sync_test.go 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package state

import (
	"bytes"
	"math/big"
	"testing"

24 25 26 27 28 29
	"github.com/ethereum-optimism/optimism/l2geth/common"
	"github.com/ethereum-optimism/optimism/l2geth/core/rawdb"
	"github.com/ethereum-optimism/optimism/l2geth/crypto"
	"github.com/ethereum-optimism/optimism/l2geth/ethdb"
	"github.com/ethereum-optimism/optimism/l2geth/ethdb/memorydb"
	"github.com/ethereum-optimism/optimism/l2geth/trie"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
)

// testAccount is the data associated with an account used by the state tests.
type testAccount struct {
	address common.Address
	balance *big.Int
	nonce   uint64
	code    []byte
}

// makeTestState create a sample test state to test node-wise reconstruction.
func makeTestState() (Database, common.Hash, []*testAccount) {
	// Create an empty state
	db := NewDatabase(rawdb.NewMemoryDatabase())
	state, _ := New(common.Hash{}, db)

	// Fill it with some arbitrary data
	accounts := []*testAccount{}
	for i := byte(0); i < 96; i++ {
		obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i}))
		acc := &testAccount{address: common.BytesToAddress([]byte{i})}

		obj.AddBalance(big.NewInt(int64(11 * i)))
		acc.balance = big.NewInt(int64(11 * i))

		obj.SetNonce(uint64(42 * i))
		acc.nonce = uint64(42 * i)

		if i%3 == 0 {
			obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i})
			acc.code = []byte{i, i, i, i, i}
		}
		state.updateStateObject(obj)
		accounts = append(accounts, acc)
	}
	root, _ := state.Commit(false)

	// Return the generated state
	return db, root, accounts
}

// checkStateAccounts cross references a reconstructed state with an expected
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) {
	// Check root availability and state contents
	state, err := New(root, NewDatabase(db))
	if err != nil {
		t.Fatalf("failed to create state trie at %x: %v", root, err)
	}
	if err := checkStateConsistency(db, root); err != nil {
		t.Fatalf("inconsistent state trie at %x: %v", root, err)
	}
	for i, acc := range accounts {
		if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 {
			t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance)
		}
		if nonce := state.GetNonce(acc.address); nonce != acc.nonce {
			t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce)
		}
		if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) {
			t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code)
		}
	}
}

// checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present.
func checkTrieConsistency(db ethdb.Database, root common.Hash) error {
	if v, _ := db.Get(root[:]); v == nil {
		return nil // Consider a non existent state consistent.
	}
	trie, err := trie.New(root, trie.NewDatabase(db))
	if err != nil {
		return err
	}
	it := trie.NodeIterator(nil)
	for it.Next(true) {
	}
	return it.Error()
}

// checkStateConsistency checks that all data of a state root is present.
func checkStateConsistency(db ethdb.Database, root common.Hash) error {
	// Create and iterate a state trie rooted in a sub-node
	if _, err := db.Get(root.Bytes()); err != nil {
		return nil // Consider a non existent state consistent.
	}
	state, err := New(root, NewDatabase(db))
	if err != nil {
		return err
	}
	it := NewNodeIterator(state)
	for it.Next() {
	}
	return it.Error
}

// Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) {
	empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
	if req := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New())).Missing(1); len(req) != 0 {
		t.Errorf("content requested for empty state: %v", req)
	}
}

// Tests that given a root hash, a state can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1) }
func TestIterativeStateSyncBatched(t *testing.T)    { testIterativeStateSync(t, 100) }

func testIterativeStateSync(t *testing.T, count int) {
	// Create a random state to copy
	srcDb, srcRoot, srcAccounts := makeTestState()

	// Create a destination state and sync with the scheduler
	dstDb := rawdb.NewMemoryDatabase()
	sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb))

	queue := append([]common.Hash{}, sched.Missing(count)...)
	for len(queue) > 0 {
		results := make([]trie.SyncResult, len(queue))
		for i, hash := range queue {
			data, err := srcDb.TrieDB().Node(hash)
			if err != nil {
				t.Fatalf("failed to retrieve node data for %x", hash)
			}
			results[i] = trie.SyncResult{Hash: hash, Data: data}
		}
		if _, index, err := sched.Process(results); err != nil {
			t.Fatalf("failed to process result #%d: %v", index, err)
		}
		batch := dstDb.NewBatch()
		if err := sched.Commit(batch); err != nil {
			t.Fatalf("failed to commit data: %v", err)
		}
		batch.Write()
		queue = append(queue[:0], sched.Missing(count)...)
	}
	// Cross check that the two states are in sync
	checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedStateSync(t *testing.T) {
	// Create a random state to copy
	srcDb, srcRoot, srcAccounts := makeTestState()

	// Create a destination state and sync with the scheduler
	dstDb := rawdb.NewMemoryDatabase()
	sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb))

	queue := append([]common.Hash{}, sched.Missing(0)...)
	for len(queue) > 0 {
		// Sync only half of the scheduled nodes
		results := make([]trie.SyncResult, len(queue)/2+1)
		for i, hash := range queue[:len(results)] {
			data, err := srcDb.TrieDB().Node(hash)
			if err != nil {
				t.Fatalf("failed to retrieve node data for %x", hash)
			}
			results[i] = trie.SyncResult{Hash: hash, Data: data}
		}
		if _, index, err := sched.Process(results); err != nil {
			t.Fatalf("failed to process result #%d: %v", index, err)
		}
		batch := dstDb.NewBatch()
		if err := sched.Commit(batch); err != nil {
			t.Fatalf("failed to commit data: %v", err)
		}
		batch.Write()
		queue = append(queue[len(results):], sched.Missing(0)...)
	}
	// Cross check that the two states are in sync
	checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) }
func TestIterativeRandomStateSyncBatched(t *testing.T)    { testIterativeRandomStateSync(t, 100) }

func testIterativeRandomStateSync(t *testing.T, count int) {
	// Create a random state to copy
	srcDb, srcRoot, srcAccounts := makeTestState()

