) {
pairs := e.pairs
ellCoeffs := make([][68][3]fe2, len(pairs))
for i := 0; i < len(pairs); i++ {
e.preCompute(&ellCoeffs[i], pairs[i].g2)
}
fp12, fp2 := e.fp12, e.fp2
t := e.t2
f.one()
j := 0
for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
if i != 62 {
fp12.square(f, f)
}
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
if x.Bit(i) != 0 {
j++
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
}
j++
}
fp12.conjugate(f, f)
}
func (e *Engine) exp(c, a *fe12) {
fp12 := e.fp12
fp12.cyclotomicExp(c, a, x)
fp12.conjugate(c, c)
}
func (e *Engine) finalExp(f *fe12) {
fp12 := e.fp12
t := e.t12
// easy part
fp12.frobeniusMap(&t[0], f, 6)
fp12.inverse(&t[1], f)
fp12.mul(&t[2], &t[0], &t[1])
t[1].set(&t[2])
fp12.frobeniusMapAssign(&t[2], 2)
fp12.mulAssign(&t[2], &t[1])
fp12.cyclotomicSquare(&t[1], &t[2])
fp12.conjugate(&t[1], &t[1])
// hard part
e.exp(&t[3], &t[2])
fp12.cyclotomicSquare(&t[4], &t[3])
fp12.mul(&t[5], &t[1], &t[3])
e.exp(&t[1], &t[5])
e.exp(&t[0], &t[1])
e.exp(&t[6], &t[0])
fp12.mulAssign(&t[6], &t[4])
e.exp(&t[4], &t[6])
fp12.conjugate(&t[5], &t[5])
fp12.mulAssign(&t[4], &t[5])
fp12.mulAssign(&t[4], &t[2])
fp12.conjugate(&t[5], &t[2])
fp12.mulAssign(&t[1], &t[2])
fp12.frobeniusMapAssign(&t[1], 3)
fp12.mulAssign(&t[6], &t[5])
fp12.frobeniusMapAssign(&t[6], 1)
fp12.mulAssign(&t[3], &t[0])
fp12.frobeniusMapAssign(&t[3], 2)
fp12.mulAssign(&t[3], &t[1])
fp12.mulAssign(&t[3], &t[6])
fp12.mul(f, &t[3], &t[4])
}
func (e *Engine) calculate() *fe12 {
f := e.fp12.one()
if len(e.pairs) == 0 {
return f
}
e.millerLoop(f)
e.finalExp(f)
return f
}
// Check computes pairing and checks if result is equal to one
func (e *Engine) Check() bool {
return e.calculate().isOne()
}
// Result computes pairing and returns target group element as result.
func (e *Engine) Result() *E {
r := e.calculate()
e.Reset()
return r
}
// GT returns target group instance.
func (e *Engine) GT() *GT {
return NewGT()
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
// swuMapG1 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// follows the implmentation at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG1(u *fe) (*fe, *fe) {
var params = swuParamsForG1
var tv [4]*fe
for i := 0; i < 4; i++ {
tv[i] = new(fe)
}
square(tv[0], u)
mul(tv[0], tv[0], params.z)
square(tv[1], tv[0])
x1 := new(fe)
add(x1, tv[0], tv[1])
inverse(x1, x1)
e1 := x1.isZero()
one := new(fe).one()
add(x1, x1, one)
if e1 {
x1.set(params.zInv)
}
mul(x1, x1, params.minusBOverA)
gx1 := new(fe)
square(gx1, x1)
add(gx1, gx1, params.a)
mul(gx1, gx1, x1)
add(gx1, gx1, params.b)
x2 := new(fe)
mul(x2, tv[0], x1)
mul(tv[1], tv[0], tv[1])
gx2 := new(fe)
mul(gx2, gx1, tv[1])
e2 := !isQuadraticNonResidue(gx1)
x, y2 := new(fe), new(fe)
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := new(fe)
sqrt(y, y2)
if y.sign() != u.sign() {
neg(y, y)
}
return x, y
}
// swuMapG2 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// defined at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG2(e *fp2, u *fe2) (*fe2, *fe2) {
if e == nil {
e = newFp2()
}
params := swuParamsForG2
var tv [4]*fe2
