title: Controlnet API Usage Guide
slug: 6DCWoM_fbbp1XuSHH8vVc
createdAt: Thu Jul 18 2024 06:12:37 GMT+0000 (Coordinated Universal Time)
updatedAt: Thu Jul 18 2024 13:40:04 GMT+0000 (Coordinated Universal Time)
Controlnet API Usage Guide
Introduction
This document will guide developers on how to use the aonweb library to call the Controlnet API, which is used for voice cloning and text-to-speech conversion.
Prerequisites
- Node.js environment
-
aonweb
library installed - Valid Aonet APPID
Basic Usage
1. Import Required Modules
import { AI, AIOptions } from 'aonweb';
2. Initialize AI Instance
const ai_options = new AIOptions({
appId: 'your_app_id_here',
dev_mode: true
});
const aonweb = new AI(ai_options);
3. Prepare Input Data Example
const data = {
input:{
"seed": 6,
"image": "https://replicate.delivery/pbxt/IYQCkyANILbqCWObhtFANxUyuVIMsLw7pyky9eFlz17MBG9c/house.png",
"scale": 9,
"steps": 20,
"prompt": "a modernist house in a nice landscape",
"structure": "seg",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512"
}
};
const data = {
input:{
"seed": 6,
"image": "https://replicate.delivery/pbxt/IYQDgL9mAeNkgdFCTCb0qXKDHnL8a84VArZBRGhBYRsqc1vn/1200.jpeg",
"scale": 9,
"steps": 20,
"prompt": "a metallic cyborg bird",
"structure": "canny",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512"
}
};
const data = {
input:{
"seed": 20,
"image": "https://replicate.delivery/pbxt/IYQLHLFDraqCrjDUoiwpM9xBhQM1eQVHbxBiNxcbwctUamzb/user_1.png",
"scale": 9,
"steps": 20,
"prompt": "a photo of a brightly colored turtle",
"structure": "scribble",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512"
}
};
4. Call the AI Model
const price = 8; // Cost of the AI call
try {
const response = await aonweb.prediction("/predictions/ai/controlnet", data, price);
// Handle response
console.log("Controlnet result:", response);
} catch (error) {
// Error handling
console.error("Error generating :", error);
}
Parameter Description
-
seed
Number,Provide the seeds required for model inference -
image
String,Please provide the image file that needs to be processed. -
scale
Number,Scale for classifier-free guidance -
steps
Number,Provide the steps required for model inference -
prompt
String, Please provide the prompt that needs to be inferred. -
structure
String,Controlnet structure to condition on -
low_threshold
Number,[canny only] Line detection low threshold -
high_threshold
Number,[canny only] Line detection high threshold -
image_resolution
String,Resolution of output image (will be scaled to this as its smaller dimension) -
num_outputs
Number,Number of images to output (higher values may OOM),default:1 -
eta
Number,Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise -
negative_prompt
String,Provide the negative prompt required for model inference
Notes
- Ensure that the provided image URL is publicly accessible and of good quality to achieve the best recognition results.
- The API may take some time to process the input and generate the result, consider implementing appropriate wait or loading states.
- Handle possible errors, such as network issues, invalid input, or API limitations.
- Adhere to the terms of use and privacy regulations, especially when handling image samples of others.
Example Response
The API response will contain the results of the image recognition or other relevant information. Parse and use the response data according to the actual API documentation.