	// Create a destination state and sync with the scheduler
	dstDb := rawdb.NewMemoryDatabase()
	sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb))

	queue := make(map[common.Hash]struct{})
	for _, hash := range sched.Missing(count) {
		queue[hash] = struct{}{}
	}
	for len(queue) > 0 {
		// Fetch all the queued nodes in a random order
		results := make([]trie.SyncResult, 0, len(queue))
		for hash := range queue {
			data, err := srcDb.TrieDB().Node(hash)
			if err != nil {
				t.Fatalf("failed to retrieve node data for %x", hash)
			}
			results = append(results, trie.SyncResult{Hash: hash, Data: data})
		}
		// Feed the retrieved results back and queue new tasks
		if _, index, err := sched.Process(results); err != nil {
			t.Fatalf("failed to process result #%d: %v", index, err)
		}
		batch := dstDb.NewBatch()
		if err := sched.Commit(batch); err != nil {
			t.Fatalf("failed to commit data: %v", err)
		}
		batch.Write()
		queue = make(map[common.Hash]struct{})
		for _, hash := range sched.Missing(count) {
			queue[hash] = struct{}{}
		}
	}
	// Cross check that the two states are in sync
	checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedStateSync(t *testing.T) {
	// Create a random state to copy
	srcDb, srcRoot, srcAccounts := makeTestState()

	// Create a destination state and sync with the scheduler
	dstDb := rawdb.NewMemoryDatabase()
	sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb))

	queue := make(map[common.Hash]struct{})
	for _, hash := range sched.Missing(0) {
		queue[hash] = struct{}{}
	}
	for len(queue) > 0 {
		// Sync only half of the scheduled nodes, even those in random order
		results := make([]trie.SyncResult, 0, len(queue)/2+1)
		for hash := range queue {
			delete(queue, hash)

			data, err := srcDb.TrieDB().Node(hash)
			if err != nil {
				t.Fatalf("failed to retrieve node data for %x", hash)
			}
			results = append(results, trie.SyncResult{Hash: hash, Data: data})

			if len(results) >= cap(results) {
				break
			}
		}
		// Feed the retrieved results back and queue new tasks
		if _, index, err := sched.Process(results); err != nil {
			t.Fatalf("failed to process result #%d: %v", index, err)
		}
		batch := dstDb.NewBatch()
		if err := sched.Commit(batch); err != nil {
			t.Fatalf("failed to commit data: %v", err)
		}
		batch.Write()
		for _, hash := range sched.Missing(0) {
			queue[hash] = struct{}{}
		}
	}
	// Cross check that the two states are in sync
	checkStateAccounts(t, dstDb, srcRoot, srcAccounts)
}

// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteStateSync(t *testing.T) {
	// Create a random state to copy
	srcDb, srcRoot, srcAccounts := makeTestState()

	checkTrieConsistency(srcDb.TrieDB().DiskDB().(ethdb.Database), srcRoot)

	// Create a destination state and sync with the scheduler
	dstDb := rawdb.NewMemoryDatabase()
	sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb))

	added := []common.Hash{}
	queue := append([]common.Hash{}, sched.Missing(1)...)
	for len(queue) > 0 {
		// Fetch a batch of state nodes
		results := make([]trie.SyncResult, len(queue))
		for i, hash := range queue {
			data, err := srcDb.TrieDB().Node(hash)
			if err != nil {
				t.Fatalf("failed to retrieve node data for %x", hash)
			}
			results[i] = trie.SyncResult{Hash: hash, Data: data}
		}
		// Process each of the state nodes
		if _, index, err := sched.Process(results); err != nil {
			t.Fatalf("failed to process result #%d: %v", index, err)
		}
		batch := dstDb.NewBatch()
		if err := sched.Commit(batch); err != nil {
			t.Fatalf("failed to commit data: %v", err)
		}
		batch.Write()
		for _, result := range results {
			added = append(added, result.Hash)
		}
		// Check that all known sub-tries added so far are complete or missing entirely.
	checkSubtries:
		for _, hash := range added {
			for _, acc := range srcAccounts {
				if hash == crypto.Keccak256Hash(acc.code) {
					continue checkSubtries // skip trie check of code nodes.
				}
			}
			// Can't use checkStateConsistency here because subtrie keys may have odd
			// length and crash in LeafKey.
			if err := checkTrieConsistency(dstDb, hash); err != nil {
				t.Fatalf("state inconsistent: %v", err)
			}
		}
		// Fetch the next batch to retrieve
		queue = append(queue[:0], sched.Missing(1)...)
	}
	// Sanity check that removing any node from the database is detected
	for _, node := range added[1:] {
		key := node.Bytes()
		value, _ := dstDb.Get(key)

		dstDb.Delete(key)
		if err := checkStateConsistency(dstDb, added[0]); err == nil {
			t.Fatalf("trie inconsistency not caught, missing: %x", key)
		}
		dstDb.Put(key, value)
	}
}