for i := 0; i < 4; i++ {
tv[i] = e.new()
}
e.square(tv[0], u)
e.mul(tv[0], tv[0], params.z)
e.square(tv[1], tv[0])
x1 := e.new()
e.add(x1, tv[0], tv[1])
e.inverse(x1, x1)
e1 := x1.isZero()
e.add(x1, x1, e.one())
if e1 {
x1.set(params.zInv)
}
e.mul(x1, x1, params.minusBOverA)
gx1 := e.new()
e.square(gx1, x1)
e.add(gx1, gx1, params.a)
e.mul(gx1, gx1, x1)
e.add(gx1, gx1, params.b)
x2 := e.new()
e.mul(x2, tv[0], x1)
e.mul(tv[1], tv[0], tv[1])
gx2 := e.new()
e.mul(gx2, gx1, tv[1])
e2 := !e.isQuadraticNonResidue(gx1)
x, y2 := e.new(), e.new()
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := e.new()
e.sqrt(y, y2)
if y.sign() != u.sign() {
e.neg(y, y)
}
return x, y
}
var swuParamsForG1 = struct {
z *fe
zInv *fe
a *fe
b *fe
minusBOverA *fe
}{
a: &fe{0x2f65aa0e9af5aa51, 0x86464c2d1e8416c3, 0xb85ce591b7bd31e2, 0x27e11c91b5f24e7c, 0x28376eda6bfc1835, 0x155455c3e5071d85},
b: &fe{0xfb996971fe22a1e0, 0x9aa93eb35b742d6f, 0x8c476013de99c5c4, 0x873e27c3a221e571, 0xca72b5e45a52d888, 0x06824061418a386b},
z: &fe{0x886c00000023ffdc, 0x0f70008d3090001d, 0x77672417ed5828c3, 0x9dac23e943dc1740, 0x50553f1b9c131521, 0x078c712fbe0ab6e8},
zInv: &fe{0x0e8a2e8ba2e83e10, 0x5b28ba2ca4d745d1, 0x678cd5473847377a, 0x4c506dd8a8076116, 0x9bcb227d79284139, 0x0e8d3154b0ba099a},
minusBOverA: &fe{0x052583c93555a7fe, 0x3b40d72430f93c82, 0x1b75faa0105ec983, 0x2527e7dc63851767, 0x99fffd1f34fc181d, 0x097cab54770ca0d3},
}
var swuParamsForG2 = struct {
z *fe2
zInv *fe2
a *fe2
b *fe2
minusBOverA *fe2
}{
a: &fe2{
fe{0, 0, 0, 0, 0, 0},
fe{0xe53a000003135242, 0x01080c0fdef80285, 0xe7889edbe340f6bd, 0x0b51375126310601, 0x02d6985717c744ab, 0x1220b4e979ea5467},
},
b: &fe2{
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
},
z: &fe2{
fe{0x87ebfffffff9555c, 0x656fffe5da8ffffa, 0x0fd0749345d33ad2, 0xd951e663066576f4, 0xde291a3d41e980d3, 0x0815664c7dfe040d},
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
},
zInv: &fe2{
fe{0xacd0000000011110, 0x9dd9999dc88ccccd, 0xb5ca2ac9b76352bf, 0xf1b574bcf4bc90ce, 0x42dab41f28a77081, 0x132fc6ac14cd1e12},
fe{0xe396ffffffff2223, 0x4fbf332fcd0d9998, 0x0c4bbd3c1aff4cc4, 0x6b9c91267926ca58, 0x29ae4da6aef7f496, 0x10692e942f195791},
},
minusBOverA: &fe2{
fe{0x903c555555474fb3, 0x5f98cc95ce451105, 0x9f8e582eefe0fade, 0xc68946b6aebbd062, 0x467a4ad10ee6de53, 0x0e7146f483e23a05},
fe{0x29c2aaaaaab85af8, 0xbf133368e30eeefa, 0xc7a27a7206cffb45, 0x9dee04ce44c9425c, 0x04a15ce53464ce83, 0x0b8fcaf5b59dac95},
},
}
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
"github.com/ethereum/go-ethereum/common"
)
func bigFromHex(hex string) *big.Int {
return new(big.Int).SetBytes(common.FromHex(hex))
}
// decodeFieldElement expects 64 byte input with zero top 16 bytes,
// returns lower 48 bytes.
func decodeFieldElement(in []byte) ([]byte, error) {
if len(in) != 64 {
return nil, errors.New("invalid field element length")
}
// check top bytes
for i := 0; i < 16; i++ {
if in[i] != byte(0x00) {
return nil, errors.New("invalid field element top bytes")
}
}
out := make([]byte, 48)
copy(out[:], in[16:])
return out, nil
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment